Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy
Abstract
:1. Background
2. Stereotactic Body Radiotherapy
3. Mechanisms of SBRT
4. SBRT Planning and Implementation
5. SBRT for VT Ablation: Clinical Experience
6. Safety and Complications
7. Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bazoukis, G.; Tse, G.; Letsas, K.P.; Thomopoulos, C.; Naka, K.K.; Korantzopoulos, P.; Bazoukis, X.; Michelongona, P.; Papadatos, S.S.; Vlachos, K.; et al. Impact of ranolazine on ventricular arrhythmias—A systematic review. J. Arrhythmia 2018, 34, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Antiarrhythmics versus Implantable Defibrillators Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N. Engl. J. Med. 1997, 337, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Dorian, P.; Roberts, R.S.; Gent, M.; Bailin, S.; Fain, E.S.; Thorpe, K.; Champagne, J.; Talajic, M.; Coutu, B.; et al. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: The optic study: A randomized trial. JAMA 2006, 295, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapp, J.L.; Wells, G.A.; Parkash, R.; Stevenson, W.G.; Blier, L.; Sarrazin, J.F.; Thibault, B.; Rivard, L.; Gula, L.; Leong-Sit, P.; et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N. Engl. J. Med. 2016, 375, 111–121. [Google Scholar] [CrossRef]
- Rivera, S.; Ricapito, M.D.; Tomas, L.; Parodi, J.; Bardera Molina, G.; Banega, R.; Bueti, P.; Orosco, A.; Reinoso, M.; Caro, M.; et al. Results of cryoenergy and radiofrequency-based catheter ablation for treating ventricular arrhythmias arising from the papillary muscles of the left ventricle, guided by intracardiac echocardiography and image integration. Circ. Arrhythmia Electrophysiol. 2016, 9, e003874. [Google Scholar] [CrossRef] [Green Version]
- Piers, S.R.; Leong, D.P.; van Taxis, C.F.; Tayyebi, M.; Trines, S.A.; Pijnappels, D.A.; Delgado, V.; Schalij, M.J.; Zeppenfeld, K. Outcome of ventricular tachycardia ablation in patients with nonischemic cardiomyopathy: The impact of noninducibility. Circ. Arrhythmia Electrophysiol. 2013, 6, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Santangeli, P.; Muser, D.; Maeda, S.; Filtz, A.; Zado, E.S.; Frankel, D.S.; Dixit, S.; Epstein, A.E.; Callans, D.J.; Marchlinski, F.E. Comparative effectiveness of antiarrhythmic drugs and catheter ablation for the prevention of recurrent ventricular tachycardia in patients with implantable cardioverter-defibrillators: A systematic review and meta-analysis of randomized controlled trials. Heart Rhythm 2016, 13, 1552–1559. [Google Scholar] [CrossRef]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 aha/acc/hrs guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: A report of the american college of cardiology/american heart association task force on clinical practice guidelines and the heart rhythm society. Heart Rhythm 2018, 15, e190–e252. [Google Scholar]
- Schron, E.B.; Exner, D.V.; Yao, Q.; Jenkins, L.S.; Steinberg, J.S.; Cook, J.R.; Kutalek, S.P.; Friedman, P.L.; Bubien, R.S.; Page, R.L.; et al. Quality of life in the antiarrhythmics versus implantable defibrillators trial: Impact of therapy and influence of adverse symptoms and defibrillator shocks. Circulation 2002, 105, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Perini, A.P.; Kutyifa, V.; Veazie, P.; Daubert, J.P.; Schuger, C.; Zareba, W.; McNitt, S.; Rosero, S.; Tompkins, C.; Padeletti, L.; et al. Effects of implantable cardioverter/defibrillator shock and antitachycardia pacing on anxiety and quality of life: A madit-rit substudy. Am. Heart J. 2017, 189, 75–84. [Google Scholar] [CrossRef]
