Echocardiographic Evaluation of Right Ventricular (RV) Performance over Time in COVID-19-Associated ARDS—A Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020. [Google Scholar] [CrossRef]
- Zochios, V.; Parhar, K.; Tunnicliffe, W.; Roscoe, A.; Gao, F. The Right Ventricle in ARDS. Chest 2017, 152, 181–193. [Google Scholar] [CrossRef]
- Tzotzos, S.J.; Fischer, B.; Fischer, H.; Zeitlinger, M. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: A global literature survey. Crit. Care 2020, 24, 516. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Repessé, X.; Charron, C.; Vieillard-Baron, A. Acute cor pulmonale in ARDS: Rationale for protecting the right ventricle. Chest 2015, 147, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.; Zaytoun, T.; Eid, H.; Baess, A.; Elreweny, E. Echocardiographic assessment of the right ventricle and its correlation with patient outcome in acute respiratory distress syndrome. Adv. Respir. Med. 2020, 88, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Capotosto, L.; Nguyen, B.L.; Ciardi, M.R.; Mastroianni, C.; Vitarelli, A. Heart, COVID-19, and echocardiography. Echocardiography 2020. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Pittman, J.; Miller Iii, R.R.; Horton, K.D.; Markewitz, B.; Hirshberg, E.; Jones, J.; Grissom, C.K. Right and left heart failure in severe H1N1 influenza A infection. Eur. Respir. J. 2011, 37, 112–118. [Google Scholar] [CrossRef]
- Gattinoni, L.; Chiumello, D.; Rossi, S. COVID-19 pneumonia: ARDS or not? Crit. Care 2020, 24, 154. [Google Scholar] [CrossRef]
- Kurth, F.; Roennefarth, M.; Thibeault, C.; Corman, V.M.; Muller-Redetzky, H.; Mittermaier, M.; Ruwwe-Glosenkamp, C.; Heim, K.M.; Krannich, A.; Zvorc, S.; et al. Studying the pathophysiology of coronavirus disease 2019: A protocol for the Berlin prospective COVID-19 patient cohort (Pa-COVID-19). Infection 2020, 48, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Greim, C.-A.; Göpfert, M.; Groesdonk, H.; Treskatsch, S.; Wolf, B.; Zahn, P.; Müller, M.; Zenz, S.; Rauch, H.; Molitoris, U.; et al. Perioperative fokussierte Echokardiographie: Modul 1–5. A&I 2017, 58, 616–648. [Google Scholar]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713; quiz 786–688. [Google Scholar] [CrossRef]
- Lazzeri, C.; Bonizzoli, M.; Batacchi, S.; Peris, A. Echocardiographic assessment of the right ventricle in COVID-related acute respiratory syndrome. Intern. Emerg. Med. 2020, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Boissier, F.; Katsahian, S.; Razazi, K.; Thille, A.W.; Roche-Campo, F.; Leon, R.; Vivier, E.; Brochard, L.; Vieillard-Baron, A.; Brun-Buisson, C.; et al. Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med. 2013, 39, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Dhainaut, J.F.; Brunet, F. Right ventricular performance in adult respiratory distress syndrome. Eur. Respir. J. Suppl. 1990, 11, 490s–495s. [Google Scholar] [PubMed]
