The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation
Abstract
:1. Introduction
2. Titanium Implants
2.1. Physical Modifications
2.1.1. Macro-Level Modifications
Shape
Diameter and Length
Threads
2.1.2. Micro-Level Modifications
Machining
Grit-Blasting
Sandblasting and Acid-Etching
2.1.3. Nano-Level Modifications
Laser Ablation
Nanocomposite
2.2. Chemical Modifications
2.2.1. Hydrophilic Implants
2.2.2. Discrete Crystalline Deposition
2.2.3. Anodic Oxidation/Anodization
2.2.4. Fluoride Treatment
2.2.5. Hydroxyapatite (HA)
2.2.6. UV Treatment/Photofunctionalization
2.2.7. Plasma
Atmospheric Pressure Plasma Processing
Plasma Oxidation
2.2.8. Calcium Chloride Treatment
2.3. Biological Modifications
2.3.1. Platelet Rich Plasma (PRP) and Platelet Rich Fibrin (PRF)
2.3.2. Extracellular Matrix (ECM)
2.3.3. Peptides
Arginylglycylaspartic Acid (RGD)
P15 Peptide
Strontium-Incorporated Protein
Bactericidal Peptides
Sclerostin-Antibody
2.3.4. Growth Factors
Bone Morphogenic Proteins (BMPs)
Platelet-Derived Growth Factor (PDGF)
Fibroblast Growth Factor (FGF)
2.3.5. Drugs
Statins
Bisphosphonates
Antimicrobials
2.4. Surface Cleaning of Titanium Implants
3. Materials Other Than Titanium
3.1. Zirconia
3.1.1. Physical Modification of Zirconia
Machined
Acid-Etching/Sandblasting
Laser Modification
Coatings
3.1.2. Chemical Modification of Zirconia
UV Treatment
3.1.3. Surface Cleaning of Zirconia Implants
3.2. Polyether Ether Ketone (PEEK)
3.2.1. Physical Modification of PEEK
Roughening
Reinforcing
Creation of Nanocomposites
3.2.2. Chemical Modifications of PEEK
Nitration, Sulfonation, Amination
UV Treatment
Plasma
Coating Techniques
Antibacterial Modification
3.2.3. Surface Cleaning of PEEK Implants
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bobbio, A. The first endosseous alloplastic implant in the history of man. Bull. Hist. Dent. 1972, 20, 1–6. [Google Scholar] [PubMed]
- Linkow, L.I.; Dorfman, J.D. Implantology in dentistry. A brief historical perspective. N. Y. State Dent. J. 1991, 57, 31–35. [Google Scholar] [PubMed]
- Adell, R. Tissue integrated prostheses in clinical dentistry. Int. Dent. J. 1985, 35, 259–265. [Google Scholar] [PubMed]
- Smith, D.E.; Zarb, G.A. Criteria for success of osseointegrated endosseous implants. J. Prosthet. Dent. 1989, 62, 567–572. [Google Scholar] [CrossRef]
- Termeie, D.A. Periodontal Review Q&A, 2nd ed.; Quintessence Publishing Co.: Batavia, IL, USA, 2020. [Google Scholar]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Reasons for failures of oral implants. J. Oral Rehabil. 2014, 41, 443–476. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J. ADA PatientSmart Patient Education Center. Available online: http://www.ada.org/~/media/ADA/Publications/Files/ADA_PatientSmart_Implants.ashx (accessed on 7 April 2021).
- Branemark, P.I.; Adell, R.; Albrektsson, T.; Lekholm, U.; Lundkvist, S.; Rockler, B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 1983, 4, 25–28. [Google Scholar] [CrossRef]
- Achermann, G. How Will Dentistry Look in 2020? Available online: https://www.straumann.com/content/group/com/en/shared/news/media-releases/2012/tag_xml_newsbox_ch2012-05-16149441digest/_jcr_content/par/newsdownload/linklist/file_3/file.res/Presentation_-_How_will_dentistry_look_in_2020_-_STMN_CMD_2012_-_Achermann.pdf (accessed on 7 April 2021).
