Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.3.1. Sarcopenia Assessment
2.3.2. Frailty Assessment
2.3.3. Body Composition Assessment
2.3.4. Blood-Based Biomarkers
2.4. Statistical Analysis
3. Results
3.1. Effects of the Intervention on Sarcopenia and Frailty Status
3.2. Effects of the Intervention on Body Composition and Blood-Based Biomarkers
3.3. Association of Changes in Myokine Concentration with Changes in Muscle Mass Parameters Following the Intervention Program
4. Discussion
Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.M.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Witard, O.C.; McGlory, C.; Hamilton, D.L.; Phillips, S.M. Growing older with health and vitality: A nexus of physical activity, exercise and nutrition. Biogerontology 2016, 17, 529–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeejeebhoy, K.N. Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: Overlap of clinical features. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- McLeod, J.C.; Stokes, T.; Phillips, S.M. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front. Physiol. 2019, 10, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joanisse, S.; McKendry, J.; Lim, C.; Nunes, E.A.; Stokes, T.; Mcleod, J.C.; Phillips, S.M. Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. Clin. Nutr. Open Sci. 2021, 36, 56–77. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the “anabolic resistance” of ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Arnau, F.M.; Fonfría-Vivas, R.; Cauli, O. Beneficial effects of leucine supplementation on criteria for sarcopenia: A systematic review. Nutrients 2019, 11, 2504. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.H.; Moon, K.M.; Min, K.-W. Exercise-Induced Myokines Can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare 2020, 8, 378. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Schober-Halper, B.; Oesen, S.; Franzke, B.; Tschan, H.; Bachl, N.; Strasser, E.M.; Quittan, M.; Wagner, K.H.; Wessner, B. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: The Vienna Active Ageing Study (VAAS). Eur. J. Appl. Physiol. 2016, 116, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, R.; Rashidlamir, A.; Motevalli, M.S.; Elliott, B.T.; Mehrabani, J.; Wong, A. Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myostatin in middle-aged men. Eur. J. Appl. Physiol. 2019, 119, 1921–1931. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghadam, B.H.; Church, D.D.; Tinsley, G.M.; Eskandari, M.; Moghadam, B.H.; Motevalli, M.S.; Baker, J.S.; Robergs, R.A.; Wong, A. The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Exp. Gerontol. 2020, 133, 110869. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, D.S. Effects of Heavy Resistance Training on Myostatin mRNA and Protein Expression. Med. Sci. Sports Exerc. 2004, 36, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, H.; Hervás, G.; Rezola-Pardo, C.; Ruiz-Litago, F.; Iturburu, M.; Yanguas, J.J.; Gil, S.M.; Rodriguez-Larrad, A.; Irazusta, J. Serum myostatin levels are higher in fitter, more active, and non-frail long-Term nursing home residents and increase after a physical exercise intervention. Gerontology 2019, 65, 229–239. [Google Scholar] [CrossRef]
- Gmiat, A.; Mieszkowski, J.; Prusik, K.; Prusik, K.; Kortas, J.; Kochanowicz, A.; Radulska, A.; Lipiński, M.; Tomczyk, M.; Jaworska, J.; et al. Changes in pro-inflammatory markers and leucine concentrations in response to Nordic Walking training combined with vitamin D supplementation in elderly women. Biogerontology 2017, 18, 535–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; So, B.; Choi, M.; Kang, D.; Song, W. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp. Gerontol. 2015, 70, 11–17. [Google Scholar] [CrossRef]