- Klok, F.A.; Kruip, M.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020. [Google Scholar] [CrossRef]
- Price, L.C.; McAuley, D.F.; Marino, P.S.; Finney, S.J.; Griffiths, M.J.; Wort, S.J. Pathophysiology of pulmonary hypertension in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L803–L815. [Google Scholar] [CrossRef]
- Cirulis, M.M.; Huston, J.H.; Sardar, P.; Suksaranjit, P.; Wilson, B.D.; Hatton, N.D.; Liou, T.G.; Ryan, J.J. Right-to-left ventricular end diastolic diameter ratio in severe sepsis and septic shock. J. Crit. Care 2018, 48, 307–310. [Google Scholar] [CrossRef]
- Frémont, B.; Pacouret, G.; Jacobi, D.; Puglisi, R.; Charbonnier, B.; de Labriolle, A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: Results from a monocenter registry of 1416 patients. Chest 2008, 133, 358–362. [Google Scholar] [CrossRef]
- Kukucka, M.; Stepanenko, A.; Potapov, E.; Krabatsch, T.; Redlin, M.; Mladenow, A.; Kuppe, H.; Hetzer, R.; Habazettl, H. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 2011, 30, 64–69. [Google Scholar] [CrossRef]
- Evrard, B.; Goudelin, M.; Montmagnon, N.; Fedou, A.L.; Lafon, T.; Vignon, P. Cardiovascular phenotypes in ventilated patients with COVID-19 acute respiratory distress syndrome. Crit. Care 2020, 24, 236. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, X. Acute respiratory failure in COVID-19: Is it “typical” ARDS? Crit. Care 2020, 24, 198. [Google Scholar] [CrossRef]
- Kaur, S.; Tripathi, D.M.; Yadav, A. The Enigma of Endothelium in COVID-19. Front. Physiol. 2020, 11, 989. [Google Scholar] [CrossRef] [PubMed]
- Panwar, R.; Madotto, F.; Laffey, J.G.; van Haren, F.M.P. Compliance Phenotypes in Early Acute Respiratory Distress Syndrome before the COVID-19 Pandemic. Am. J. Respir. Crit. Care Med. 2020, 202, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Poyiadji, N.; Cormier, P.; Patel, P.Y.; Hadied, M.O.; Bhargava, P.; Khanna, K.; Nadig, J.; Keimig, T.; Spizarny, D.; Reeser, N.; et al. Acute Pulmonary Embolism and COVID-19. Radiology 2020, 297, E335–E338. [Google Scholar] [CrossRef] [PubMed]
- Bagate, F.; Masi, P.; d’Humieres, T.; Al-Assaad, L.; Chakra, L.A.; Razazi, K.; de Prost, N.; Carteaux, G.; Derumeaux, G.; Mekontso Dessap, A. Advanced echocardiographic phenotyping of critically ill patients with coronavirus-19 sepsis: A prospective cohort study. J. Intensive Care 2021, 9, 12. [Google Scholar] [CrossRef]
- Argulian, E.; Sud, K.; Vogel, B.; Bohra, C.; Garg, V.P.; Talebi, S.; Lerakis, S.; Narula, J. Right Ventricular Dilation in Hospitalized Patients with COVID-19 Infection. JACC Cardiovasc. Imaging 2020, 3443. [Google Scholar] [CrossRef]
- Barman, H.A.; Atici, A.; Tekin, E.A.; Baycan, O.F.; Alici, G.; Meric, B.K.; Sit, O.; Genc, O.; Er, F.; Gungor, B.; et al. Echocardiographic features of patients with COVID-19 infection: A cross-sectional study. Int. J. Cardiovasc. Imaging 2020. [Google Scholar] [CrossRef]
