Reperfusion Therapies for Acute Ischemic Stroke in COVID-19 Patients: A Nationwide Multi-Center Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic, Clinical, and Stroke-Related Data
3.2. Primary and Secondary Outcomes
3.3. COVID-19 Associated Complications
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohal, S.; Mossammat, M. COVID-19 Presenting with Seizures. IDCases 2020, 20, 00782. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020, 94, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Vollono, C.; Rollo, E.; Romozzi, M.; Frisullo, G.; Servidei, S.; Borghetti, A.; Calabresi, P. Focal status epilepticus as unique clinical feature of COVID-19: A case report. Seizure 2020, 78, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Zanin, L.; Saraceno, G.; Panciani, P.P.; Renisi, G.; Signorini, L.; Migliorati, K.; Fontanella, M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. 2020, 162, 1491–1494. [Google Scholar] [CrossRef]
- Alberti, P.; Beretta, S.; Piatti, M.; Karantzoulis, A.; Piatti, M.L.; Santoro, P.; Viganò, M.; Giovannelli, G.; Pirro, F.; Montisano, D.A.; et al. Guillain-Barre syndrome related to COVID-19 infection. Neurol.-Neuroimmunol. Neuroinflamm. 2020, 7, e741. [Google Scholar] [CrossRef]
- Gutierrez-Ortiz, C.; Mendez-Guerrero, A.; Rodrigo-Rey, S.; Pedro-Murillo, E.S.; Bermejo-Guerrero, L.; Gordo-Mañas, R.; de Aragón-Gómez, F.; Benito-León, J. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020, 95, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Merkler, A.E.; Parikh, N.S.; Mir, S. Risk of Ischemic Stroke in Patients With Coronavirus Disease 2019 (COVID-19) vs. Patients With Influenza. JAMA Neurol. 2020, 77, 1366–1372. [Google Scholar] [CrossRef]
- Sveikata, L.; Melaika, K.; Wiśniewski, A.; Vilionskis, A.; Petrikonis, K.; Stankevičius, E.; Jurjans, K.; Ekkert, A.; Jatužis, D.; Masiliūnas, R. Interactive Training of the Emergency Medical Services Improved Prehospital Stroke Recognition and Transport Time. Front. Neurol. 2022, 13, 765165. [Google Scholar] [CrossRef]
- Melaika, K.; Sveikata, L.; Wiśniewski, A.; Jaxybayeva, A.; Ekkert, A.; Jatužis, D.; Masiliūnas, R. Changes in Prehospital Stroke Care and Stroke Mimic Patterns during the COVID-19 Lockdown. Int. J. Environ. Res. Public Health 2021, 18, 2150. [Google Scholar] [CrossRef] [PubMed]
- Masiliunas, R.; Vilionskis, A.; Bornstein, N.A.; Rastenyte, D.; Jatuzis, D. The impact of a comprehensive national policy on improving acute stroke patient care in Lithuania. Eur. Stroke J. 2022, 1, 239698732210891. [Google Scholar] [CrossRef]
- Mazya, M.; Egido, J.A.; Ford, G.A.; Lees, K.R.; Mikulik, R.; Toni, D.; Wahlgren, N.; Ahmed, N. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: Safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. Stroke 2012, 43, 1524–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escalard, S.; Maier, B.; Redjem, H.; Delvoye, F.; Hébert, S.; Smajda, S.; Ciccio, G.; Desilles, J.-P.; Mazighi, M.; Blanc, R.; et al. Treatment of Acute Ischemic Stroke due to Large Vessel Occlusion With COVID-19: Experience From Paris. Stroke 2020, 51, 2540–2543. [Google Scholar] [CrossRef]
- Fridman, S.; Bres Bullrich, M.; Jimenez-Ruiz, A.; Costantini, P.; Shah, P.; Just, C.; Vela-Duarte, D.; Linfante, I.; Sharifi-Razavi, A.; Karimi, N.; et al. Stroke risk, phenotypes, and death in COVID-19: Systematic review and newly reported cases. Neurology 2020, 95, 3373–3385. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Cagnazzo, F.; Piotin, M.; Escalard, S.; Maier, B.; Ribo, M.; Requena, M.; Pop, R.; Hasiu, A.; Gasparotti, R.; Mardighian, D.; et al. European Multicenter Study of ET-COVID-19. Stroke 2021, 52, 31–39. [Google Scholar] [CrossRef]
