Impact of Primary Hemostasis Disorders on Late Major Bleeding Events among Anticoagulated Atrial Fibrillation Patients Treated by TAVR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Collection of Data
2.3. Blood Collection
2.4. Paravalvular Aortic Leak Evaluation
2.5. Clinical Endpoints
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Impact of Primary Hemostasis Disorders on Clinical Events
3.3. Predictors of Late MLBCs
3.4. Predictors of CT-ADP > 180 s after TAVR
4. Discussion
4.1. Late MLBCs after TAVR
4.2. Impact of Ongoing Primary Hemostasis Disorders on Clinical Events
4.3. CT-ADP and Bleeding Risk Management after TAVR in AF Patients
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
AF | Atrial fibrillation |
AS | Aortic stenosis |
BMI | Body Mass Index |
CI | Confidence interval |
CKD | Chronic kidney disease |
CT-ADP | Closure time with adenosine diphosphate |
DOAC | Direct oral anticoagulant |
EuroSCORE | Logistic EuroSCORE predicted risk of mortality at 30 d |
GI | Gastrointestinal |
Hb | Hemoglobin level |
HMW | High molecular weight |
HR | Hazard ratio |
LVMi | Left ventricular mass index |
MBLCs | Major/life-threatening bleeding complications |
OAC | Oral anticoagulation |
PVL | Paravalvular leak |
TAVR | Transcatheter aortic valve replacement |
TTE | Transthoracic echocardiography |
VARC-2 | Valve Academic Research Consortium-2 |
VKA | Vitamin K antagonist |
vWF | von Willebrand factor |
References
- Généreux, P.; Cohen, D.J.; Mack, M.; Rodes-Cabau, J.; Yadav, M.; Xu, K.; Parvataneni, R.; Hahn, R.; Kodali, S.K.; Webb, J.G.; et al. Incidence, Predictors, and Prognostic Impact of Late Bleeding Complications after Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2014, 64, 2605–2615. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, R.; Pilgrim, T.; Franzone, A.; Valgimigli, M.; Haynes, A.; Asami, M.; Lanz, J.; Räber, L.; Praz, F.; Langhammer, B.; et al. Frequency, Timing, and Impact of Access-Site and Non–Access-Site Bleeding on Mortality Among Patients Undergoing Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2017, 10, 1436–1446. [Google Scholar] [CrossRef]
- Dangas, G.D.; Mehran, R. Bleeding after Aortic Valve Replacement Matters: Important Mortality Risk. JACC Cardiovasc. Interv. 2017, 10, 1447–1448. [Google Scholar] [CrossRef]
- Redfors, B.; Watson, B.M.; McAndrew, T.; Palisaitis, E.; Francese, D.P.; Razavi, M.; Safirstein, J.; Mehran, R.; Kirtane, A.J.; Généreux, P. Mortality, Length of Stay, and Cost Implications of Procedural Bleeding after Percutaneous Interventions Using Large-Bore Catheters|Medical Devices and Equipment|JAMA Cardiology|JAMA Network. Available online: https://jamanetwork.com/journals/jamacardiology/fullarticle/2612834 (accessed on 29 January 2020).