- Bazoukis, G.; Tse, G.; Korantzopoulos, P.; Liu, T.; Letsas, K.P.; Stavrakis, S.; Naka, K.K. Impact of implantable cardioverter-defibrillator interventions on all-cause mortality in heart failure patients: A meta-analysis. Cardiol. Rev. 2019, 27, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.E.; Johnson, G.W.; Hellkamp, A.S.; Anderson, J.; Callans, D.J.; Raitt, M.H.; Reddy, R.K.; Marchlinski, F.E.; Yee, R.; Guarnieri, T.; et al. Prognostic importance of defibrillator shocks in patients with heart failure. N. Engl. J. Med. 2008, 359, 1009–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potters, L.; Kavanagh, B.; Galvin, J.M.; Hevezi, J.M.; Janjan, N.A.; Larson, D.A.; Mehta, M.P.; Ryu, S.; Steinberg, M.; Timmerman, R.; et al. American society for therapeutic radiology and oncology (astro) and american college of radiology (acr) practice guideline for the performance of stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.; Kutob, L.; Schneider, F.; Higgins, K.A.; Lloyd, M.S. Histopathologic and ultrastructural findings in human myocardium after stereotactic body radiation therapy for recalcitrant ventricular tachycardia. Circ. Arrhythmia Electrophysiol. 2020, 13, e008753. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W.; Lee, Y.J.; Griffin, R.J.; Park, I.; Koonce, N.A.; Hui, S.; Kim, M.S.; Dusenbery, K.E.; Sperduto, P.W.; Cho, L.C. Indirect tumor cell death after high-dose hypofractionated irradiation: Implications for stereotactic body radiation therapy and stereotactic radiation surgery. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.W.; Glatstein, E.; Marks, L.B.; Emami, B.; Grimm, J.; Sperduto, P.W.; Kim, M.S.; Hui, S.; Dusenbery, K.E.; Cho, L.C. Biological principles of stereotactic body radiation therapy (sbrt) and stereotactic radiation surgery (srs): Indirect cell death. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 21–34. [Google Scholar] [CrossRef]
- Lehmann, H.I.; Deisher, A.J.; Takami, M.; Kruse, J.J.; Song, L.; Anderson, S.E.; Cusma, J.T.; Parker, K.D.; Johnson, S.B.; Asirvatham, S.J.; et al. External Arrhythmia Ablation Using Photon Beams: Ablation of the Atrioventricular Junction in an Intact Animal Model. Circ. Arrhythmia Electrophysiol. 2017, 10, e004304. [Google Scholar] [CrossRef]
- Sharma, A.; Wong, D.; Weidlich, G.; Fogarty, T.; Jack, A.; Sumanaweera, T.; Maguire, P. Noninvasive stereotactic radiosurgery (cyberheart) for creation of ablation lesions in the atrium. Heart Rhythm 2010, 7, 802–810. [Google Scholar] [CrossRef]
- Blanck, O.; Bode, F.; Gebhard, M.; Hunold, P.; Brandt, S.; Bruder, R.; Grossherr, M.; Vonthein, R.; Rades, D.; Dunst, J. Dose-escalation study for cardiac radiosurgery in a porcine model. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 590–598. [Google Scholar] [CrossRef]
- Refaat, M.M.; Ballout, J.A.; Zakka, P.; Hotait, M.; Al Feghali, K.A.; Gheida, I.A.; Saade, C.; Hourani, M.; Geara, F.; Tabbal, M.; et al. Swine atrioventricular node ablation using stereotactic radiosurgery: Methods and in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. J. Am. Heart Assoc. 2017, 6, e007193. [Google Scholar] [CrossRef] [Green Version]