- Zhao, J.; Su, Z.; Qu, C.; Dong, Y. Effects of 12 weeks resistance training on serum irisin in older male adults. Front. Physiol. 2017, 8, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Hecksteden, A.; Wegmann, M.; Steffen, A.; Kraushaar, J.; Morsch, A.; Ruppenthal, S.; Kaestner, L.; Meyer, T. Irisin and exercise training in humans—Results from a randomized controlled training trial. BMC Med. 2013, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yarasheski, K.E.; Bhasin, S.; Sinha-Hikim, I.; Pak-Loduca, J.; Gonzalez-Cadavid, N.F. Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J. Nutr. Health Aging 2002, 6, 343–348. [Google Scholar]
- Ratkevicius, A.; Joyson, A.; Selmer, I.; Dhanani, T.; Grierson, C.; Tommasi, A.M.; DeVries, A.; Rauchhaus, P.; Crowther, D.; Alesci, S.; et al. Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011, 66, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Bergen, H.R.; Farr, J.N.; Vanderboom, P.M.; Atkinson, E.J.; White, T.A.; Singh, R.J.; Khosla, S.; LeBrasseur, N.K. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: Insights using a new mass spectrometry-based assay. Skelet. Muscle 2015, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccirillo, R. Exercise-induced myokines with therapeutic potential for muscle wasting. Front. Physiol. 2019, 10, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, G.; Heineke, J. Finding good biomarkers for sarcopenia. J. Cachexia Sarcopenia Muscle 2012, 3, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, I.; Besga, A.; Sanz, B.; Amasene, M.; Hervás, G.; Barroso, J.; Rodriguez-Larrad, A.; Irazusta, J. Identification of frailty and sarcopenia in hospitalised older people. Eur. J. Clin. Investig. 2021, 51, e13420. [Google Scholar] [CrossRef]
- Amasene, M.; Besga, A.; Echeverria, I.; Urquiza, M.; Ruiz, J.R.; Rodriguez-Larrad, A.; Aldamiz, M.; Anaut, P.; Irazusta, J.; Labayen, I. Effects of Leucine-enriched whey protein supplementation on physical function in post-hospitalized older adults participating in 12-weeks of resistance training program: A randomized controlled trial. Nutrients 2019, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Da Camara, S.; Alvarado, B.E.; Guralnik, J.M.; Guerra, R.; Maciel, A. Using the Short Physical Performance Battery to screen for frailty in young-old adults with distinct socioeconomic conditions. Geriatr. Gerontol. Int. 2013, 13, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.M.; Kennedy, C.C.; Karampatos, S.; Ioannidis, G.; Misiaszek, B.; Marr, S.; Patterson, C.; Woo, T.; Papaioannou, A. Measuring frailty in clinical practice: A comparison of physical frailty assessment methods in a geriatric out-patient clinic. BMC Geriatr. 2017, 17, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Chumlea, W.C.; Roche, A.F.; Steinbaugh, M.L. Estimating stature from knee height for persons 60 to 90 years of age. J. Am. Geriatr. Soc. 1985, 33, 116–120. [Google Scholar] [CrossRef]
- Guigoz, Y. The Mini Nutritional Assessment (MNA®) review of the literature—What does it tell us? J. Nutr. Health Aging 2006, 10, 466–485. [Google Scholar] [PubMed]
- Sink, K.M.; Espeland, M.A.; Castro, C.M.; Church, T.; Cohen, R.; Dodson, J.A.; Guralnik, J.; Hendrie, H.C.; Jennings, J.; Katula, J.; et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: The LIFE randomized trial. JAMA 2015, 314, 781–790. [Google Scholar] [CrossRef]
- Borde, R.; Hortobágyi, T.; Granacher, U. Dose-Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis. Sport Med. 2015, 45, 1693–1720. [Google Scholar] [CrossRef] [Green Version]
- Krumholz, H.M. Post-Hospital Syndrome—An Acquired, Transiet Condition of Generalized Risk. N. Engl. J. Med. 2013, 368, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Deane, C.S.; Ely, I.A.; Wilkinson, D.J.; Smith, K.; Phillips, B.E.; Atherton, P.J. Dietary protein, exercise, ageing and physical inactivity: Interactive influences on skeletal muscle proteostasis. Proc. Nutr. Soc. 2020, 80, 106–117. [Google Scholar] [CrossRef]
