Cardiorespiratory Fitness and Carotid Intima–Media Thickness in Physically Active Young Adults: CHIEF Atherosclerosis Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Physical and Blood Laboratory Examinations
2.3. cIMT Measurements
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Overall Subjects
3.2. Correlations of Cardiometabolic Markers and CRF with cIMT in the Overall Subjects
3.3. Correlations of Cardiometabolic Markers and CRF with cIMT in Men and Women
3.4. Correlations of Cardiometabolic Markers and CRF with cIMT in Normal-Weight and Overweight Pateints
3.5. Associations of Abnormal Cardiometabolic Markers and CRF with Clinically Significant cIMT
4. Discussion
Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P., 3rd; Tracy, R.E.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.M.; Liu, K.; Colangelo, L.A.; Lakoski, S.G.; Tracy, R.P.; Greenland, P. Low-Density Lipoprotein Cholesterol Concentrations and Association of High-Sensitivity C-Reactive Protein Concentrations With Incident Coronary Heart Disease in the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2016, 183, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Thomas, I.C.; Shiau, B.; Denenberg, J.O.; McClelland, R.L.; Greenland, P.; de Boer, I.H.; Kestenbaum, B.R.; Lin, G.M.; Daniels, M.; Forbang, N.I.; et al. Association of cardiovascular disease risk factors with coronary artery calcium volume versus density. Heart 2018, 104, 135–143. [Google Scholar] [CrossRef]
- Yang, Y.; Dixon-Suen, S.C.; Dugué, P.A.; Hodge, A.M.; Lynch, B.M.; English, D.R. Physical activity and sedentary behaviour over adulthood in relation to all-cause and cause-specific mortality: A systematic review of analytic strategies and study findings. Int. J. Epidemiol. 2022, 51, 641–667. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.C.; Wu, K.Y.; Lin, G.M.; Chen, S.J.; Lin, W.S.; Yang, S.P.; Cheng, S.M.; Lin, C.S. Clinical Characteristics of Patients Less than Forty Years Old with Coronary Artery Disease in Taiwan: A Cross-Sectional Study. Acta Cardiol. Sin. 2017, 33, 233–240. [Google Scholar] [PubMed]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasfy, M.M.; Baggish, A.L. Exercise Dose in Clinical Practice. Circulation 2016, 133, 2297–2313. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhao, Y.; Yang, X.; Li, Y.; Han, M.; Qie, R.; Huang, S.; Wu, X.; Zhang, Y.; Wu, Y.; et al. Adherence to antihypertensive medication and cardiovascular disease events in hypertensive patients: A dose-response meta-analysis of 2,769,700 participants in cohort study. QJM 2022, 115, 279–286. [Google Scholar] [CrossRef]
- Eikendal, A.L.; Groenewegen, K.A.; Anderson, T.J.; Britton, A.R.; Engström, G.; Evans, G.W.; de Graaf, J.; Grobbee, D.E.; Hedblad, B.; Holewijn, S.; et al. Common carotid intima-media thickness relates to cardiovascular events in adults aged <45 years. Hypertension 2015, 65, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Melo, X.; Santa-Clara, H.; Pimenta, N.M.; Martins, S.S.; Minderico, C.S.; Fernhall, B.; Sardinha, L.B. Intima-Media Thickness in 11- to 13-Year-Old Children: Variation Attributed to Sedentary Behavior, Physical Activity, Cardiorespiratory Fitness, and Waist Circumference. J. Phys. Act. Health 2015, 12, 610–617. [Google Scholar] [CrossRef]