- Abraham, C.M. A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent. J. 2014, 8, 50–55. [Google Scholar] [CrossRef]
- Jayesh, R.S.; Dhinakarsamy, V. Osseointegration. J. Pharm. Bioallied Sci. 2015, 7, S226–S229. [Google Scholar] [CrossRef]
- Javed, F.; Ahmed, H.B.; Crespi, R.; Romanos, G.E. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv. Med. Appl. Sci. 2013, 5, 162–167. [Google Scholar] [CrossRef]
- Branemark, P.I.; Adell, R.; Breine, U.; Hansson, B.O.; Lindstrom, J.; Ohlsson, A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand. J. Plast. Reconstr. Surg. 1969, 3, 81–100. [Google Scholar] [CrossRef]
- Özcan, M.; Hämmerle, C. Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Material 2012, 5, 1528–1545. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, Z.; Yu, M.; Hsu, C.; Berthiaume, E.A.; Pan, H.; Zhang, X.; Stieg, A.Z.; Wu, B.; Wang, H.; et al. Using an Engineered Galvanic Redox System to Generate Positive Surface Potentials that Promote Osteogenic Functions. ACS Appl. Mater. Interfaces 2018, 10, 15449–15460. [Google Scholar] [CrossRef]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontology 2000 2014, 66, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Furst, M.M.; Salvi, G.E.; Lang, N.P.; Persson, G.R. Bacterial colonization immediately after installation on oral titanium implants. Clin. Oral Implant. Res. 2007, 18, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Ayukawa, Y.; Shibata, Y.; Takeshita, T.; Atsuta, I.; Ogino, Y.; Yasunami, N.; Yamashita, Y.; Koyano, K. Effect of Calcium Chloride Hydrothermal Treatment of Titanium on Protein, Cellular, and Bacterial Adhesion Properties. J. Clin. Med. 2020, 9, 2627. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Grusovin, M.G.; Worthington, H.V. Interventions for replacing missing teeth: Treatment of peri-implantitis. Cochrane Database Syst. Rev. 2012, 1, CD004970. [Google Scholar] [CrossRef] [PubMed]
- Meffert, R.M. Periodontitis vs. peri-implantitis: The same disease? The same treatment? Crit. Rev. Oral Biol. Med. Off. Publ. Am. Assoc. Oral Biol. 1996, 7, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Kotsakis, G.A.; Olmedo, D.G. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontology 2000 2021. [Google Scholar] [CrossRef]
- Pranskunas, M.; Poskevicius, L.; Juodzbalys, G.; Kubilius, R.; Jimbo, R. Influence of Peri-Implant Soft Tissue Condition and Plaque Accumulation on Peri-Implantitis: A Systematic Review. J. Oral Maxillofac. Res. 2016, 7, e2. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, I.K.; Kotsakis, G.A.; Gerdes, S.; Walter, M.H. Cross-sectional study on the prevalence and risk indicators of peri-implant diseases. Eur. J. Oral Implant. 2015, 8, 75–88. [Google Scholar]
- Sahrmann, P.; Gilli, F.; Wiedemeier, D.B.; Attin, T.; Schmidlin, P.R.; Karygianni, L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020, 8, 661. [Google Scholar] [CrossRef]
- Lima, E.M.; Koo, H.; Vacca Smith, A.M.; Rosalen, P.L.; Del Bel Cury, A.A. Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. Clin. Oral Implant. Res. 2008, 19, 780–785. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Llama-Palacios, A.; Fernandez, E.; Figuero, E.; Marin, M.J.; Leon, R.; Blanc, V.; Herrera, D.; Sanz, M. An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent. Mater. 2014, 30, 1161–1171. [Google Scholar] [CrossRef]
- Noronha Oliveira, M.; Schunemann, W.V.H.; Mathew, M.T.; Henriques, B.; Magini, R.S.; Teughels, W.; Souza, J.C.M. Can degradation products released from dental implants affect peri-implant tissues? J. Periodontal Res. 2018, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickok, N.J.; Shapiro, I.M.; Chen, A.F. The Impact of Incorporating Antimicrobials into Implant Surfaces. J. Dent. Res. 2018, 97, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Grobe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglundh, T.; Gotfredsen, K.; Zitzmann, N.U.; Lang, N.P.; Lindhe, J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: An experimental study in dogs. Clin. Oral Implant. Res. 2007, 18, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Muntimadugu, E.; Jaffe, M.; Domb, A.J. Implantable Medical Devices. In Focal Controlled Drug Delivery; Domb, A., Khan, W., Eds.; Advances in Delivery Science and Technology; Springer: Boston, MA, USA, 2014; pp. 33–59. [Google Scholar]
- Stewart, S.; Bryant, S.J.; Ahn, J.; Hankenson, K.D. Chapter 24—Bone Regeneration. In Translational Regenerative Medicine; Atala, A., Allickson, J.G., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 313–333. [Google Scholar]
- Matusiewicz, H. Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles—A systematic analytical review. Acta Biomater. 2014, 10, 2379–2403. [Google Scholar] [CrossRef]
- Osman, R.B.; Swain, M.V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Material 2015, 8, 932–958. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K. Implant biomaterials: A comprehensive review. World J. Clin. Cases 2015, 3, 52–57. [Google Scholar] [CrossRef]