- Marti-Fabregas, J.; Guisado-Alonso, D.; Delgado-Mederos, R.; Martínez-Domeño, A.; Prats-Sánchez, L.; Guasch-Jiménez, M.; Cardona, P.; Núñez-Guillén, A.; Requena, M.; Rubiera, M.; et al. Impact of COVID-19 Infection on the Outcome of Patients With Ischemic Stroke. Stroke 2021, 52, 3908–3917. [Google Scholar] [CrossRef]
- Escalard, S.; Chalumeau, V.; Escalard, C.; Redjem, H.; Delvoye, F.; Hébert, S.; Smajda, S.; Ciccio, G.; Desilles, J.-P.; Mazighi, M.; et al. Early Brain Imaging Shows Increased Severity of Acute Ischemic Strokes With Large Vessel Occlusion in COVID-19 Patients. Stroke 2020, 51, 3366–3370. [Google Scholar] [CrossRef]
- Kim, J.T.; Cho, B.H.; Choi, K.-H.; Park, M.-S.; Kim, B.J.; Park, J.-M.; Kang, K.; Lee, S.J.; Kim, J.G.; Cha, J.K.; et al. Magnetic Resonance Imaging Versus Computed Tomography Angiography Based Selection for Endovascular Therapy in Patients With Acute Ischemic Stroke. Stroke 2019, 50, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Teo, K.C.; Leung, W.C.Y.; Wong, Y.-K.; Liu, R.K.C.; Chan, A.H.Y.; Choi, O.M.Y.; Kwok, W.-M.; Leung, K.-K.; Tse, M.-Y.; Cheung, R.T.F.; et al. Delays in Stroke Onset to Hospital Arrival Time During COVID-19. Stroke 2020, 51, 2228–2231. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Abd-Allah, F.; Al-Senani, F.; Aytac, E.; Borhani-Haghighi, A.; Ciccone, A.; Wang, Y. Management of acute ischemic stroke in patients with COVID-19 infection: Report of an international panel. Int. J. Stroke 2020, 15, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Venketasubramanian, N.; Anderson, C.; Ay, H.; Aybek, S.; Brinjikji, W.; de Freitas, G.R.; Del Brutto, O.H.; Fassbender, K.; Fujimura, M.; Goldstein, L.B.; et al. Stroke Care during the COVID-19 Pandemic: International Expert Panel Review. Cerebrovasc. Dis. 2021, 50, 245–261. [Google Scholar] [CrossRef]
- Al-Smadi, A.S.; Mach, J.C.; Abrol, S.; Luqman, A.; Chamiraju, P.; Abujudeh, H. Endovascular Thrombectomy of COVID-19-Related Large Vessel Occlusion: A Systematic Review and Summary of the Literature. Curr. Radiol. Rep. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Wang, A.; Mandigo, G.K.; Yim, P.D.; Meyers, P.M.; Lavine, S.D. Stroke and mechanical thrombectomy in patients with COVID-19: Technical observations and patient characteristics. J. Neurointerv. Surg. 2020, 12, 648–653. [Google Scholar] [CrossRef]
- Janardhan, V.; Janardhan, V.; Kalousek, V. COVID-19 as a Blood Clotting Disorder Masquerading as a Respiratory Illness: A Cerebrovascular Perspective and Therapeutic Implications for Stroke Thrombectomy. J. Neuroimaging 2020, 30, 555–561. [Google Scholar] [CrossRef]
- Siow, I.; Lee, K.S.; Zhang, J.J.Y.; Saffari, S.E.; Ng, A.; Young, B. Stroke as a Neurological Complication of COVID-19: A Systematic Review and Meta-Analysis of Incidence, Outcomes and Predictors. J. Stroke Cerebrovasc. Dis. 2021, 30, 105549. [Google Scholar] [CrossRef]
- Yaeger, K.A.; Fifi, J.T.; Lara-Reyna, J.; Rossitto, C.; Ladner, T.; Yim, B.; Hardigan, T.; Maragkos, G.A.; Shigematsu, T.; Majidi, S.; et al. Initial Stroke Thrombectomy Experience in New York City during the COVID-19 Pandemic. AJNR Am. J. Neuroradiol. 2020, 41, 1357–1360. [Google Scholar] [CrossRef]