- Généreux, P.; Cohen, D.J.; Williams, M.R.; Mack, M.; Kodali, S.K.; Svensson, L.G.; Kirtane, A.J.; Xu, K.; McAndrew, T.C.; Makkar, R.; et al. Bleeding Complications after Surgical Aortic Valve Replacement Compared With Transcatheter Aortic Valve Replacement: Insights From the PARTNER I Trial (Placement of Aortic Transcatheter Valve). J. Am. Coll. Cardiol. 2014, 63, 1100–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ussia, G.P.; Cammalleri, V.; Marchetti, A.A.; Sarkar, K.; De Vico, P.; Muscoli, S.; Sergi, D.; Marchei, M.; Ippoliti, A.; Romeo, F. Transcatheter aortic valve implantation through distal axillary artery: Novel option for vascular access. J. Cardiovasc. Med. 2015, 16, 271–278. [Google Scholar] [CrossRef]
- Généreux, P.; Webb, J.G.; Svensson, L.G.; Kodali, S.K.; Satler, L.F.; Fearon, W.F.; Davidson, C.J.; Eisenhauer, A.C.; Makkar, R.R.; Bergman, G.W.; et al. Vascular Complications after Transcatheter Aortic Valve Replacement: Insights From the PARTNER (Placement of AoRTic TraNscathetER Valve) Trial. J. Am. Coll. Cardiol. 2012, 60, 1043–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchetche, D.; Van der Boon, R.M.A.; Dumonteil, N.; Chieffo, A.; Van Mieghem, N.M.; Farah, B.; Buchanan, G.L.; Saady, R.; Marcheix, B.; Serruys, P.W.; et al. Adverse impact of bleeding and transfusion on the outcome post-transcatheter aortic valve implantation: Insights from the Pooled-RotterdAm-Milano-Toulouse In Collaboration Plus (PRAGMATIC Plus) initiative. Am. Heart J. 2012, 164, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Lefèvre, T.; Chevalier, B.; Hovasse, T.; Romano, M.; Garot, P.; Mylotte, D.; Uribe, J.; Farge, A.; Donzeau-Gouge, P.; et al. Transfemoral Aortic Valve Implantation: New Criteria to Predict Vascular Complications. JACC Cardiovasc. Interv. 2011, 4, 851–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibler, M.; Marchandot, B.; Messas, N.; Labreuche, J.; Vincent, F.; Grunebaum, L.; Hoang, V.A.; Reydel, A.; Crimizade, U.; Kindo, M.; et al. Primary Hemostatic Disorders and Late Major Bleeding after Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 72, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Dobrotova, M.; Skornova, I.; Sokol, J.; Kubisz, P.; Stasko, J. Successful Use of a Highly Purified Plasma von Willebrand Factor Concentrate Containing Little FVIII for the Long-Term Prophylaxis of Severe (Type 3) von Willebrand’s Disease. Semin. Thromb. Hemost. 2017, 43, 639–641. [Google Scholar] [CrossRef] [Green Version]
- Van Belle, E.; Rauch, A.; Vincentelli, A.; Jeanpierre, E.; Legendre, P.; Juthier, F.; Hurt, C.; Banfi, C.; Rousse, N.; Godier, A.; et al. von Willebrand Factor as a Biological Sensor of Blood Flow to Monitor Percutaneous Aortic Valve Interventions. Circ. Res. 2015, 116, 1193–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Belle, E.; Rauch, A.; Vincent, F.; Robin, E.; Kibler, M.; Labreuche, J.; Jeanpierre, E.; Levade, M.; Hurt, C.; Rousse, N.; et al. Von Willebrand Factor Multimers during Transcatheter Aortic-Valve Replacement. Available online: https://www.nejm.org/doi/10.1056/NEJMoa1505643?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dwww.ncbi.nlm.nih.gov (accessed on 23 November 2019).