- Sultan, Z.; Hafeji, S.; Tekin, S.; Habib, S.; Ullah, R.; Sefat, F.; Zafar, M. Titanium, zirconia, and polyetheretherketone (PEEK) as a dental implant material. Dental Implants 2020. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Material 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niinomi, M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Niinomi, M.; Liu, Y.; Nakai, M.; Liu, H.; Li, H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen. Biomater. 2016, 3, 173–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, C.W.; Moore, T.J.; Safar, J.A.; Henry, C.A.; Wagner, M.J. Antibacterial activity of dental implant metals. Implant. Dent. 1992, 1, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Jacobi-Gresser, E.; Huesker, K.; Schutt, S. Genetic and immunological markers predict titanium implant failure: A retrospective study. Int. J. Oral Maxillofac. Surg. 2013, 42, 537–543. [Google Scholar] [CrossRef]
- Tettamanti, L.; Andrisani, C.; Bassi, M.A.; Vinci, R.; Silvestre-Rangil, J.; Tagliabue, A. Immediate loading implants: Review of the critical aspects. Oral Implant. 2017, 10, 129–139. [Google Scholar] [CrossRef]
- Sennerby, L.; Meredith, N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000 2008, 47, 51–66. [Google Scholar] [CrossRef]
- Himmlova, L.; Dostalova, T.; Kacovsky, A.; Konvickova, S. Influence of implant length and diameter on stress distribution: A finite element analysis. J. Prosthet. Dent. 2004, 91, 20–25. [Google Scholar] [CrossRef]
- Simmons, C.H.P.N. Screw threads and conventional representations. In Manual of Engineering Drawing, 3rd ed.; Simmons, C.H., Maguire, D.E., Phelps, N.M., Eds.; Newnes, an imprint of Elsevier: Burlington, MA, USA, 2009; pp. 111–116. [Google Scholar]
- Garg, H.; Bedi, G.; Garg, A. Implant Surface Modifications: A Review. J. Clin. Diagn. Res. 2012, 6, 319–324. [Google Scholar]
- Barfeie, A.; Wilson, J.; Rees, J. Implant surface characteristics and their effect on osseointegration. Br. Dent. J. 2015, 218, E9. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, I.D.; Rowe, B.; Ling, Y.; Wobker, H.G. Chapter 3—Abrasive Processes. In Handbook of Ceramics Grinding and Polishing; Marinescu, I.D., Doi, T.K., Uhlmann, E., Eds.; William Andrew Publishing: Boston, MA, USA, 2015; pp. 67–132. [Google Scholar]
- Li, D.; Ferguson, S.J.; Beutler, T.; Cochran, D.L.; Sittig, C.; Hirt, H.P.; Buser, D. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J. Biomed. Mater. Res. 2002, 60, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, P.R.; Muller, P.; Attin, T.; Wieland, M.; Hofer, D.; Guggenheim, B. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J. Appl. Oral Sci. Rev. Fob. 2013, 21, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Yeo, I.L. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Material 2019, 13, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallgren, C.; Reimers, H.; Chakarov, D.; Gold, J.; Wennerberg, A. An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 2003, 24, 701–710. [Google Scholar] [CrossRef]
- Ionescu, A.C.; Brambilla, E.; Azzola, F.; Ottobelli, M.; Pellegrini, G.; Francetti, L.A. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoS ONE 2018, 13, e0202262. [Google Scholar] [CrossRef] [Green Version]
- Ballo, A.M.O.; Xia, W.; Palmquist, A. Implant Dentistry—A Rapidly Evolving Practice; IntechOpen: London, UK, 2011. [Google Scholar]
- Rodriguez y Baena, R.; Rizzo, S.; Manzo, L.; Lupi, S.M. Nanofeatured Titanium Surfaces for Dental Implantology: Biological Effects, Biocompatibility, and Safety. J. Nanomater. 2017, 2017, 6092895. [Google Scholar] [CrossRef]
- Hannig, M.; Kriener, L.; Hoth-Hannig, W.; Becker-Willinger, C.; Schmidt, H. Influence of nanocomposite surface coating on biofilm formation in situ. J. Nanosci. Nanotechnol. 2007, 7, 4642–4648. [Google Scholar] [CrossRef]
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 2005, 74, 49–58. [Google Scholar] [CrossRef]
- Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014, 14, 15–56. [Google Scholar] [CrossRef] [Green Version]
- Buser, D.; Broggini, N.; Wieland, M.; Schenk, R.K.; Denzer, A.J.; Cochran, D.L.; Hoffmann, B.; Lussi, A.; Steinemann, S.G. Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res. 2004, 83, 529–533. [Google Scholar] [CrossRef]
- Schwarz, F.; Herten, M.; Sager, M.; Wieland, M.; Dard, M.; Becker, J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: Preliminary results of a pilot study in dogs. Clin. Oral Implant. Res. 2007, 18, 481–488. [Google Scholar] [CrossRef]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez y Baena, R.; Arciola, C.R.; Selan, L.; Battaglia, R.; Imbriani, M.; Rizzo, S.; Visai, L. Evaluation of bacterial adhesion on machined titanium, Osseotite(R) and Nanotite(R) discs. Int. J. Artif Organs 2012, 35, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, E.; Granato, R.; Marin, C.; Jimbo, R.; Giro, G.; Suzuki, M.; Coelho, P. Biomechanical Testing of Microblasted, Acid-Etched/Microblasted, Anodized, and Discrete Crystalline Deposition Surfaces: An Experimental Study in Beagle Dogs. Int. J. Oral Maxillofac. Implant. 2013, 28, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, V.C.; Moineddin, R.; Davies, J.E. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. J. Biomed. Mater. Res. A 2009, 90, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Ostman, P.O.; Wennerberg, A.; Ekestubbe, A.; Albrektsson, T. Immediate occlusal loading of NanoTite tapered implants: A prospective 1-year clinical and radiographic study. Clin. Implant. Dent. Relat. Res. 2013, 15, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Sul, Y.-T.; Johansson, C.B.; Röser, K.; Albrektsson, T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 2002, 23, 1809–1817. [Google Scholar] [CrossRef]