- Reiss, J.; Iglseder, B.; Alzner, R.; Mayr-Pirker, B.; Pirich, C.; Kässmann, H.; Kreutzer, M.; Dovjak, P.; Reiter, R. Consequences of applying the new EWGSOP2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing 2019, 48, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Maietti, E.; Abete, P.; Bellelli, G.; Bo, M.; Cherubini, A.; Corica, F.; Di Bari, M.; Maggio, M.; Martone, A.M.; et al. Comparing EWGSOP2 and FNIH Sarcopenia Definitions: Agreement and 3-Year Survival Prognostic Value in Older Hospitalized Adults: The GLISTEN Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K. Sarcopenia: A contemporary health problem among older adult populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef] [PubMed]
- Talar, K.; Hernández-Belmonte, A.; Vetrovsky, T.; Steffl, M.; Kalamacka, E.; Courel-Ibáñez, J. Benefits of Resistance Training in Early and Late Stages of Frailty and Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Clin. Med. 2021, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, K.M.; Bhasin, S.; Corcoran, C.; Collins-Racie, L.A.; Tchistiakova, L.; Forlow, S.B.; Ledger, K.S.; Burczynski, M.E.; Dorner, A.J.; Lavallie, E.R. Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell Endocrinol. 2009, 302, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Cadavid, N.F.; Bhasin, S. Role of myostatin in metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 451–457. [Google Scholar] [CrossRef]
- Baczek, J.; Silkiewicz, M.; Wojszel, Z.B. Myostatin as a Biomarker of Muscle Wasting and Other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020, 12, 2401. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.L.; Unterman, T.G. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am. J. Physiol.-Cell Physiol. 2007, 292, 188–199. [Google Scholar] [CrossRef]
- Amar, D.; Lindholm, M.E.; Norrbom, J.; Wheeler, M.T.; Rivas, M.A.; Ashley, E.A. Time trajectories in the transcriptomic response to exercise—A meta-analysis. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tieland, M.; van de Rest, O.; Dirks, M.L.; van der Zwaluw, N.; Mensink, M.; van Loon, L.J.; de Groot, L.C. Protein Supplementation Improves Physical Performance in Frail Elderly People: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Med. Dir. Assoc. 2012, 13, 720–726. [Google Scholar] [CrossRef]
- McKendry, J.; Currier, B.S.; Lim, C.; McLeod, J.C.; Thomas, A.C.Q.; Phillips, S.M. Nutritional supplements to support resistance exercise in countering the sarcopenia of aging. Nutrients 2020, 12, 2057. [Google Scholar] [CrossRef]
N | Total | N | Placebo Group | N | Protein Group | |
---|---|---|---|---|---|---|
Age (years) | 41 | 82.1 (5.89) | 20 | 81.2 (6.14) | 21 | 82.9 (5.67) |
Women (N, %) | 41 | 22, 53.7 | 20 | 10, 50 | 21 | 12, 57.1 |
Body mass (kg) | 40 | 72.4 (15.6) | 19 | 77.5 (17.02) | 21 | 67.8 (12.92) |
Height (m) | 40 | 1.6 (0.1) | 19 | 1.6 (0.1) | 21 | 1.6 (0.1) |
BMI (Kg/m2) | 40 | 29.1 (5.22) | 19 | 31.1 (5.83) | 21 | 27.4 (3.95) |
Fat mass index (kg/m2) | 40 | 10.1 (3.63) | 19 | 11.4 (3.81) | 21 | 8.9 (3.12) |
Fat Free mass index (kg/m2) | 40 | 18.4 (2.46) | 19 | 19.0 (3.09) | 21 | 17.8 (1.56) |
Calf circumference (cm) | 40 | 35.6 (4.41) | 19 | 36.3 (4.94) | 21 | 34.9 (3.88) |
Sarcopenic assessment | ||||||
Handgrip strength (kg) | 41 | 25.3 (7.63) | 20 | 24.5 (7.16) | 21 | 26.1 (8.14) |
Appendicular skeletal muscle mass (kg) | 41 | 18.1 (3.98) | 20 | 18.7 (4.55) | 21 | 17.5 (3.35) |
Appendicular Skeletal Muscle Mass Index (kg/m2) | 40 | 7.2 (1.15) | 19 | 7.5 (1.41) | 21 | 7.1 (0.83) |
Sarcopenic (N, %) | 41 | 6, 14.6 | 20 | 3, 15.0 | 21 | 3, 14.3 |
Frailty assessment | ||||||
SPPB total score | 41 | 9.1 (2.40) | 20 | 8.7 (2.43) | 21 | 9.5 (2.36) |
Frail (N, %) | 41 | 21, 51.2 | 20 | 13, 65.0 | 21 | 8, 38.1 |
Blood based biomarkers | ||||||
Myostatin (ng/mL) | 40 | 3.3 (2.03) | 20 | 3.5 (2.39) | 20 | 3.1 (1.64) |
Follistatin (ng/mL) | 40 | 2.9 (1.26) | 20 | 3.0 (1.46) | 20 | 2.8 (1.06) |