- Sannino, A.; Gargiulo, G.; Schiattarella, G.G.; Perrino, C.; Stabile, E.; Losi, M.-A.; Galderisi, M.; Izzo, R.; de Simone, G.; Trimarco, B.; et al. A meta-analysis of the impact of pre-existing and new-onset atrial fibrillation on clinical outcomes in patients undergoing transcatheter aortic valve implantation. EuroIntervention 2016, 12, e1047–e1056. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Mojoli, M.; Urena, M.; Vahanian, A. Atrial fibrillation in patients undergoing transcatheter aortic valve implantation: Epidemiology, timing, predictors, and outcome. Eur. Heart J. 2017, 38, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.E.; Noll, A.; Bergmark, B.; McCabe, J.M.; Nemer, D.; Okada, D.R.; Vasudevan, A.; Davidson, M.; Welt, F.; Eisenhauer, A.; et al. Variability in Antithrombotic Therapy Regimens Peri-TAVR: A Single Academic Center Experience. Cardiol. Ther. 2015, 4, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Tarantini, G.; Mojoli, M.; Windecker, S.; Wendler, O.; Lefèvre, T.; Saia, F.; Walther, T.; Rubino, P.; Bartorelli, A.L.; Napodano, M.; et al. Prevalence and Impact of Atrial Fibrillation in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement: An Analysis from the SOURCE XT Prospective Multicenter Registry. JACC Cardiovasc. Interv. 2016, 9, 937–946. [Google Scholar] [CrossRef]
- Biviano, A.B.; Nazif, T.; Dizon, J.; Garan, H.; Fleitman, J.; Hassan, D.; Kapadia, S.; Babaliaros, V.; Xu, K.; Parvataneni, R.; et al. Atrial Fibrillation Is Associated with Increased Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2016, 9, e002766. [Google Scholar] [CrossRef] [Green Version]
- Chopard, R.; Teiger, E.; Meneveau, N.; Chocron, S.; Gilard, M.; Laskar, M.; Eltchaninoff, H.; Iung, B.; Leprince, P.; Chevreul, K.; et al. Baseline Characteristics and Prognostic Implications of Pre-Existing and New-Onset Atrial Fibrillation after Transcatheter Aortic Valve Implantation: Results from the FRANCE-2 Registry. JACC Cardiovasc. Interv. 2015, 8, 1346–1355. [Google Scholar] [CrossRef] [Green Version]
- Salinas, P.; Moreno, R.; Sanchez-Recalde, A.; Jimenez-Valero, S.; Galeote, G.; Calvo, L.; Plaza, I.; Lopez-Sendon, J. Does New Onset Atrial Fibrillation Have a True Impact on the Incidence of Stroke after Transcatheter Aortic Valve Implantation? J. Am. Coll. Cardiol. 2012, 60, 236–237. [Google Scholar] [CrossRef]
- Nombela-Franco, L.; Webb, J.G.; de Jaegere, P.P.; Toggweiler, S.; Nuis, R.-J.; Dager, A.E.; Amat-Santos, I.J.; Cheung, A.; Ye, J.; Binder, R.K.; et al. Timing, Predictive Factors, and Prognostic Value of Cerebrovascular Events in a Large Cohort of Patients Undergoing Transcatheter Aortic Valve Implantation. Circulation 2012, 126, 3041–3053. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, K.; Marchandot, B.; Trimaille, A.; Kibler, M.; Heger, J.; Peillex, M.; Hess, S.; Grunebaum, L.; Reydel, A.; Kindo, M.; et al. Paradoxical Increase of Stroke in Patients with Defect of High Molecular Weight Multimers of the von Willebrand Factors following Transcatheter Aortic Valve Replacement. Thromb. Haemost. 2020, 120, 1330–1338. [Google Scholar] [CrossRef]