- Melo, X.; Santa-Clara, H.; Santos, D.A.; Pimenta, N.M.; Minderico, C.S.; Fernhall, B.; Sardinha, L.B. Independent Association of Muscular Strength and Carotid Intima-Media Thickness in Children. Int. J. Sports Med. 2015, 36, 624–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkiran, O.; Yilmaz, E.; Koc, M.; Kamanli, A.; Ustundag, B.; Ilhan, N. The association between intima media thickness, central obesity and diastolic blood pressure in obese and overweight children: A cross-sectional school-based study. Int. J. Cardiol. 2013, 165, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.M.; Dyal, L.; Conner, W.; Helden, E.; Newkirk, L.; Yusuf, S.; Lonn, E. Cardiovascular risk factors and non-invasive assessment of subclinical atherosclerosis in youth. Atherosclerosis 2010, 208, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.M.; Lu, H.H. A 12-Lead ECG-Based System With Physiological Parameters and Machine Learning to Identify Right Ventricular Hypertrophy in Young Adults. IEEE J. Transl. Eng. Health Med. 2020, 8, 1900510. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.M.; Liu, K. An Electrocardiographic System With Anthropometrics via Machine Learning to Screen Left Ventricular Hypertrophy among Young Adults. IEEE J. Transl. Eng. Health Med. 2020, 8, 1800111. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Liu, P.Y.; Liu, S.H.; Kwon, Y.; Lavie, C.J.; Lin, G.M. Machine Learning for Electrocardiographic Features to Identify Left Atrial Enlargement in Young Adults: CHIEF Heart Study. Front. Cardiovasc. Med. 2022, 9, 840585. [Google Scholar] [CrossRef]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. J. Sports Sci. Med. 2015, 14, 536–547. [Google Scholar]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. American Heart Association Young Hearts Athero, Hypertension and Obesity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar]
- Lin, G.M.; Li, Y.H.; Lee, C.J.; Shiang, J.C.; Lin, K.H.; Chen, K.W.; Chen, Y.J.; Wu, C.F.; Lin, B.S.; Yu, Y.S.; et al. Rationale and design of the cardiorespiratory fitness and hospitalization events in armed forces study in Eastern Taiwan. World J. Cardiol. 2016, 8, 464–471. [Google Scholar] [CrossRef]
- Liu, P.Y.; Tsai, K.Z.; Lima, J.A.C.; Lavie, C.J.; Lin, G.M. Athlete’s Heart in Asian Military Males: The CHIEF Heart Study. Front. Cardiovasc. Med. 2021, 8, 725852. [Google Scholar] [CrossRef]
- Lai, S.W.; Tsai, K.Z.; Lin, Y.P.; Liu, P.Y.; Lin, Y.K.; Chang, P.Y.; Dai, M.S.; Chao, T.Y.; Han, C.L.; Lin, G.M. Association of red blood cell size and physical fitness in a military male cohort: The CHIEF study. Scand. J. Med. Sci. Sports 2021, 31, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.S.; Tsai, K.Z.; Lin, Y.P.; Lin, Y.K.; Lin, G.M. Association between Leukocyte Counts and Physical Fitness in Male Military Members: The CHIEF Study. Sci. Rep. 2020, 10, 6082. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.J.; Lee, H.C.; Huang, K.C.; Lin, W.Y.; Chung, C.H.; Yang, Y.C.; Chang, C.J.; Wang, Y.W. A Preliminary assessment on implementability of “evidences-based guidelines on obesity prevention and management” for health promoting hospital accreditation. Health Prom. Res. Pract. 2019, 2, 1–14. [Google Scholar]