- Jumeau, R.; Ozsahin, M.; Schwitter, J.; Vallet, V.; Duclos, F.; Zeverino, M.; Moeckli, R.; Pruvot, E.; Bourhis, J. Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother. Oncol. 2018, 128, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Cuculich, P.S.; Schill, M.R.; Kashani, R.; Mutic, S.; Lang, A.; Cooper, D.; Faddis, M.; Gleva, M.; Noheria, A.; Smith, T.W.; et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N. Engl. J. Med. 2017, 377, 2325–2336. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.J.; Seo, J.W.; Kim, H.J.; Kim, M.K.; Yoon, H.S.; Jo, S.W.; Oh, S.; Chang, J.H. Early Changes in Rat Heart After High-Dose Irradiation: Implications for Antiarrhythmic Effects of Cardiac Radioablation. J. Am. Heart Assoc. 2021, 10, e019072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.M.; Navara, R.; Yin, T.; Szymanski, J.; Goldsztejn, U.; Kenkel, C.; Lang, A.; Mpoy, C.; Lipovsky, C.E.; Qiao, Y.; et al. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat. Commun. 2021, 12, 5558. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, S.W.; Park, Y.G.; Kim, S.J.; Choi, C.H.; Cha, M.J.; Chang, J.H. Impact of High-Dose Irradiation on Human iPSC-Derived Cardiomyocytes Using Multi-Electrode Arrays: Implications for the Antiarrhythmic Effects of Cardiac Radioablation. Int. J. Mol. Sci. 2021, 23, 351. [Google Scholar] [CrossRef]
- Amino, M.; Yoshioka, K.; Tanabe, T.; Tanaka, E.; Mori, H.; Furusawa, Y.; Zareba, W.; Yamazaki, M.; Nakagawa, H.; Honjo, H.; et al. Heavy ion radiation up-regulates Cx43 and ameliorates arrhythmogenic substrates in hearts after myocardial infarction. Cardiovasc. Res. 2006, 7, 412–421. [Google Scholar] [CrossRef]
- Aliot, E.M.; Stevenson, W.G.; Almendral-Garrote, J.M.; Bogun, F.; Calkins, C.H.; Delacretaz, E.; Bella, P.D.; Hindricks, G.; Jaïs, P.; Josephson, M.E.; et al. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: Developed in a partnership with the European heart rhythm association (EHRA), a registered branch of the European society of cardiology (ESC), and the heart rhythm society (HRS); in collaboration with the American college of cardiology (ACC) and the American heart association (AHA). Heart Rhythm 2009, 6, 886–933. [Google Scholar]
- Di Biase, L.; Burkhardt, J.D.; Lakkireddy, D.; Carbucicchio, C.; Mohanty, S.; Mohanty, P.; Trivedi, C.; Santangeli, P.; Bai, R.; Forleo, G.; et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: The vista randomized multicenter trial. J. Am. Coll. Cardiol. 2015, 66, 2872–2882. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Davogustto, G.; Stevenson, W.G.; John, R.M. Non-invasive cardiac radiation for ablation of ventricular tachycardia: A new therapeutic paradigm in electrophysiology. Arrhythmia Electrophysiol. Rev. 2018, 7, 8–10. [Google Scholar] [CrossRef]
- Hohmann, S.; Henkenberens, C.; Zormpas, C.; Christiansen, H.; Bauersachs, J.; Duncker, D.; Veltmann, C. A novel open-source software-based high-precision workflow for target definition in cardiac radioablation. J. Cardiovasc. Electrophysiol. 2020, 31, 2689–2695. [Google Scholar] [CrossRef]