- Matsushita, K.; Marchandot, B.; Kibler, M.; Trimaille, A.; Hess, S.; Grunebaum, L.; Reydel, A.; Jesel, L.; Ohlmann, P.; Morel, O. Predictive Impact of Paravalvular Leak Assessments on Clinical Outcomes Following Transcatheter Aortic Valve Replacement. Am. J. Cardiol. 2020, 135, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Annabi, M.-S.; Clisson, M.; Clavel, M.-A.; Pibarot, P. Workup and Management of Patients with Paradoxical Low-Flow, Low-Gradient Aortic Stenosis. Curr. Treat. Options Cardio. Med. 2018, 20, 49. [Google Scholar] [CrossRef]
- Hachicha, Z.; Dumesnil, J.G.; Bogaty, P.; Pibarot, P. Paradoxical Low-Flow, Low-Gradient Severe Aortic Stenosis despite Preserved Ejection Fraction Is Associated With Higher Afterload and Reduced Survival. Circulation 2007, 115, 2856–2864. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Ghaffar, Y.A.; Foster, T.; Osman, K.; Alqahtani, F.; Shah, K.; Kheiri, B.; Alkhouli, M.A. Meta-Analysis of Outcomes of Transcatheter Aortic Valve Implantation Among Patients With Low Gradient Severe Aortic Stenosis. Am. J. Cardiol. 2019, 124, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Trimaille, A.; Marchandot, B.; Park, S.-H.; Schini-Kerth, V.; Morel, O. The difficult balance between thrombosis and bleeding after transcatheter aortic valve replacement: A translational review. Arch. Cardiovasc. Dis. 2020, 113, 263–275. [Google Scholar] [CrossRef]
- Nijenhuis, V.J.; Brouwer, J.; Delewi, R.; Hermanides, R.S.; Holvoet, W.; Dubois, C.L.F.; Frambach, P.; De Bruyne, B.; van Houwelingen, J.K.; Van Der Heyden, J.A.S.; et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020, 382, 1696–1707. [Google Scholar] [CrossRef] [PubMed]
- Dangas, G.D.; Tijssen, J.G.P.; Wöhrle, J.; Søndergaard, L.; Gilard, M.; Möllmann, H.; Makkar, R.R.; Herrmann, H.C.; Giustino, G.; Baldus, S.; et al. A Controlled Trial of Rivaroxaban after Transcatheter Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 120–129. [Google Scholar] [CrossRef]
- Collet, J.-P.; Berti, S.; Cequier, A.; Van Belle, E.; Lefevre, T.; Leprince, P.; Neumann, F.-J.; Vicaut, E.; Montalescot, G. Oral anti-Xa anticoagulation after trans-aortic valve implantation for aortic stenosis: The randomized ATLANTIS trial. Am. Heart J. 2018, 200, 44–50. [Google Scholar] [CrossRef] [PubMed]
AF + CT-ADP ≤ 180 s (n = 327) | AF + CT-ADP > 180 s (n = 57) | p-Value | ||
---|---|---|---|---|
Baseline Characteristics | ||||
Age—y | 83.2 ± 6.3 | 83.9 ± 6.4 | 0.320 | |
Male sex—no (%) | 158 (48.3) | 29 (50.9) | 0.415 | |