- Rocci, A.; Rocci, M.; Rocci, C.; Scoccia, A.; Gargari, M.; Martignoni, M.; Gottlow, J.; Sennerby, L. Immediate loading of Branemark system TiUnite and machined-surface implants in the posterior mandible, part II: A randomized open-ended 9-year follow-up clinical trial. Int. J. Oral Maxillofac. Implant. 2013, 28, 891–895. [Google Scholar] [CrossRef] [Green Version]
- Rocci, A.; Martignoni, M.; Gottlow, J. Immediate loading of Branemark System TiUnite and machined-surface implants in the posterior mandible: A randomized open-ended clinical trial. Clin. Implant. Dent. Relat. Res. 2003, 5 (Suppl. 1), 57–63. [Google Scholar] [CrossRef]
- Bellows, C.G.; Heersche, J.N.; Aubin, J.E. The effects of fluoride on osteoblast progenitors in vitro. J. Bone Min. Res. 1990, 5 (Suppl. 1), S101–S105. [Google Scholar] [CrossRef]
- Kassem, M.; Mosekilde, L.; Eriksen, E.F. Effects of fluoride on human bone cells in vitro: Differences in responsiveness between stromal osteoblast precursors and mature osteoblasts. Eur. J. Endocrinol. 1994, 130, 381–386. [Google Scholar] [CrossRef]
- Delgado-Ruiz, R.; Romanos, G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int. J. Mol.Sci. 2018, 19, 3585. [Google Scholar] [CrossRef] [Green Version]
- Ellingsen, J.E.; Johansson, C.B.; Wennerberg, A.; Holmen, A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int. J. Oral Maxillofac. Implant. 2004, 19, 659–666. [Google Scholar]
- Cruz, H.; Henriques, M.; Teughels, W.; Celis, J.-P.; Rocha, L. Combined Influence of Fluoride and Biofilms on the Biotribocorrosion Behavior of Titanium Used for Dental Applications. J. Bio-Tribo-Corros. 2015. [Google Scholar] [CrossRef] [Green Version]
- de Groot, K.; Wolke, J.G.C.; Jansen, J.A. State of the art: Hydroxyapatite coatings for dental implants. J. Oral Implantol. 1994, 20, 232–234. [Google Scholar]
- Kulkarni Aranya, A.; Pushalkar, S.; Zhao, M.; LeGeros, R.Z.; Zhang, Y.; Saxena, D. Antibacterial and bioactive coatings on titanium implant surfaces. J. Biomed. Mater. Res. A 2017, 105, 2218–2227. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, Y.; Jimbo, R.; Shibata, Y.; Watanabe, I.; Wennerberg, A.; Sawase, T. Accelerated bone formation on photo-induced hydrophilic titanium implants: An experimental study in the dog mandible. Clin. Oral Implant. Res. 2013, 24 (Suppl. A100), 139–144. [Google Scholar] [CrossRef]
- Del Curto, B.; Brunella, M.F.; Giordano, C.; Pedeferri, M.P.; Valtulina, V.; Visai, L.; Cigada, A. Decreased bacterial adhesion to surface-treated titanium. Int. J. Artif. Organs 2005, 28, 718–730. [Google Scholar] [CrossRef] [Green Version]
- Ujino, D.; Nishizaki, H.; Higuchi, S.; Komasa, S.; Okazaki, J. Effect of Plasma Treatment of Titanium Surface on Biocompatibility. Appl. Sci. 2019, 9, 2257. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-J.; Kwon, J.-S.; Jiang, H.; Choi, E.; Park, G.; Kim, K.-M. The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci. Rep. 2019, 9, 1938. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, T.; Zhou, W.; Lin, Z.; Liu, Z. Effect of Plasma Oxidation-Treated TiOx Film on Early Osseointegration. Int. J. Oral Maxillofac. Implant. 2018, 33, 1011–1018. [Google Scholar] [CrossRef]
- Steller, D.; Herbst, N.; Pries, R.; Juhl, D.; Klinger, M.; Hakim, S.G. Impacts of platelet-rich fibrin and platelet-rich plasma on primary osteoblast adhesion onto titanium implants in a bisphosphonate in vitro model. J. Oral Pathol. Med. 2019, 48, 943–950. [Google Scholar] [CrossRef] [PubMed]
- de Barros, R.R.; Novaes, A.B., Jr.; Korn, P.; Queiroz, A.; de Almeida, A.L.; Hintze, V.; Scharnweber, D.; Bierbaum, S.; Stadlinger, B. Bone Formation in a Local Defect around Dental Implants Coated with Extracellular Matrix Components. Clin. Implant. Dent. Relat. Res. 2015, 17, 742–757. [Google Scholar] [CrossRef] [PubMed]
- Korn, P.; Schulz, M.C.; Hintze, V.; Range, U.; Mai, R.; Eckelt, U.; Schnabelrauch, M.; Moller, S.; Becher, J.; Scharnweber, D.; et al. Chondroitin sulfate and sulfated hyaluronan-containing collagen coatings of titanium implants influence peri-implant bone formation in a minipig model. J. Biomed. Mater. Res. A 2014, 102, 2334–2344. [Google Scholar] [CrossRef] [PubMed]
- Rams, T.E.; Roberts, T.W.; Feik, D.; Molzan, A.K.; Slots, J. Clinical and microbiological findings on newly inserted hydroxyapatite-coated and pure titanium human dental implants. Clin. Oral Implant. Res. 1991, 2, 121–127. [Google Scholar] [CrossRef]
- Schliephake, H.; Scharnweber, D.; Dard, M.; Rossler, S.; Sewing, A.; Meyer, J.; Hoogestraat, D. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin. Oral Implant. Res. 2002, 13, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Broggini, N.; Tosatti, S.; Ferguson, S.J.; Schuler, M.; Textor, M.; Bornstein, M.M.; Bosshardt, D.D.; Buser, D. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)- and heparin (KRSR)-binding peptides. J. Biomed. Mater. Res. A 2012, 100, 703–711. [Google Scholar] [CrossRef]