- Zhou, Y.; Hong, C.; Chang, J.; Xia, Y.; Jin, H.; Li, Y.; Mao, L.; Wang, Y.; Zhang, L.; Pan, C.; et al. Intravenous thrombolysis for acute ischaemic stroke during COVID-19 pandemic in Wuhan, China: A multicentre, retrospective cohort study. J. Neurol. Neurosurg. Psychiatry 2021, 92, 226–228. [Google Scholar] [CrossRef]
- Sangalli, D.; Polonia, V.; Colombo, D.; Mantero, V.; Filizzolo, M.; Scaccabarozzi, C.; Salmaggi, A. A single-centre experience of intravenous thrombolysis for stroke in COVID-19 patients. Neurol. Sci. 2020, 41, 2325–2329. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, P.; Antecki, J.; Brola, W.; Fudala, M.; Bieniaszewski, L.; Kozera, G. Systemic thrombolysis in ischaemic stroke patients with COVID-19. Acta Neurol. Scand. 2021, 145, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Cappellari, M.; Zini, A.; Sangalli, D.; Cavallini, A.; Reggiani, M.; Sepe, F.N.; Rifino, N.; Giussani, G.; Guidetti, D.; Zedde, M.; et al. Thrombolysis and bridging therapy in patients with acute ischaemic stroke and COVID-19. Eur. J. Neurol. 2020, 27, 2641–2645. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Nitschmann, S. Endovascular treatment for acute ischemic stroke: Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN). Internist 2015, 56, 847–850. [Google Scholar] [CrossRef] [PubMed]
Stroke Patients with COVID-19 (n = 31) | Control Group without COVID-19 (n = 31) | p Value | |
---|---|---|---|
Female, n (%) | 20 (64.5) | 20 (64.5) | 1.000 |
Mean Age, Years (SD) | 74.0 (12.9) | 73.7 (12.3) | 0.912 |
Cardiovascular Risk Factors, n (%) | |||
Hypertension | 29 (93.5) | 26 (83.9) | 0.425 |
Dyslipidemia | 15 (48.4) | 23 (74.2) | 0.067 |
Smoking | 5 (16.1) | 2 (6.5) | 0.229 |
Diabetes | 6 (19.4) | 2 (6.5) | 0.255 |
Atrial Fibrillation | 12 (38.7) | 19 (61.3) | 0.075 |
Symptomatic ICA Stenosis | 6 (19.4) | 2 (6.5) | 0.255 |
Intracranial Artery Stenosis | 3 (9.7) | 5 (16.1) | 0.707 |
Circulation of Stroke, n (%) | |||
Anterior Circulation | 28 (90.3) | 28 (90.3) | 1.000 |
Posterior Circulation | 3 (9.7) | 3 (9.7) | 1.000 |
Reperfusion Treatment, n (%) | |||
IVT | 7 (22.5) | 7 (22.5) | 1.000 |
EVT | 15 (48.4) | 15 (48.4) | 1.000 |
Bridging Therapy | 9 (29.1) | 9 (29.1) | 1.000 |
Median Timeliness Metrics, min (IQR) | |||
Onset-To-Door Time | 126 (83–218) | 95 (66–205) | 0.294 |
IVT | 94 (81–137) | 80 (55–105) | |
EVT | 245 (121–720) | 154.5 (67.75–198.75) | |
Bridging Therapy | 101 (65–130.5) | 84 (67.75–220) | |
Door-To-Needle Time | 40.5 (26–72.5) | 36 (27–46) | 0.626 |
Door-To-Puncture Time | 101 (80.75–162.5) | 116.5 (75.5–138.75) | 1 |
Baseline NIHSS, Median (IQR) | 16 (10–19) | 12.5 (5–15) | 0.028 |
ASPECTS, Median (IQR)§ | 9 (7.75–10) | 10 (8–10) | 0.229 |
Stroke Patients with COVID-19 (n = 31) | Control Group without COVID-19 (n = 31) | p Value | |
---|---|---|---|
Clinical Data | |||
Hypoxemia, n (%) † | 5(16.1) | 3 (9.7) | 0.712 |
Median Body Temperature, °C (IQR) | 36.6 (36.4–36.8) | 36.5 (36.1–36.6) | 0.025 |
Mean Systolic Blood Pressure, mmHg (SD) | 159 (28.6) | 168 (28.6) | 0.214 |
Mean Diastolic Blood Pressure, mmHg (SD) | 86 (21.8) | 90 (14.9) | 0.350 |
Laboratory Data | |||
Mean Total WBC Count, ×10⁹/L (SD) | 8.8 (5.4) | 8.7 (2.6) | 0.473 |
Mean Lymphocyte Count, ×10⁹/L (SD) | 1.5 (0.7) | 2.1 (1.4) | 0.013 |
Mean CRP, mg/L (SD) | 44.3 (63.8) | 5.3 (6.4) | <0.001 |
CRP > 5 mg/L, n (%) | 23 (74.2) | 8 (25.8) | <0.001 |
Median D-Dimer, μg/L (IQR) | 675 (78–4898) | 1048 (479–2065) | 0.979 |