- Abdel-Kafi, S.; Sramko, M.; Omara, S.; de Riva, M.; Cvek, J.; Peichl, P.; Kautzner, J.; Zeppenfeld, K. Accuracy of electroanatomical mapping-guided cardiac radiotherapy for ventricular tachycardia: Pitfalls and solutions. Europace 2021, 23, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Boda-Heggemann, J.; Blanck, O.; Mehrhof, F.; Ernst, F.; Buergy, D.; Fleckenstein, J.; Tülümen, E.; Krug, D.; Siebert, F.A.; Zaman, A.; et al. Interdisciplinary clinical target volume generation for cardiac radioablation: Multicenter benchmarking for the radiosurgery for ventricular tachycardia (raventa) trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 745–756. [Google Scholar] [CrossRef]
- Timmerman, R.D.; Kavanagh, B.D.; Cho, L.C.; Papiez, L.; Xing, L. Stereotactic body radiation therapy in multiple organ sites. J. Clin. Oncol. 2007, 25, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.; Atwood, T.F.; Bruggeman, A.R.; Moore, K.L.; McVeigh, E.; Villongco, C.T.; Han, F.T.; Hsu, J.C.; Hoffmayer, K.S.; Raissi, F.; et al. Computational ECG mapping and respiratory gating to optimize stereotactic ablative radiotherapy workflow for refractory ventricular tachycardia. Heart Rhythm O2 2021, 2, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.J.; Cuculich, P.S.; Robinson, C.G.; Chang, J.H. Tailored stereotactic radiotherapy technique using deep inspiration breath-hold to reduce stomach dose for cardiac radioablation. Radiat. Oncol. J. 2021, 39, 167–173. [Google Scholar] [CrossRef]
- Akdag, O.; Borman, P.T.; Woodhead, P.; Uijtewaal, P.; Mandija, S.; Van Asselen, B.; Verhoeff, J.J.; Raaymakers, B.W.; Fast, M.F. First experimental exploration of real-time cardiorespiratory motion management for future stereotactic arrhythmia radioablation treatments on the MR-linac. Phys. Med. Biol. 2022, 67, 065003. [Google Scholar] [CrossRef]
- Zei, P.C.; Wong, D.; Gardner, E.; Fogarty, T.; Maguire, P. Safety and efficacy of stereotactic radioablation targeting pulmonary vein tissues in an experimental model. Heart Rhythm 2018, 15, 1420–1427. [Google Scholar] [CrossRef]
- Loo, B.W., Jr.; Soltys, S.G.; Wang, L.; Lo, A.; Fahimian, B.P.; Iagaru, A.; Norton, L.; Shan, X.; Gardner, E.; Fogarty, T.; et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ. Arrhythmia Electrophysiol. 2015, 8, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Neuwirth, R.; Cvek, J.; Knybel, L.; Jiravsky, O.; Molenda, L.; Kodaj, M.; Fiala, M.; Peichl, P.; Feltl, D.; Januška, J.; et al. Stereotactic radiosurgery for ablation of ventricular tachycardia. Europace 2019, 21, 1088–1095. [Google Scholar] [CrossRef]
- Robinson, C.G.; Samson, P.P.; Moore, K.M.; Hugo, G.D.; Knutson, N.; Mutic, S.; Goddu, S.M.; Lang, A.; Cooper, D.H.; Faddis, M.; et al. Phase i/ii trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation 2019, 139, 313–321. [Google Scholar] [CrossRef]
- Lloyd, M.S.; Wight, J.; Schneider, F.; Hoskins, M.; Attia, T.; Escott, C.; Lerakis, S.; Higgins, K.A. Clinical experience of stereotactic body radiation for refractory ventricular tachycardia in advanced heart failure patients. Heart Rhythm 2020, 17, 415–422. [Google Scholar] [CrossRef]
- Gianni, C.; Rivera, D.; Burkhardt, J.D.; Pollard, B.; Gardner, E.; Maguire, P.; Zei, P.C.; Natale, A.; Al-Ahmad, A. Stereotactic arrhythmia radioablation for refractory scar-related ventricular tachycardia. Heart Rhythm 2020, 17, 1241–1248. [Google Scholar] [CrossRef]
- Chin, R.; Hayase, J.; Hu, P.; Cao, M.; Deng, J.; Ajijola, O.; Do, D.; Vaseghi, M.; Buch, E.; Khakpour, H.; et al. Non-invasive stereotactic body radiation therapy for refractory ventricular arrhythmias: An institutional experience. J. Interv. Cardiol. Electrophysiol. 2021, 61, 535–543. [Google Scholar] [CrossRef]