- Fu, L.; Omi, M.; Sun, M.; Cheng, B.; Mao, G.; Liu, T.; Mendonca, G.; Averick, S.E.; Mishina, Y.; Matyjaszewski, K. Covalent Attachment of P15 Peptide to Ti Alloy Surface Modified with Polymer to Enhance Osseointegration of Implants. ACS Appl. Mater. Interfaces 2019, 11, 38531–38536. [Google Scholar] [CrossRef]
- Shi, J.; Li, Y.; Gu, Y.; Qiao, S.; Zhang, X.; Lai, H. Effect of titanium implants with strontium incorporation on bone apposition in animal models: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 15563. [Google Scholar] [CrossRef]
- Ding, Y.; Yuan, Z.; Liu, P.; Cai, K.; Liu, R. Fabrication of strontium-incorporated protein supramolecular nanofilm on titanium substrates for promoting osteogenesis. Mater. Sci. Eng. C 2020, 111, 110851. [Google Scholar] [CrossRef]
- Lopez-Valverde, N.; Muriel-Fernandez, J.; Gomez de Diego, R.; Ramirez, J.M.; Lopez-Valverde, A. Effect of Strontium-Coated Titanium Implants on Osseointegration in Animal Models: A Literature Systematic Review. Int. J. Oral Maxillofac. Implant. 2019, 34, 1389–1396. [Google Scholar] [CrossRef]
- Holmberg, K.V.; Abdolhosseini, M.; Li, Y.; Chen, X.; Gorr, S.U.; Aparicio, C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013, 9, 8224–8231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnke, P.H.; Voss, E.; Russo, P.A.; Stephens, S.; Kleine, M.; Terheyden, H.; Liu, Q. Antimicrobial peptide coating of dental implants: Biocompatibility assessment of recombinant human beta defensin-2 for human cells. Int. J. Oral Maxillofac. Implant. 2013, 28, 982–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Hu, Y.; Li, M.; Chen, M.; Shen, X.; Luo, Z.; Mu, C.; Yang, W.; Liu, P.; Cai, K. Regulation of osteoblast differentiation by osteocytes cultured on sclerostin antibody conjugated TiO2 nanotube array. Colloids Surf. B Biointerfaces 2019, 175, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Haimov, H.; Yosupov, N.; Pinchasov, G.; Juodzbalys, G. Bone Morphogenetic Protein Coating on Titanium Implant Surface: A Systematic Review. J. Oral Maxillofac. Res. 2017, 8, e1. [Google Scholar] [CrossRef] [PubMed]
- Ramazanoglu, M.; Lutz, R.; Ergun, C.; von Wilmowsky, C.; Nkenke, E.; Schlegel, K.A. The effect of combined delivery of recombinant human bone morphogenetic protein-2 and recombinant human vascular endothelial growth factor 165 from biomimetic calcium-phosphate-coated implants on osseointegration. Clin. Oral Implant. Res. 2011, 22, 1433–1439. [Google Scholar] [CrossRef]
- Kim, J.E.; Kang, S.S.; Choi, K.H.; Shim, J.S.; Jeong, C.M.; Shin, S.W.; Huh, J.B. The effect of anodized implants coated with combined rhBMP-2 and recombinant human vascular endothelial growth factors on vertical bone regeneration in the marginal portion of the peri-implant. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, e24–e31. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, Y.; Qian, S.; Li, J.; Chang, Q.; Ye, D.; Pan, H.; Zhang, M.; Cao, H.; Liu, X.; et al. Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.; Marino, V.; Fazzalari, N.L.; Bartold, P.M. Soft tissue attachment to titanium implants coated with growth factors. Clin. Implant. Dent. Relat. Res. 2013, 15, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, I.K.; Chung, H.J.; Jung, M.R.; Nam, S.Y.; Lee, S.Y.; Lee, H.; Heo, S.J.; Lee, S.J. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J. Biomed. Mater. Res. A 2014, 102, 3639–3648. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhao, S.F.; Zhang, F.; He, F.M.; Yang, G.L. Simvastatin-loaded porous implant surfaces stimulate preosteoblasts differentiation: An in vitro study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 111, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, J.; Tengvall, P.; Aspenberg, P. A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. Bone 2012, 50, 1148–1151. [Google Scholar] [CrossRef] [Green Version]
- Kos, M.; Junka, A.; Smutnicka, D.; Szymczyk, P.; Gluza, K.; Bartoszewicz, M. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite. J. CranioMaxillofac. Surg. 2015, 43, 863–869. [Google Scholar] [CrossRef]
- Davidson, H.; Poon, M.; Saunders, R.; Shapiro, I.M.; Hickok, N.J.; Adams, C.S. Tetracycline tethered to titanium inhibits colonization by Gram-negative bacteria. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1381–1389. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.; Barr, S.; Engiles, J.; Hickok, N.J.; Shapiro, I.M.; Richardson, D.W.; Parvizi, J.; Schaer, T.P. Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: A proof-of-concept study. J. Bone Jt. Surg. Am. 2012, 94, 1406–1415. [Google Scholar] [CrossRef] [Green Version]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Shiota, M.; Fujii, M.; Shimogishi, M.; Munakata, M. Effects of implant thread design on primary stability-a comparison between single- and double-threaded implants in an artificial bone model. Int. J. Implant Dent. 2020, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Luo, D.; Liu, Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachauri, P.; Bathala, L.R.; Sangur, R. Techniques for dental implant nanosurface modifications. J. Adv. Prosthodont. 2014, 6, 498–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramani, K.; Jung, R.E.; Molenberg, A.; Hammerle, C.H. Biofilm on dental implants: A review of the literature. Int. J. Oral Maxillofac. Implant. 2009, 24, 616–626. [Google Scholar]