- Lin, Y.K.; Tsai, K.Z.; Han, C.L.; Lin, Y.P.; Lee, J.T.; Lin, G.M. Obesity Phenotypes and Electrocardiographic Characteristics in Physically Active Males: CHIEF Study. Front. Cardiovasc. Med. 2021, 8, 738575. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/ National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.W.; Tsai, K.Z.; Chen, K.W.; Su, F.Y.; Li, Y.H.; Lin, Y.P.; Han, C.L.; Lin, F.; Lin, Y.K.; Hsieh, C.B.; et al. Sex-Specific Association Between Serum Uric Acid and Elevated Alanine Aminotransferase in a Military Cohort: The CHIEF Study. Endocr. Metab Immune Disord Drug Targets 2019, 19, 333–340. [Google Scholar] [CrossRef]
- Gupta, S.; Rohatgi, A.; Ayers, C.R.; Willis, B.L.; Haskell, W.L.; Khera, A.; Drazner, M.H.; de Lemos, J.A.; Berry, J.D. Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality. Circulation 2011, 123, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Högström, G.; Nordström, A.; Nordström, P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: A nationwide cohort study in men. Eur. Heart J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Trigona, B.; Aggoun, Y.; Maggio, A.; Martin, X.E.; Marchand, L.M.; Beghetti, M.; Farpour-Lambert, N.J. Preclinical noninvasive markers of atherosclerosis in children and adolescents with type 1 diabetes are influenced by physical activity. J. Pediatr. 2010, 157, 533–539. [Google Scholar] [CrossRef]
- Ried-Larsen, M.; Grøntved, A.; Froberg, K.; Ekelund, U.; Andersen, L.B. Physical activity intensity and subclinical atherosclerosis in Danish adolescents: The European Youth Heart Study. Scand. J. Med. Sci. Sports 2013, 23, e168–e177. [Google Scholar] [CrossRef]
- Pahkala, K.; Heinonen, O.J.; Simell, O.; Viikari, J.S.; Rönnemaa, T.; Niinikoski, H.; Raitakari, O.T. Association of physical activity with vascular endothelial function and intima-media thickness. Circulation 2011, 124, 1956–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labreuche, J.; Deplanque, D.; Touboul, P.J.; Bruckert, E.; Amarenco, P. Association between change in plasma triglyceride levels and risk of stroke and carotid atherosclerosis: Systematic review and meta-regression analysis. Atherosclerosis 2010, 212, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.H.; Lee, J.; Kim, T.J.; Kim, N.H.; Choi, K.M.; Baik, S.H.; Choi, D.S.; Pop-Busui, R.; Park, Y.; Kim, S.G. Body Mass Index and Mortality in the General Population and in Subjects with Chronic Disease in Korea: A Nationwide Cohort Study (2002–2010). PLoS ONE 2015, 10, e0139924. [Google Scholar] [CrossRef]
- Cho, Y.S.; Bae, J.H.; Moon, S.H.; Hyun, S.H.; Choi, J.Y.; Kim, B.T.; Lee, K.H. Serum uric acid in asymptomatic adults is weakly associated with carotid artery FDG uptake but not intima-media thickness. J. Nucl. Cardiol. 2020, 27, 1537–1546. [Google Scholar] [CrossRef]
- Cai, A.; Mo, Y.; Zhang, Y.; Li, J.; Chen, J.; Zhou, Y.; Chen, R.; Wei, R.; Huang, Y.; Tang, S.; et al. Relationship of pulse pressure index and carotid intima-media thickness in hypertensive adults. Clin. Exp. Hypertens. 2015, 37, 267–270. [Google Scholar] [CrossRef]