- Carbucicchio, C.; Andreini, D.; Piperno, G.; Catto, V.; Conte, E.; Cattani, F.; Bonomi, A.; Rondi, E.; Piccolo, C.; Vigorito, S.; et al. Stereotactic radioablation for the treatment of ventricular tachycardia: Preliminary data and insights from the STRA-MI-VT phase Ib/II study. J. Interv. Cardiol. Electrophysiol. 2021, 62, 427–439. [Google Scholar] [CrossRef]
- Qian, P.C.; Quadros, K.; Aguilar, M.; Wei, C.; Boeck, M.; Bredfeldt, J.; Cochet, H.; Blankstein, R.; Mak, R.; Sauer, W.H.; et al. Substrate Modification Using Stereotactic Radioablation to Treat Refractory Ventricular Tachycardia in Patients With Ischemic Cardiomyopathy. JACC Clin. Electrophysiol. 2022, 8, 49–58. [Google Scholar] [CrossRef]
- Haskova, J.; Peichl, P.; Pirk, J.; Cvek, J.; Neuwirth, R.; Kautzner, J. Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma. HeartRhythm Case Rep. 2019, 5, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Marti-Almor, J.; Jimenez-Lopez, J.; Rodriguez de Dios, N.; Tizon, H.; Valles, E.; Algara, M. Noninvasive ablation of ventricular tachycardia with stereotactic radiotherapy in a patient with arrhythmogenic right ventricular cardiomyopathy. Rev. Esp. Cardiol. (Engl. Ed). 2020, 73, 97–99. [Google Scholar] [CrossRef]
- Scholz, E.P.; Seidensaal, K.; Naumann, P.; Andre, F.; Katus, H.A.; Debus, J. Risen from the dead: Cardiac stereotactic ablative radiotherapy as last rescue in a patient with refractory ventricular fibrillation storm. HeartRhythm Case Rep. 2019, 5, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.J.; Huang, L.H.; Tan, H.; Zhang, H.C.; Mei, J.; Shi, H.F.; Jiang, C.Y.; Tan, C.; Zheng, J.W.; Liu, X.P. Stereotactic body radiation therapy for refractory ventricular tachycardia secondary to cardiac lipoma: A case report. Pacing Clin. Electrophysiol. 2019, 42, 1276–1279. [Google Scholar] [CrossRef]
- Krug, D.; Blanck, O.; Demming, T.; Dottermusch, M.; Koch, K.; Hirt, M.; Kotzott, L.; Zaman, A.; Eidinger, L.; Siebert, F.A.; et al. Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery): First-in-patient treatment in Germany. Strahlenther. Onkol. 2020, 196, 23–30. [Google Scholar] [CrossRef]
- Mayinger, M.; Kovacs, B.; Tanadini-Lang, S.; Ehrbar, S.; Wilke, L.; Chamberlain, M.; Moreira, A.; Weitkamp, N.; Brunckhorst, C.; Duru, F.; et al. First magnetic resonance imaging-guided cardiac radioablation of sustained ventricular tachycardia. Radiother. Oncol. 2020, 152, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.G.; Samson, P.; Moore, K.M.S.; Hugo, G.D.; Knutson, N.; Mutic, S. Longer Term Results from a Phase I/II Study of EP-guided Noninvasive Cardiac Radioablation for Treatment of Ventricular Tachycardia (ENCORE-VT). Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 682. [Google Scholar] [CrossRef]
- Haskova, J.; Jedlickova, K.; Cvek, J.; Knybel, L.; Neuwirth, R.; Kautzner, J. Oesophagopericardial fistula as a late complication of stereotactic radiotherapy for recurrent ventricular tachycardia. Europace 2022, euab326. [Google Scholar] [CrossRef]
- Bergom, C.; Bradley, J.A.; Ng, A.K.; Samson, P.; Robinson, C.; Lopez-Mattei, J.; Mitchell, J.D. Past, Present, and Future of Radiation-Induced Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification. JACC CardioOncol. 2021, 3, 343–359. [Google Scholar] [CrossRef] [PubMed]