- Achinas, S.; Charalampogiannis, N.; Euverink, G.-J. A Brief Recap of Microbial Adhesion and Biofilms. Appl. Sci. 2019, 9, 2801. [Google Scholar] [CrossRef] [Green Version]
- Lang, N.P.; Berglundh, T.; Working Group 4 of Seventh European Workshop on Periodontology. Periimplant diseases: Where are we now?—Consensus of the Seventh European Workshop on Periodontology. J. Clin. Periodontol. 2011, 38, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Khang, W.; Feldman, S.; Hawley, C.E.; Gunsolley, J. A multi-center study comparing dual acid-etched and machined-surfaced implants in various bone qualities. J. Periodontol. 2001, 72, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Nasatzky, E.; Gultchin, J.; Schwartz, Z. The role of surface roughness in promoting osteointegration. Refuat. Hapeh. Vehashinayim. (1993) 2003, 20, 8–19. [Google Scholar]
- Misch, C.E. Dental Implant Prosthetics, 2nd ed.; Elsevier Mosby: St Louis, MO, USA, 2015. [Google Scholar]
- Ogle, O.E. Implant surface material, design, and osseointegration. Dent. Clin. N. Am. 2015, 59, 505–520. [Google Scholar] [CrossRef]
- Almas, K.; Smith, S.; Kutkut, A. What is the Best Micro and Macro Dental Implant Topography? Dent. Clin. N. Am. 2019, 63, 447–460. [Google Scholar] [CrossRef]
- Stanford, C.M. Surface modifications of dental implants. Aust. Dent. J. 2008, 53 (Suppl. 1), S26–S33. [Google Scholar] [CrossRef] [PubMed]
- Jimbo, R.; Tovar, N.; Anchieta, R.B.; Machado, L.S.; Marin, C.; Teixeira, H.S.; Coelho, P.G. The combined effects of undersized drilling and implant macrogeometry on bone healing around dental implants: An experimental study. Int. J. Oral Maxillofac. Surg. 2014, 43, 1269–1275. [Google Scholar] [CrossRef]
- Rokn, A.; Ghahroudi, A.R.; Mesgarzadeh, A.; Miremadi, A.; Yaghoobi, S. Evaluation of stability changes in tapered and parallel wall implants: A human clinical trial. J. Dent. (Tehran) 2011, 8, 186–200. [Google Scholar]
- Dada, K.; Pariente, L.; Daas, M.; Toussaint, L. Clinical and radiographic evaluation of an implant design featured by parallel wall, tapered apex, internal conical connection and platform shifting- preliminary results. Clin. Oral Implant. Res. 2018, 29, 323. [Google Scholar] [CrossRef] [Green Version]
- Sierra Rebolledo, A.; Allais, M.; Maurette, P.; Gay-Escoda, C. Primary Apical Stability of Tapered Implants Through Reduction of Final Drilling Dimensions in Different Bone Density Models: A Biomechanical Study. Implant. Dent. 2016, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 1998, 11, 491–501. [Google Scholar]
- Barikani, H.; Rashtak, S.; Akbari, S.; Badri, S.; Daneshparvar, N.; Rokn, A. The effect of implant length and diameter on the primary stability in different bone types. J. Dent. (Tehran) 2013, 10, 449–455. [Google Scholar]
- Ryu, H.S.; Namgung, C.; Lee, J.H.; Lim, Y.J. The influence of thread geometry on implant osseointegration under immediate loading: A literature review. J. Adv. Prosthodont. 2014, 6, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Kim, S.J.; An, H.W.; Kim, H.S.; Ha, D.G.; Ryo, K.H.; Park, K.B. The effect of the thread depth on the mechanical properties of the dental implant. J. Adv. Prosthodont. 2015, 7, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Bermejo, P.; Sanchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz Alonso, M. Biofilm formation on dental implants with different surface micro-topography: An in vitro study. Clin. Oral Implant. Res. 2019, 30, 725–734. [Google Scholar] [CrossRef]
- Wennerberg, A. The Role of Surface Roughness for Implant Incorporation in Bone. Cells Mater. 1999, 9, 1. [Google Scholar]
- El-Banna, A.; Bissa, M.W.; Khurshid, Z.; Zohaib, S.; Asiri, F.Y.I.; Zafar, M.S. 4-Surface modification techniques of dental implants. In Dental Implants; Zafar, M.S., Khurshid, Z., Khan, A.S., Najeeb, S., Sefat, F., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 49–68. [Google Scholar]
- Rasmusson, L.; Roos, J.; Bystedt, H. A 10-year follow-up study of titanium dioxide-blasted implants. Clin. Implant. Dent. Relat Res. 2005, 7, 36–42. [Google Scholar] [CrossRef]
- Bornstein, M.M.; Valderrama, P.; Jones, A.A.; Wilson, T.G.; Seibl, R.; Cochran, D.L. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: A histomorphometric study in canine mandibles. Clin. Oral Implant. Res. 2008, 19, 233–241. [Google Scholar] [CrossRef]
- Lixin, X.; Hu, X.; Mehrhof, J.; Nelson, K. Clinical evaluation of a fixed (retrievable) implant-supported prosthesis in the edentulous jaw: A 5-year report. Quintessence Int. 2010, 41, 277–283. [Google Scholar]
- Crawford, R.J.; Webb, H.K.; Truong, V.K.; Hasan, J.; Ivanova, E.P. Surface topographical factors influencing bacterial attachment. Adv. Colloid Interface Sci. 2012, 179–182, 142–149. [Google Scholar] [CrossRef]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implant. Res. 2006, 17 (Suppl. 2), 68–81. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.E. Understanding peri-implant endosseous healing. J. Dent. Educ. 2003, 67, 932–949. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, R.; Barhoum, A.; Uludag, H. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomater. Sci. 2018, 6, 1312–1338. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Khor, K.A.; Cheang, P. Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials 2003, 24, 949–957. [Google Scholar] [CrossRef]