- Blank, S.G.; Mann, S.J.; James, G.D.; West, J.E.; Pickering, T.G. Isolated elevation of diastolic blood pressure. Real or artifactual? Hypertension 1995, 26, 383–389. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Lavie, C.J.; Marín, J.; Perez-Quilis, C.; Eijsvogels, T.M.H.; O’Keefe, J.H.; Perez, M.V.; Blair, S.N. Exercise Effects On Cardiovascular Disease: From Basic Aspects To Clinical Evidence. Cardiovasc. Res. 2021, 3, cvab272. [Google Scholar] [CrossRef]
- Mehta, A.; Kondamudi, N.; Laukkanen, J.A.; Wisloff, U.; Franklin, B.A.; Arena, R.; Lavie, C.J.; Pandey, A. Running away from cardiovascular disease at the right speed: The impact of aerobic physical activity and cardiorespiratory fitness on cardiovascular disease risk and associated subclinical phenotypes. Prog. Cardiovasc. Dis. 2020, 63, 762–774. [Google Scholar] [CrossRef]
N = 1520 | |
---|---|
Age, yrs | 27.33 ± 5.81 |
Sex, male (%) | 1346 (88.6) |
Cigarette smoking, active (%) | 637 (41.9) |
Alcohol consumption, active (%) | 608 (40.0) |
Body mass index, kg/m2 | 24.62 ± 3.71 |
* Body weight category | |
Normal weight (%) | 860 (56.6) |
Overweight (%) | 343 (22.6) |
Mild obesity (%) | 317 (20.8) |
Waist circumference, cm | 82.46 ± 9.86 |
** Abdominal obesity (%) | 367 (27.3) |
Systolic blood pressure, mmHg | 117.13 ± 13.20 |
Diastolic blood pressure, mmHg | 69.27 ± 10.13 |
Pulse pressure, mmHg | 47.86 ± 9.98 |
Total cholesterol, mg/dL | 173.34 ± 33.32 |
Low-density lipoprotein cholesterol, mg/dL | 106.70 ± 30.53 |
High-density lipoprotein cholesterol, mg/dL | 50.61 ± 11.14 |
Serum triglycerides, mg/dL | 103.22 ± 82.16 |
Fasting plasma glucose, mg/dL | 93.31 ± 11.67 |
Serum uric acid, mg/dL | 6.50 ± 1.47 |
3000 m run time, sec | 891.63 ± 110.86 |
cIMT, mm | 0.70 ± 0.13 |
≥0.9 mm (%) | 61 (4.0) |
Total Cohort (N = 1520) | |||||||
---|---|---|---|---|---|---|---|
Univariate | Model 1 | Model 2 | |||||
R | Standardized β | p | Standardized β | p | Standardized β | p | |
SBP | 0.060 | 0.016 | 0.55 | 0.034 | 0.35 | ||
DBP | 0.060 | −0.007 | 0.80 | −0.038 | 0.28 | ||
PP | 0.065 | 0.026 | 0.31 | 0.028 | 0.29 | ||
LDL-C | 0.060 | −0.001 | 0.97 | −0.007 | 0.79 | −0.007 | 0.79 |
HDL-C | 0.060 | 0.000 | 0.99 | 0.027 | 0.36 | 0.027 | 0.36 |
TG | 0.081 | 0.058 | 0.03 | 0.063 | 0.03 | 0.063 | 0.03 |
FPG | 0.060 | −0.009 | 0.74 | −0.021 | 0.44 | −0.021 | 0.44 |
WC | 0.064 | 0.025 | 0.37 | −0.004 | 0.88 | −0.004 | 0.89 |
SUA | 0.064 | 0.024 | 0.39 | 0.010 | 0.75 | 0.010 | 0.75 |
CRF | 0.115 | 0.113 | <0.01 | 0.110 | <0.01 | 0.110 | <0.01 |
Men (N = 1346) | Women (N = 174) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate | Model 1 | Model 2 | Univariate | Model 1 | Model 2 | |||||||||
R | β* | p | β* | p | β* | p | R | β* | p | β* | p | β* | p | |
SBP | 0.055 | 0.017 | 0.53 | 0.017 | 0.66 | 0.103 | 0.013 | 0.87 | 0.157 | 0.12 | ||||
DBP | 0.053 | 0.009 | 0.75 | −0.013 | 0.73 | 0.154 | −0.117 | 0.13 | −0.207 | 0.03 | ||||
PP | 0.054 | 0.014 | 0.61 | 0.013 | 0.65 | 0.162 | 0.127 | 0.09 | 0.152 | 0.06 | ||||
LDL-C | 0.053 | 0.006 | 0.84 | −0.003 | 0.92 | −0.003 | 0.92 | 0.114 | −0.051 | 0.51 | −0.061 | 0.46 | −0.056 | 0.50 |