Study Year | Patient Number | Sex | Mean Age (Years) | Type of CMP | LVEF (Mean, %) | Dose (Gy) | PTV (Mean, mL) | Treatment Time (Mean, Min) | Delay for Efficacy | Follow-Up (Months) | Complications |
---|---|---|---|---|---|---|---|---|---|---|---|
Loo et al. [38] 2015 | 1 | M | 71 | ICMP | 24 | 25 | - | 90 | After 2 months | 9 | Died from COPD exacerbation at month 9 |
Cuculich et al. [22] 2017 | 5 | 4 M; 1 F | 66 | 2 ICMP; 3 NICMP | 23 | 25 | 49 | 14 | Progressive effect after ablation, but maximum effect after 6 weeks | 12 | One fatal stroke 3 weeks after treatment |
Jumeau et al. [21] 2018 | 1 | M | 75 | NICMP | 30 | 25 | 21 | 45 | Immediate | 4 | None |
Neuwirth et al. [39] 2019 | 10 | 9 M; 1 F | 66 | 8 ICMP; 2 NICMP | 27 | 25 | 22.2 | 68 | Progressive effect | 28 | Three died of non-arrhythmic causes; progression of mitral valve regurgitation at 17 months |
Robinson et al. [40] 2019 | 19 | 17 M; 2 F | 66 | 11 ICMP; 5 NICMP; 3 others | 25 | 25 | 98.9 | 15 | Within the first 6 weeks | 13 | Pericarditis; heart failure exacerbation at 2 months |
Lloyd et al. [41] 2020 | 10 | 7 M; 3 F | 62 | 4 ICMP; 4 NICMP; 2 others | - | 25 | 81.4 | - | Within the first 2 weeks | 6 | Mild pneumonitis responsive to corticosteroids in two patients |
Gianni et al. [42] 2020 | 5 | 5 M | 63 | 4 ICMP; 1 NICMP | 34 | 25 | 143 | 82 | Four patients had marked reduction in VT burden during first 6 months | 12 | Two died of heart failure |
Chin et al. [43] 2021 | 8 | 8 M | 75 | 4 ICMP; 4 NICMP | 21 | 22.2 | 121.4 | 18.2 | 3 months | 7.8 | No acute complications, three patient deaths in the follow-up period, unrelated to SBRT. |
Carbucicchio C [44] 2021 | 7 | 8 M | 70 | 3 ICMP; 4 NICMP | 27 | 25 | 183 | 31 | 3 months | 8 | three patient deaths in the follow-up period, unrelated to SBRT. |
Qian et al. [45] 2021 | 6 | 6 M | 72 | 6 ICMP | 20 | 25 | 319 | - | 6 months | 7.7 | 3 patients died of heart failure; 3 of 6 patients had possible adverse events |
Ho et al. [34] 2021 | 6 | 6 M | 74 | 2 ICMP; 4 NICMP | 29 | 25 | 120.3 | 21.1 | - | 6 | 1 patient Pericardial effusion 12 months after therapy |
Haskova et al. [46] 2018 | 1 | - | 34 | NICMP | - | 25 | - | - | 8 months | 8 | - |
Martí Almor et al. [47] 2020 | 1 | M | 64 | NICMP | - | 25 | - | 4 | Immediate | 4 | None |
Scholz et al. [48] 2019 | 1 | M | 53 | ICMP | - | 30 | 82.4 | 5/30 | 2 weeks | 2 | None |
Zeng et al. [49] 2019 | 1 | M | 29 | NICMP | - | 24 | 71 | - | 1 month | 4 | None |
Krug et al. [50] 2019 | 1 | M | 78 | NICMP | 15 | 25 | 42.2 | 15 | Days | - | Died 57 days after ablation due to sepsis-associated cardiac circulatory failure |
Mayinger et al. [51] 2020 | 1 | M | 71 | NICMP | 25 | 25 | 115.1 | 24 | 48 h | 3 | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shangguan, W.; Xu, G.; Wang, X.; Zhang, N.; Liu, X.; Li, G.; Tse, G.; Liu, T. Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy. J. Clin. Med. 2022, 11, 3549. https://doi.org/10.3390/jcm11123549
Shangguan W, Xu G, Wang X, Zhang N, Liu X, Li G, Tse G, Liu T. Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy. Journal of Clinical Medicine. 2022; 11(12):3549. https://doi.org/10.3390/jcm11123549
Chicago/Turabian StyleShangguan, Wenfeng, Gang Xu, Xin Wang, Nan Zhang, Xingpeng Liu, Guangping Li, Gary Tse, and Tong Liu. 2022. "Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy" Journal of Clinical Medicine 11, no. 12: 3549. https://doi.org/10.3390/jcm11123549