- Gurzawska, K.; Dirscherl, K.; Jørgensen, B.; Berglundh, T.; Jørgensen, N.R.; Gotfredsen, K. Pectin nanocoating of titanium implant surfaces-an experimental study in rabbits. Clin. Oral Implant. Res. 2017, 28, 298–307. [Google Scholar] [CrossRef]
- Das, I.; Chattopadhyay, S.; Mahato, A.; Kundu, B.; De, G. Fabrication of cubic zirconia nanocoating on the titanium dental implant with excellent adhesion, hardness and biocompatibility. RSC Adv. 2016. [Google Scholar] [CrossRef]
- Balani, K.; Anderson, R.; Laha, T.; Andara, M.; Tercero, J.; Crumpler, E.; Agarwal, A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 2007, 28, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Garaicoa, J.L.; Bates, A.M.; Avila-Ortiz, G.; Brogden, K.A. Antimicrobial Prosthetic Surfaces in the Oral Cavity-A Perspective on Creative Approaches. Microorganisms 2020, 8, 1247. [Google Scholar] [CrossRef] [PubMed]
- Lampe, I.; Beke, D.; Biri, S.; Csarnovics, I.; Csik, A.; Dombradi, Z.; Hajdu, P.; Hegedus, V.; Racz, R.; Varga, I.; et al. Investigation of silver nanoparticles on titanium surface created by ion implantation technology. Int. J. Nanomed. 2019, 14, 4709–4721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, B.H.; Chen, Z.Y.; Wang, Y.J.; Yan, S.J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep. 2018, 8, 2445. [Google Scholar] [CrossRef] [Green Version]
- Salaie, R.N.; Besinis, A.; Le, H.; Tredwin, C.; Handy, R.D. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110210. [Google Scholar] [CrossRef]
- Karthik, K.; Sivaraj, S.; Thangaswamy, V. Evaluation of implant success: A review of past and present concepts. J. Pharm. Bioallied Sci. 2013, 5, S117–S119. [Google Scholar] [CrossRef]
- Polini, A.; Yang, F. Physicochemical characterization of nanofiber composites. Nanofiber Compos. Biomed. Appl. 2017. [Google Scholar] [CrossRef]
- Sartoretto, S.C.; Alves, A.T.; Resende, R.F.; Calasans-Maia, J.; Granjeiro, J.M.; Calasans-Maia, M.D. Early osseointegration driven by the surface chemistry and wettability of dental implants. J. Appl. Oral Sci. Rev. Fob. 2015, 23, 279–287. [Google Scholar] [CrossRef]
- Stadlinger, B.; Ferguson, S.J.; Eckelt, U.; Mai, R.; Lode, A.T.; Loukota, R.; Schlottig, F. Biomechanical evaluation of a titanium implant surface conditioned by a hydroxide ion solution. Br. J. Oral Maxillofac. Surg. 2012, 50, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Wennerberg, A.; Galli, S.; Albrektsson, T. Current knowledge about the hydrophilic and nanostructured SLActive surface. Clin. Cosmet. Investig. Dent. 2011, 3, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Koo, H.; Ren, D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef]
- Naito, Y.; Tohda, H.; Okuda, K.; Takazoe, I. Adherence and hydrophobicity of invasive and noninvasive strains of Porphyromonas gingivalis. Oral MicroBiol. Immunol. 1993, 8, 195–202. [Google Scholar] [CrossRef]
- Almaguer-Flores, A.; Olivares-Navarrete, R.; Wieland, M.; Ximenez-Fyvie, L.A.; Schwartz, Z.; Boyan, B.D. Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro. Clin. Oral Implant. Res. 2012, 23, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.W.L.; Levänena, E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013, 3, 12003–12020. [Google Scholar] [CrossRef]
- Mi, L.; Jiang, S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew. Chem Int. Ed. Engl. 2014, 53, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Jungner, M.; Lundqvist, P.; Lundgren, S. Oxidized titanium implants (Nobel Biocare TiUnite) compared with turned titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clin. Oral Implant. Res. 2005, 16, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Hasan, J.; Chatterjee, K. Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale 2015, 7, 15568–15575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellingsen, J.E.; Thomsen, P.; Lyngstadaas, S.P. Advances in dental implant materials and tissue regeneration. Periodontology 2000 2006, 41, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Kang, S.-H.; Kim, H.-Y.; Yeo, I.-S. Control Variable Implants Improve Interpretation of Surface Modification and Implant Design Effects on Early Bone Responses: An In Vivo Study. Int. J. Oral Maxillofac. Implant. 2018, 33, 1033–1040. [Google Scholar] [CrossRef]
- Noguti, J.; de Oliveira, F.; Peres, R.C.; Renno, A.C.; Ribeiro, D.A. The role of fluoride on the process of titanium corrosion in oral cavity. Biometals 2012, 25, 859–862. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Bran, S.; Baciut, M.; Baciut, G.; Lucaciu, O.; Dinu, C.M.; Todea, D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- Xuereb, M.; Camilleri, J.; Attard, N.J. Systematic review of current dental implant coating materials and novel coating techniques. Int. J. Prosthodont. 2015, 28, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talib, R.J.; Toff, M.R. Plasma-sprayed coating of hydroxyapatite on metal implants—A review. Med. J. Malays. 2004, 59 (Suppl. B), 153–154. [Google Scholar]
- Sun, L.; Berndt, C.C.; Gross, K.A.; Kucuk, A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J. Biomed. Mater. Res. 2001, 58, 570–592. [Google Scholar] [CrossRef]