Stroke Patients with COVID-19 (n = 31) | Control Group without COVID-19 (n = 31) | p Value | |
---|---|---|---|
TICI Score, n (%) † | 0.190 | ||
2b/3 | 19 (79.2) | 21 (95.5) | |
0/1/2a | 5 (20.8) | 1 (4.5) | |
Ischemic Changes on CT Scan 24 h | |||
After RT, n (%) | 24 (77.4) | 21 (67.7) | 0.393 |
Stroke Severity, NIHSS, Median (IQR) | |||
24 h After Reperfusion Therapy | 16 (5–24) | 5 (2–13) | 0.003 |
24 h Change From Baseline | 0 (−3–3) | −2 (−7.25–0) | 0.029 |
Day 7 or Discharge ‡ | 15 (5–21) | 4 (1–10) | <0.001 |
Overall Change From Baseline | −1 (−6–2) | −4 (−9–1) | 0.022 |
Early Neurological Improvement, n (%)§ | 6 (19.4) | 12 (38.7) | 0.077 |
Functional Outcome at Discharge || | |||
Median mRS (IQR) | 4 (3–6) | 2 (1–4) | 0.004 |
mRS ≤ 2, n (%) | 7 (22.6) | 16 (51.6) | 0.018 |
Complications, n (%) | |||
Symptomatic ICH | 0 (0) | 0 (0) | 1.000 |
Cerebral Edema | 7 (22.6) | 6 (19.4) | 0.755 |
Pneumonia ¥ | 21 (67.7) | 2 (8.0) | <0.001 |
Respiratory Failure ¥¥ | 20 (64.5) | 4 (22.2) | 0.007 |
Other ¶ | 8 (25.8) | 9 (29.0) | 0.776 |
Prolonged Stay in ICU (>1 day), n (%) | 12 (38.7) | 6 (19.4) | 0.093 |
Mortality, n (%) | |||
In-Hospital | 9 (29.0) | 2 (6.5) | 0.043 |
Day 90 | 17 (54.8) | 4 (12.9) | 0.001 |
Covariates | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|
p Value | OR (95% CI) | p Value | |
Age | 0.028 | 0.959 (0.899–1.022) | 0.199 |
Baseline NIHSS | <0.001 | 0.790 (0.691–0.902) | 0.000 |
COVID-19 Infection | 0.011 | 0.312 (0.077–1.260) | 0.102 |
Covariates | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|
p Value | OR (95% CI) | p Value | |
Age | 0.022 | 1.086 (1.002–1.178) | 0.045 |
Hypoxemia (SpO2 < 93%) | 0.079 | 1.861 (0.225–15.406) | 0.565 |
Baseline NIHSS | 0.001 | 1.184 (1.013–1.383) | 0.034 |
COVID-19 infection | 0.001 | 6.696 (1.029–43.584) | 0.047 |
Total WBC count | 0.079 | 1.126 (0.829–1.530) | 0.447 |
CRP concentration | 0.093 | 1.004 (0.990–1.018) | 0.586 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurkevičienė, J.; Vaišvilas, M.; Masiliūnas, R.; Matijošaitis, V.; Vaitkus, A.; Geštautaitė, D.; Taroza, S.; Puzinas, P.; Galvanauskaitė, E.; Jatužis, D.; et al. Reperfusion Therapies for Acute Ischemic Stroke in COVID-19 Patients: A Nationwide Multi-Center Study. J. Clin. Med. 2022, 11, 3004. https://doi.org/10.3390/jcm11113004
Jurkevičienė J, Vaišvilas M, Masiliūnas R, Matijošaitis V, Vaitkus A, Geštautaitė D, Taroza S, Puzinas P, Galvanauskaitė E, Jatužis D, et al. Reperfusion Therapies for Acute Ischemic Stroke in COVID-19 Patients: A Nationwide Multi-Center Study. Journal of Clinical Medicine. 2022; 11(11):3004. https://doi.org/10.3390/jcm11113004
Chicago/Turabian StyleJurkevičienė, Justina, Mantas Vaišvilas, Rytis Masiliūnas, Vaidas Matijošaitis, Antanas Vaitkus, Dovilė Geštautaitė, Saulius Taroza, Paulius Puzinas, Erika Galvanauskaitė, Dalius Jatužis, and et al. 2022. "Reperfusion Therapies for Acute Ischemic Stroke in COVID-19 Patients: A Nationwide Multi-Center Study" Journal of Clinical Medicine 11, no. 11: 3004. https://doi.org/10.3390/jcm11113004
APA StyleJurkevičienė, J., Vaišvilas, M., Masiliūnas, R., Matijošaitis, V., Vaitkus, A., Geštautaitė, D., Taroza, S., Puzinas, P., Galvanauskaitė, E., Jatužis, D., & Vilionskis, A. (2022). Reperfusion Therapies for Acute Ischemic Stroke in COVID-19 Patients: A Nationwide Multi-Center Study. Journal of Clinical Medicine, 11(11), 3004. https://doi.org/10.3390/jcm11113004