Hypertension—no (%) | 271 (82.9) | 53 (93.0) | 0.034 | |
Diabetes—no (%) | 100 (30.6) | 23 (40.4) | 0.097 | |
BMI—kg/m2 | 27.9 ± 6.2 | 26.1 ± 4.6 | 0.360 | |
EuroSCORE—% | 19.5 ± 12.6 | 24.3 ± 18.6 | 0.824 | |
CKD—no (%) | 68 (20.8) | 15 (26.3) | 0.221 | |
Dialysis—no (%) | 6 (1.8) | 4 (7.0) | 0.046 | |
COPD—no (%) | 55 (16.8) | 4 (7.0) | 0.038 | |
Coronary artery disease—no (%) | 142 (43.4) | 34 (59.6) | 0.017 | |
Stroke—no (%) | 52 (15.9) | 11 (19.3) | 0.319 | |
Peripheral artery disease—no (%) | 102 (31.2) | 11 (19.3) | 0.045 | |
Bleeding history—no (%) | 36 (11.0) | 8 (14.0) | 0.320 | |
Peptic ulcer disease or gastrointestinal bleeding—(%) | 13 (4.0) | 4 (7.0) | 0.235 | |
Normal-flow, high-gradient AS—no (%) | 256 (78.3) | 43 (75.4) | 0.372 | |
Low-flow, low-gradient AS—no (%) | 45 (13.8) | 6 (10.5) | 0.337 | |
Paradoxical low-flow, low-gradient AS—no (%) | 20 (6.1) | 5 (8.8) | 0.307 | |
LVEF—% | 51.5 ± 15.4 | 51.6 ± 17.5 | 0.486 | |
LVMi—g/m2 | 131.0 ± 40.2 | 147.5 ± 31.3 | 0.263 | |
Mean aortic valve gradient—mm Hg | 44.5 ± 12.7 | 42.7 ± 12.5 | 0.651 | |
Aortic valve area—cm2 | 0.75 ± 0.21 | 0.75 ± 0.33 | 0.120 | |
SPAP—mmHg | 43.7 ± 14.1 | 44.2 ± 16.4 | 0.772 | |
CT aortic annulus | Diameter—mm | 25.0 ± 3.2 | 25.8 ± 3.4 | 0.247 |
Area—mm2 | 495.3 ± 115.5 | 505.5 ± 125.0 | 0.400 | |
Hb—g/dL | 12.2 ± 1.7 | 11.6 ± 1.9 | 0.088 | |
Platelet count—/mm3 | 231.4 ± 72.9 | 198.6 ± 56.7 | 0.673 | |
CT-ADP—s | 158.6 ± 66.2 | 201.7 ± 76.4 | 0.602 | |
Creatinine—umol/L | 118.7 ± 65.8 | 142.7 ± 95.7 | 0.642 | |
DAPT—no (%) | 33 (10.1) | 12 (21.1) | 0.020 | |
Prior balloon aortic valvuloplasty—no (%) | 17 (5.2) | 4 (7.0) | 0.380 | |
Procedural Characteristics | ||||
Approach | Transfemoral—no (%) | 300 (91.7) | 55 (96.5) | 0.163 |
Carotid access—no (%) | 20 (6.1) | 1 (1.8) | 0.152 | |
Valve | SAPIEN—no (%) | 198 (60.6) | 35 (61.4) | 0.513 |
Core Valve—no (%) | 129 (39.4) | 22 (38.6) | 0.487 | |
Balloon reimpaction—no (%) | 35 (10.7) | 13 (22.8) | 0.014 | |
Post-Procedural Characteristics | ||||
Antithrombotic regimen | DAPT—no (%) | 31 (9.5) | 11 (19.3) | 0.030 |
Aspirin—no (%) | 303 (92.7) | 50 (87.7) | 0.158 | |
Clopidogrel—no (%) | 37 (11.3) | 11 (19.3) | 0.076 | |
VKA—no (%) | 190 (58.1) | 37 (64.9) | 0.207 | |
DOAC—no (%) | 131 (40.1) | 18 (31.6) | 0.143 | |
Hb– g/dL | 10.3 ± 1.4 | 10.0 ± 1.2 | 0.071 | |
Platelet count—/mm3 | 128.8 ± 79.6 | 177.9 ± 169.5 | 0.077 | |
CT-ADP—s | 111.4 ± 27.6 | 265.6 ± 45.9 | <0.0001 | |
PRI-VASP—% | 74.4 ± 13.2 | 71.6 ± 14.9 | 0.722 | |
Creatinine—umol/L | 72.4 ± 57.4 | 64.8 ± 65.7 | 0.151 | |
LVEF—% | 54.7 ± 12.5 | 54.4 ± 12.9 | 0.672 | |
Mean aortic gradient—mmHg | 7.3 ± 4.1 | 8.5 ± 4.7 | 0.217 | |
Significant PVL—no (%) | 30 (9.2) | 22 (38.6) | < 0.0001 | |
Significant PVL one month after TAVR—no (%) | 21 (6.4) | 15 (26.3) | < 0.0001 | |