- Szekely, Y.; Lichter, Y.; Taieb, P.; Banai, A.; Hochstadt, A.; Merdler, I.; Gal Oz, A.; Rothschild, E.; Baruch, G.; Peri, Y.; et al. Spectrum of Cardiac Manifestations in COVID-19: A Systematic Echocardiographic Study. Circulation 2020, 142, 342–353. [Google Scholar] [CrossRef] [PubMed]
- D’Alto, M.; Marra, A.M.; Severino, S.; Salzano, A.; Romeo, E.; De Rosa, R.; Stagnaro, F.M.; Pagnano, G.; Verde, R.; Murino, P.; et al. Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS. Crit. Care 2020, 24, 670. [Google Scholar] [CrossRef] [PubMed]
- Lheritier, G.; Legras, A.; Caille, A.; Lherm, T.; Mathonnet, A.; Frat, J.P.; Courte, A.; Martin-Lefevre, L.; Gouello, J.P.; Amiel, J.B.; et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: A multicenter study. Intensive Care Med. 2013, 39, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
Survivor n = 14 | Nonsurvivor n = 7 | p | |
---|---|---|---|
Age (years) | 70 (57/76) | 68 (62/79) | 0.36 |
Gender (female/male) | 7/7 | 2/5 | 0.076 |
BMI (kg/m2) | 28.2 (23.0/31.7) | 27.0 (26.1/34.0) | 0.799 |
History of | |||
CAD | 3 (21%) | 0 (0%) | n.a. |
AHT | 8 (57%) | 3 (43%) | 0.280 |
HF | 0 (0%) | 1 (14%) | n.a. |
COPD | 1 (7%) | 1 (14%) | 0.445 |
IDDM | 1 (7%) | 0 (0%) | n.a. |
NIDDM | 2 (14%) | 1 (14%) | 1.0 |
CKD | 1 (7%) | 1 (14%) | 0.445 |
CLD | 0 (0%) | 0 (0%) | n.a. |
HLP | 1 (7%) | 3 (43%) | 0.007 |
PVD | 1 (7%) | 0 (0%) | n.a. |
Survivor n = 14 | Nonsurvivor n = 7 | p | |
---|---|---|---|
PaO2/FiO2 ratio | 126 (98/163) | 142 (81/173) | 1.00 |
NIV/IV | 3/11 | 1/6 | 0.445 |
SOFA | 5 (4/11) | 10 (7/12) | 0.197 |
APACHE II | 15 (7/19) | 21 (11/30) | 0.031 |
SAPS II | 31 (22/44) | 64 (30/71) | 0.02 |
EE | LE | p | No. of Patients | |
---|---|---|---|---|
PaO2/FiO2 ratio | 203 (138/269) | 166 (138/273) | 0.570 | 21/15 |
Invasive Ventilation | ||||
ΔP [mbar] | 10.0 (9.5/14) | 10.0 (8.5/15.0) | 0.929 | 17/14 |
PEEP [mbar] | 14.0 (10.0/16.0) | 14.0 (12.3/15.3) | 0.330 | 17/14 |
TV [mL/kg] | 5.8 (5.4/6.5) | 5.9 (4.6/7.1) | 0.859 | 17/14 |
PaCO2 [mbar] | 38 (34/46) | 39 (32/46) | 0.776 | 21/15 |
MAP [mmHg] | 70 (65/85) | 70 (70/85) | 0.653 | 21/15 |
HR [BPM] | 82 (72/93) | 78 (74/103) | 0.233 | 21/15 |
Norepinephrine [µg/kg/min] | 0.05 (0.0/0.17) | 0.02 (0.00/0.08) | 0.054 | 21/15 |
APACHE II | 23 (18/28) | 28 (21/34) | 0.100 | 21/15 |
SOFA | 9 (4/12) | 10 (8/12) | 0.059 | 21/15 |
SAPS II | 40 (37/61) | 58 (41/73) | 0.139 | 21/15 |
Survivors | Nonsurvivors | p | No. of Patients | |
---|---|---|---|---|
PaO2/FiO2 ratio | 177 (128/256) | 238 (148/283) | 0.535 | 14/7 |
Invasive Ventilation | ||||
ΔP [mbar] | 11 (9/14) | 10 (10/15) | 0.961 | 11/6 |
PEEP [mbar] | 14 (10/15) | 16 (13/17) | 0.256 | 11/6 |
TV [mL/kg] | 6.0 (5.4/6.9) | 5.6 (5.1/6.8) | 0.428 | 11/6 |