HDL-C | 0.055 | 0.017 | 0.54 | 0.053 | 0.08 | 0.053 | 0.08 | 0.138 | −0.093 | 0.22 | −0.103 | 0.19 | −0.109 | 0.17 |
TG | 0.079 | 0.061 | 0.03 | 0.072 | 0.02 | 0.072 | 0.02 | 0.111 | 0.043 | 0.57 | 0.029 | 0.74 | 0.021 | 0.80 |
FPG | 0.053 | −0.009 | 0.75 | −0.024 | 0.40 | −0.024 | 0.40 | 0.103 | 0.013 | 0.86 | 0.006 | 0.94 | −0.008 | 0.92 |
WC | 0.061 | 0.032 | 0.26 | 0.010 | 0.77 | 0.010 | 0.76 | 0.109 | −0.039 | 0.61 | −0.090 | 0.30 | −0.108 | 0.20 |
SUA | 0.058 | 0.024 | 0.38 | 0.008 | 0.77 | 0.008 | 0.77 | 0.103 | 0.015 | 0.84 | 0.041 | 0.62 | 0.046 | 0.57 |
CRF | 0.112 | 0.101 | <0.01 | 0.098 | <0.01 | 0.098 | 0.001 | 0.153 | 0.113 | 0.13 | 0.131 | 0.09 | 0.132 | 0.09 |
BMI: 18.5–24.9 kg/m2 (N = 860) | BMI: 25.0–29.9 kg/m2 (N = 660) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate | Model 1 | Model 2 | Univariate | Model 1 | Model 2 | |||||||||
R | β* | p | β* | p | β* | p | R | β* | p | β* | p | β* | p | |
SBP | 0.082 | −0.014 | 0.69 | 0.053 | 0.24 | 0.077 | 0.041 | 0.31 | 0.013 | 0.81 | ||||
DBP | 0.100 | −0.061 | 0.08 | −0.084 | 0.06 | 0.077 | 0.043 | 0.30 | 0.008 | 0.88 | ||||
PP | 0.089 | 0.040 | 0.25 | 0.052 | 0.14 | 0.067 | 0.011 | 0.79 | 0.010 | 0.81 | ||||
LDL-C | 0.081 | −0.010 | 0.78 | 0.003 | 0.93 | 0.003 | 0.92 | 0.066 | 0.008 | 0.84 | −0.005 | 0.91 | −0.005 | 0.91 |
HDL-C | 0.082 | −0.017 | 0.64 | −0.035 | 0.34 | −0.036 | 0.33 | 0.070 | 0.024 | 0.56 | 0.094 | 0.03 | 0.094 | 0.03 |
TG | 0.090 | −0.041 | 0.24 | −0.044 | 0.24 | −0.047 | 0.21 | 0.127 | 0.113 | <0.01 | 0.130 | <0.01 | 0.130 | <0.01 |
FPG | 0.094 | −0.050 | 0.15 | −0.049 | 0.16 | −0.051 | 0.13 | 0.067 | 0.012 | 0.75 | −0.023 | 0.58 | −0.023 | 0.58 |
WC | 0.082 | −0.019 | 0.61 | −0.028 | 0.47 | −0.036 | 0.35 | 0.102 | 0.084 | 0.04 | 0.067 | 0.12 | 0.067 | 0.12 |
SUA | 0.081 | 0.008 | 0.83 | 0.016 | 0.68 | 0.013 | 0.74 | 0.077 | 0.042 | 0.31 | 0.016 | 0.71 | 0.016 | 0.71 |
CRF | 0.121 | 0.109 | <0.01 | 0.117 | <0.01 | 0.119 | <0.01 | 0.123 | 0.114 | <0.01 | 0.103 | 0.01 | 0.103 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.-M.; Liu, P.-Y.; Tsai, K.-Z.; Lin, Y.-K.; Huang, W.-C.; Lavie, C.J. Cardiorespiratory Fitness and Carotid Intima–Media Thickness in Physically Active Young Adults: CHIEF Atherosclerosis Study. J. Clin. Med. 2022, 11, 3653. https://doi.org/10.3390/jcm11133653
Lin G-M, Liu P-Y, Tsai K-Z, Lin Y-K, Huang W-C, Lavie CJ. Cardiorespiratory Fitness and Carotid Intima–Media Thickness in Physically Active Young Adults: CHIEF Atherosclerosis Study. Journal of Clinical Medicine. 2022; 11(13):3653. https://doi.org/10.3390/jcm11133653
Chicago/Turabian StyleLin, Gen-Min, Pang-Yen Liu, Kun-Zhe Tsai, Yu-Kai Lin, Wei-Chun Huang, and Carl J. Lavie. 2022. "Cardiorespiratory Fitness and Carotid Intima–Media Thickness in Physically Active Young Adults: CHIEF Atherosclerosis Study" Journal of Clinical Medicine 11, no. 13: 3653. https://doi.org/10.3390/jcm11133653
APA StyleLin, G.-M., Liu, P.-Y., Tsai, K.-Z., Lin, Y.-K., Huang, W.-C., & Lavie, C. J. (2022). Cardiorespiratory Fitness and Carotid Intima–Media Thickness in Physically Active Young Adults: CHIEF Atherosclerosis Study. Journal of Clinical Medicine, 11(13), 3653. https://doi.org/10.3390/jcm11133653