LVEF at 1 year—% | 56.5 ± 11.6 | 60.7 ± 9.3 | 0.114 | |
Mean aortic gradient at 1 year—mmHg | 10.3 ± 7.3 | 10.3 ± 5.3 | 0.565 |
Type of Late MLBCs | Late MLBCs Events | Rate (%) |
---|---|---|
Gastro-intestinal | 17 | 70.8 |
Muscular-cutaneous | 5 | 20.8 |
Neurological | 1 | 4.2 |
Genitourinary | 1 | 4.2 |
AF + CT-ADP ≤ 180 s (n = 327) | AF + CT-ADP > 180 s (n = 57) | p-Value | ||
---|---|---|---|---|
Late MLBCs—no (%) | 4 (1.2) | 20 (35.1) | <0.0001 | |
Composite endpoint—no (%) | 163 (49.8) | 35 (61.4) | 0.071 | |
Death—no (%) | 122 (37.3) | 25 (43.9) | 0.214 | |
Cardiovascular death—no (%) | 49 (15.0) | 10 (17.5) | 0.376 | |
Hospitalization for heart failure—no (%) | 73 (22.3) | 18 (31.6) | 0.091 | |
Ischemic stroke—no (%) | 25 (7.6) | 4 (7.0) | 0.564 | |
Hemorrhagic stroke—no (%) | 2 (0.6) | 1 (1.8) | 0.383 | |
Myocardial infarction—no (%) | 5 (1.5) | 2 (3.5) | 0.279 | |
Transfusion immediately after TAVR—no (%) | 52 (15.9) | 19 (33.3) | 0.003 | |
Vascular complications after TAVR | Major—no (%) | 28 (8.6) | 9 (15.8) | 0.077 |
Minor—no (%) | 54 (16.5) | 13 (22.8) | 0.166 | |
Early bleeding after TAVR | Major + Life threatening—no (%) | 45 (13.8) | 21 (36.8) | <0.0001 |
Minor—no (%) | 52 (15.9) | 11 (19.3) | 0.319 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Baseline Characteristics | ||||||
Hypertension | 1.32 | 0.39–4.43 | 0.652 | |||
CKD | 1.27 | 0.50–3.19 | 0.618 | |||
Dialysis | 6.73 | 2.00–22.58 | 0.002 | 2.53 | 0.64–10.04 | 0.188 |
Coronary artery disease | 1.39 | 0.62–3.10 | 0.425 | |||
Peripheral artery disease | 0.22 | 0.05–0.92 | 0.039 | |||
Bleeding history | 3.41 | 1.41–8.22 | 0.006 | 2.72 | 1.07–6.90 | 0.035 |
Normal-flow, high-gradient AS | 0.67 | 0.28–1.62 | 0.377 | |||
Low-flow, low-gradient AS | 0.28 | 0.04–2.04 | 0.208 | |||
Paradoxical low-flow, low-gradient AS | 4.22 | 1.57–11.31 | 0.004 | 4.35 | 1.49–12.71 | 0.007 |
LVMi—g/m2 | 1.01 | 1.00–1.02 | 0.250 | |||
DAPT | 1.03 | 0.31–3.46 | 0.959 | |||
Pre-procedural Characteristics | ||||||
Balloon reimpaction | 1.41 | 0.48–4.13 | 0.528 | |||
Significant PVL | 1.56 | 0.58–4.19 | 0.373 | |||
Post-procedural Characteristics | ||||||
Hb—g/dL | 0.62 | 0.43–0.89 | 0.009 | 0.68 | 0.43–1.07 | 0.093 |
CT-ADP > 180—s | 32.73 | 11.18–95.83 | <0.0001 | 28.93 | 9.74–85.95 | <0.0001 |
PRI-VASP | 0.99 | 0.96–1.03 | 0.720 | |||
Mean aortic gradient—mmHg | 1.07 | 1.00–1.14 | 0.066 | |||
Significant PVL | 1.47 | 0.61–3.55 | 0.390 | |||
Major vascular complications | 3.46 | 1.37–8.72 | 0.009 | 3.01 | 1.12–8.10 | 0.029 |
Echocardiographic Characteristics 1 mo after TAVR | ||||||
Mean aortic gradient—mmHg | 1.06 | 0.99–1.15 | 0.115 | |||
Significant PVL | 0.39 | 0.15–1.06 | 0.066 | |||
Antithrombotic Regimen after TAVR | ||||||
DAPT | 1.64 | 0.56–4.79 | 0.369 | |||