Follistatin to myostatin ratio | 40 | 1.2 (0.95) | 20 | 1.3 (1.08) | 20 | 1.2 (0.82) |
Irisin (µg/mL) | 30 | 8.2 (3.96) | 14 | 9.3 (4.17) | 16 | 7.4 (3.66) |
Placebo Group | Protein Group | Differences between Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Pre | Post | p * | N | Pre | Post | p * | Δ Placebo | Δ Protein | p† | |
Sarcopenic assessment | |||||||||||
Handgrip strength (kg) § | 13 | 24.8 (7.63) | 24.5 (7.32) | 0.704 | 15 | 26.9 (6.85) | 26.6 (6.50) | 0.699 | −0.2 (2.28) | −0.4 (3.66) | 0.883 |
Appendicular skeletal muscle mass (kg) | 13 | 18.3 (4.65) | 18.5 (3.60) | 0.681 | 15 | 17.3 (2.81) | 17.3 (2.78) | 0.787 | 0.2 (1.64) | −0.0 (0.77) | 0.282 |
Appendicular Skeletal Muscle Mass Index (kg/m2) | 13 | 7.4 (1.50) | 7.5 (1.16) | 0.561 | 15 | 6.9 (0.64) | 6.9 (0.66) | 0.794 | 0.1 (0.63) | −0.0 (0.30) | 0.150 |
Sarcopenic (N, %) | 13 | 2, 15.4 | 2, 15.4 | 1.000 | 15 | 3, 20.0 | 2, 13.3 | 1.000 | 0.0, 0.0 | −1, 6.7 | 1.000 |
Frailty assessment | |||||||||||
SPPB score total § | 13 | 8.7 (2.36) | 10.3 (1.89) | 0.001 | 15 | 10.1 (1.58) | 11.3 (0.96) | 0.002 | 1.6 (1.39) | 1.2 (1.21) | 0.634 |
Frail (N, %) | 13 | 9, 69.2 | 3, 23.1 | 0.031 | 15 | 6, 40.0 | 1, 6.7 | 0.063 | −6, 46.2 | −5, 33.3 | 0.700 |
Body composition | |||||||||||
Fat mass index (kg/m2) | 13 | 11.1 (4.35) | 11.1 (4.67) | 0.843 | 15 | 9.0 (3.02) | 9.1 (2.81) | 0.418 | −0.0 (0.64) | 0.1 (0.55) | 0.460 |
Fat Free mass index (kg/m2) | 13 | 19.0 (3.29) | 18.9 (2.80) | 0.524 | 15 | 17.8 (1.37) | 17.9 (1.45) | 0.375 | −0.2 (0.94) | 0.1 (0.40) | 0.731 |
Calf circumference (cm) | 13 | 36.1 (5.28) | 36.2 (5.29) | 0.545 | 15 | 35.2 (3.64) | 35.5 (3.44) | 0.138 | 0.1 (0.82) | 0.3 (0.81) | 0.621 |
Blood based biomarkers | |||||||||||
Myostatin (ng/mL) | 13 | 3.5 (2.8) | 3.1 (1.85) | 0.444 | 15 | 3.0 (1.85) | 2.9 (1.45) | 0.938 | −0.3 (1.55) | −0.0 (1.29) | 0.799 |
Follistatin (ng/mL) | 13 | 3.1 (1.26) | 3.3 (1.73) | 0.482 | 15 | 2.8 (1.08) | 2.9 (1.49) | 0.447 | 0.3 (1.36) | 0.2 (0.87) | 0.816 |
Follistatin to myostatin ratio | 13 | 1.4 (1.09) | 1.9 (2.29) | 0.381 | 15 | 1.3 (0.91) | 1.5 (1.58) | 0.370 | 0.4 (1.79) | 0.2 (0.90) | 0.720 |
Irisin (µg/mL) | 13 | 9.3 (4.3) | 7.9 (2.99) | 0.161 | 15 | 7.5 (3.76) | 7.7 (3.57) | 0.814 | −1.4 (3.31) | 0.2 (3.85) | 0.624 |
Δ Handgrip Strength (kg) | Δ ASMM (kg) | Δ ASMMI (kg/m2) | Δ FFMI (kg/m2) | |||||
---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |
Δ Myostatin (ng/mL) | 0.043 | 0.819 | 0.319 | 0.048 | 0.256 | 0.128 | 0.243 | 0.165 |
Δ Follistatin (ng/mL) | −0.014 | 0.941 | 0.097 | 0.561 | 0.061 | 0.716 | 0.238 | 0.157 |
Δ Follistatin to Myostatin ratio | −0.055 | 0.771 | 0.066 | 0.693 | 0.049 | 0.771 | 0.128 | 0.455 |
Δ Irisin (µg/mL) | 0.101 | 0.590 | −0.084 | 0.615 | −0.075 | 0.659 | −0.130 | 0.445 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amasene, M.; Cadenas-Sanchez, C.; Echeverria, I.; Sanz, B.; Alonso, C.; Tobalina, I.; Irazusta, J.; Labayen, I.; Besga, A. Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial. J. Clin. Med. 2022, 11, 97. https://doi.org/10.3390/jcm11010097
Amasene M, Cadenas-Sanchez C, Echeverria I, Sanz B, Alonso C, Tobalina I, Irazusta J, Labayen I, Besga A. Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial. Journal of Clinical Medicine. 2022; 11(1):97. https://doi.org/10.3390/jcm11010097
Chicago/Turabian StyleAmasene, Maria, Cristina Cadenas-Sanchez, Iñaki Echeverria, Begoña Sanz, Cristina Alonso, Ignacio Tobalina, Jon Irazusta, Idoia Labayen, and Ariadna Besga. 2022. "Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial" Journal of Clinical Medicine 11, no. 1: 97. https://doi.org/10.3390/jcm11010097
APA StyleAmasene, M., Cadenas-Sanchez, C., Echeverria, I., Sanz, B., Alonso, C., Tobalina, I., Irazusta, J., Labayen, I., & Besga, A. (2022). Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial. Journal of Clinical Medicine, 11(1), 97. https://doi.org/10.3390/jcm11010097