PaCO2 [mbar] | 36 (31/41) | 48 (37.0/50.0) | 0.036 | 14/7 |
MAP [mmHg] | 73 (65/85) | 70 (65/85) | 0.799 | 14/7 |
HR [BPM] | 81 (70/91) | 90 (72/95) | 0.360 | 14/7 |
Norepinephrine [µg/kg/min] | 0.04 (0.0/0.13) | 0.13 (0.0/0.22) | 0.360 | 14/7 |
APACHE II | 20 (17/27) | 28 (21/29) | 0.197 | 14/7 |
SOFA | 8 (4/11) | 10 (6/12) | 0.172 | 14/7 |
SAPS II | 40 (36/55) | 56 (38/65) | 0.287 | 14/7 |
EE | LE | p | No. of Patients | |
---|---|---|---|---|
RVMD [mm] | 30 (28/37) | 32 (29/37) | 0.724 | 21/15 |
RVEDAi | 11.6 (9.8/13.0) | 12.4 (10.8/13.5) | 0.820 | 20/15 |
RLDR | 0.70 (0.63/0.84) | 0.72 (0.67/0.81) | 0.570 | 21/15 |
RLAR | 0.68 (0.57/0.77) | 0.68 (0.54/0.73) | 0.191 | 20/15 |
TAPSE [mm] | 22 (19/26) | 24 (21/27) | 0.345 | 19/15 |
RFAC [%] | 0.35 (0.30/0.44) | 36.0 (32.9/39.7) | 0.650 | 20/15 |
Survivors | Nonsurvivors | p | No. of Patients | |
---|---|---|---|---|
RVMD [mm] | 31 (29/37) | 28 (25/39) | 0.360 | 14/7 |
RVEDAi | 12.0 (10.0/14.2) | 10.7 (9.7/12.5) | 0.397 | 14/6 |
RLDR | 0.69 (0.63/0.81) | 0.73 (0.62/0.89) | 0.689 | 14/7 |
RLAR | 0.68 (0.54/0.77) | 0.68 (0.61/0.84) | 0.602 | 14/6 |
TAPSE [mm] | 23 (20/26) | 21 (19/25) | 0.579 | 13/6 |
RFAC [%] | 35 (32/41) | 36 (25/47) | 0.779 | 14/6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asgarpur, G.; Treskatsch, S.; Angermair, S.; Danassis, M.; Nothnagel, A.M.; Toepper, C.; Trauzeddel, R.F.; Nordine, M.; Heeschen, J.; Al-Chehadeh, A.; et al. Echocardiographic Evaluation of Right Ventricular (RV) Performance over Time in COVID-19-Associated ARDS—A Prospective Observational Study. J. Clin. Med. 2021, 10, 1944. https://doi.org/10.3390/jcm10091944
Asgarpur G, Treskatsch S, Angermair S, Danassis M, Nothnagel AM, Toepper C, Trauzeddel RF, Nordine M, Heeschen J, Al-Chehadeh A, et al. Echocardiographic Evaluation of Right Ventricular (RV) Performance over Time in COVID-19-Associated ARDS—A Prospective Observational Study. Journal of Clinical Medicine. 2021; 10(9):1944. https://doi.org/10.3390/jcm10091944
Chicago/Turabian StyleAsgarpur, Golschan, Sascha Treskatsch, Stefan Angermair, Michaela Danassis, Anna Maria Nothnagel, Christoph Toepper, Ralf Felix Trauzeddel, Michael Nordine, Julia Heeschen, Alaa Al-Chehadeh, and et al. 2021. "Echocardiographic Evaluation of Right Ventricular (RV) Performance over Time in COVID-19-Associated ARDS—A Prospective Observational Study" Journal of Clinical Medicine 10, no. 9: 1944. https://doi.org/10.3390/jcm10091944
APA StyleAsgarpur, G., Treskatsch, S., Angermair, S., Danassis, M., Nothnagel, A. M., Toepper, C., Trauzeddel, R. F., Nordine, M., Heeschen, J., Al-Chehadeh, A., Landmesser, U., Sander, L. E., Kurth, F., & Berger, C. (2021). Echocardiographic Evaluation of Right Ventricular (RV) Performance over Time in COVID-19-Associated ARDS—A Prospective Observational Study. Journal of Clinical Medicine, 10(9), 1944. https://doi.org/10.3390/jcm10091944