DOAC | 0.91 | 0.40–2.08 | 0.826 | |||
VKA | 1.17 | 0.51–2.66 | 0.716 |
Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
Baseline characteristics | |||||||
Hypertension | 2.74 | 0.95–7.87 | 0.06 | ||||
CKD | 1.36 | 0.71–2.60 | 0.351 | ||||
Dialysis | 4.04 | 1.10–14.79 | 0.035 | 6.45 | 1.05–39.49 | 0.044 | |
Coronary artery disease | 1.93 | 1.09–3.41 | 0.025 | 1.79 | 0.82–3.93 | 0.145 | |
Stroke history | 1.27 | 0.62–2.60 | 0.524 | ||||
Peripheral artery disease | 0.53 | 0.26–1.06 | 0.073 | ||||
Bleeding history | 1.32 | 0.58–3.01 | 0.509 | ||||
Paradoxical AS | 1.48 | 0.53–4.10 | 0.456 | ||||
LVMi | 1.01 | 1.00–1.02 | 0.013 | 1.01 | 1.00–1.02 | 0.033 | |
Hb—g/dL | 0.81 | 0.69–0.95 | 0.012 | 0.76 | 0.62–0.95 | 0.013 | |
Platelet count—/mm3 | 0.99 | 0.99–1.00 | 0.001 | 0.99 | 0.98–1.00 | 0.002 | |
DAPT | 2.38 | 1.14–4.94 | 0.020 | 1.75 | 0.60–5.07 | 0.305 | |
Per procedural characteristics | |||||||
Type of valve | SAPIEN | 1.04 | 0.58–1.85 | 0.903 | |||
Core Valve | 1.05 | 0.59–1.87 | 0.863 | ||||
Post-procedural characteristics before discharge | |||||||
PRI-VASP | 0.99 | 0.97–1.01 | 0.189 | ||||
Mean aortic gradient | 1.06 | 1.00–1.13 | 0.045 | 1.04 | 0.97–1.12 | 0.290 | |
Significant PVL | 2.94 | 1.61–5.37 | <0.0001 | 2.74 | 1.26–5.94 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich, L.; Kibler, M.; Matsushita, K.; Marchandot, B.; Trimaille, A.; Reydel, A.; Diop, B.; Truong, P.D.; Trung, A.M.; Trinh, A.; et al. Impact of Primary Hemostasis Disorders on Late Major Bleeding Events among Anticoagulated Atrial Fibrillation Patients Treated by TAVR. J. Clin. Med. 2022, 11, 212. https://doi.org/10.3390/jcm11010212
Dietrich L, Kibler M, Matsushita K, Marchandot B, Trimaille A, Reydel A, Diop B, Truong PD, Trung AM, Trinh A, et al. Impact of Primary Hemostasis Disorders on Late Major Bleeding Events among Anticoagulated Atrial Fibrillation Patients Treated by TAVR. Journal of Clinical Medicine. 2022; 11(1):212. https://doi.org/10.3390/jcm11010212
Chicago/Turabian StyleDietrich, Laurent, Marion Kibler, Kensuke Matsushita, Benjamin Marchandot, Antonin Trimaille, Antje Reydel, Bamba Diop, Phi Dinh Truong, Anh Mai Trung, Annie Trinh, and et al. 2022. "Impact of Primary Hemostasis Disorders on Late Major Bleeding Events among Anticoagulated Atrial Fibrillation Patients Treated by TAVR" Journal of Clinical Medicine 11, no. 1: 212. https://doi.org/10.3390/jcm11010212
APA StyleDietrich, L., Kibler, M., Matsushita, K., Marchandot, B., Trimaille, A., Reydel, A., Diop, B., Truong, P. D., Trung, A. M., Trinh, A., Carmona, A., Hess, S., Jesel, L., Ohlmann, P., & Morel, O. (2022). Impact of Primary Hemostasis Disorders on Late Major Bleeding Events among Anticoagulated Atrial Fibrillation Patients Treated by TAVR. Journal of Clinical Medicine, 11(1), 212. https://doi.org/10.3390/jcm11010212