- Biesbrock, A.R.; Edgerton, M. Evaluation of the clinical predictability of hydroxyapatite-coated endosseous dental implants: A review of the literature. Int. J. Oral Maxillofac. Implant. 1995, 10, 712–720. [Google Scholar]
- Takeshita, F.; Ayukawa, Y.; Iyama, S.; Suetsugu, T.; Kido, M.A. A histologic evaluation of retrieved hydroxyapatite-coated blade-form implants using scanning electron, light, and confocal laser scanning microscopies. J. Periodontol. 1996, 67, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.L.; Chan, D.C.N. A Review of Hydroxapatite and its use as a Coating in Dental Implants. Crit Rev. Biomed. Eng. 2017, 45, 411–451. [Google Scholar] [CrossRef] [PubMed]
- Albertini, M.; Herrero-Climent, F.; Diaz-Castro, C.M.; Nart, J.; Fernandez-Palacin, A.; Rios-Santos, J.V.; Herrero-Climent, M. A Radiographic and Clinical Comparison of Immediate vs. Early Loading (4 Weeks) of Implants with a New Thermo-Chemically Treated Surface: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 1223. [Google Scholar] [CrossRef]
- Madi, M.; Zakaria, O.; Kasugai, S. Coated vs uncoated implants: Bone defect configurations after progressive peri-implantitis in dogs. J. Oral Implant. 2014, 40, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Minamikawa, H.; Ikeda, T.; Att, W.; Hagiwara, Y.; Hirota, M.; Tabuchi, M.; Aita, H.; Park, W.; Ogawa, T. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. J. Biomed. Mater. Res. Part A 2014, 102, 3618–3630. [Google Scholar] [CrossRef] [PubMed]
- Funato, A.; Ogawa, T. Photofunctionalized dental implants: A case series in compromised bone. Int. J. Oral Maxillofac. Implant. 2013, 28, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Funato, A.; Yamada, M.; Ogawa, T. Success rate, healing time, and implant stability of photofunctionalized dental implants. Int. J. Oral Maxillofac. Implant. 2013, 28, 1261–1271. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied Plasma Medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Compton, K.T.; Langmuir, I. Electrical Discharges in Gases. Part I. Survey of Fundamental Processes. Rev. Mod. Phys. 1930, 2, 123–242. [Google Scholar] [CrossRef]
- Šrámková, P.; Zahoranová, A.; Kelar, J.; Kelar Tučeková, Z.; Stupavská, M.; Krumpolec, R.; Jurmanová, J.; Kováčik, D.; Černák, M. Cold atmospheric pressure plasma: Simple and efficient strategy for preparation of poly(2-oxazoline)-based coatings designed for biomedical applications. Sci. Rep. 2020, 10, 9478. [Google Scholar] [CrossRef]
- Inchingolo, F.; Ballini, A.; Cagiano, R.; Inchingolo, A.D.; Serafini, M.; De Benedittis, M.; Cortelazzi, R.; Tatullo, M.; Marrelli, M.; Inchingolo, A.M.; et al. Immediately loaded dental implants bioactivated with platelet-rich plasma (PRP) placed in maxillary and mandibular region. La Clin. Ter. 2015, 166, e146–e152. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Del Corso, M.; Inchingolo, F.; Sammartino, G.; Charrier, J.B. Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in human cell cultures: Growth factor release and contradictory results. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 412–421. [Google Scholar] [CrossRef]
- Terheyden, H.; Lang, N.P.; Bierbaum, S.; Stadlinger, B. Osseointegration--communication of cells. Clin. Oral Implant. Res. 2012, 23, 1127–1135. [Google Scholar] [CrossRef]
- Schliephake, H.; Aref, A.; Scharnweber, D.; Sewing, A. Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. Part I: Organic coatings. Clin. Oral Implant. Res. 2009, 20, 31–37. [Google Scholar] [CrossRef]
- Liu, Q.; Limthongkul, W.; Sidhu, G.; Zhang, J.; Vaccaro, A.; Shenck, R.; Hickok, N.; Shapiro, I.; Freeman, T. Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J. Orthop. Res. 2012, 30, 1626–1633. [Google Scholar] [CrossRef]
- Li, X.; Contreras-Garcia, A.; Lovetri, K.; Yakandawala, N.; De Crescenzo, G.; Hoemann, C. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces. J. Biomed. Mater. Res. Part A 2015, 103. [Google Scholar] [CrossRef]
- Guo, L.; Edlund, A. Targeted Antimicrobial Peptides: A Novel Technology to Eradicate Harmful Streptococcus Mutans. J. Calif. Dent. Assoc. 2017, 45, 557–564. [Google Scholar]
- Balhara, V.; Schmidt, R.; Gorr, S.-U.; DeWolf, C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 2193–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suen, P.K.; Qin, L. Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: A general review. J. Orthop. Transl. 2016, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.J.; Wang, R.; Li, Q.Y.; Li, C.Y.; Jiang, L. Sclerostin regulation: A promising therapy for periodontitis by modulating alveolar bone. Chin. Med. J. (Engl.) 2020, 133, 1456–1461. [Google Scholar] [CrossRef]
- Diao, X.; Li, Z.; An, B.; Xin, H.; Wu, Y.; Li, K.; Feng, F.; Dou, C. The Microdamage and Expression of Sclerostin in Peri-implant Bone under One-time Shock Force Generated by Impact. Sci. Rep. 2017, 7, 6508. [Google Scholar] [CrossRef]
- Yu, S.H.; Hao, J.; Fretwurst, T.; Liu, M.; Kostenuik, P.; Giannobile, W.V.; Jin, Q. Sclerostin-Neutralizing Antibody Enhances Bone Regeneration Around Oral Implants. Tissue Eng. Part A 2018, 24, 1672–1679. [Google Scholar] [CrossRef]
- Carreira, A.C.; Lojudice, F.H.; Halcsik, E.; Navarro, R.D.; Sogayar, M.C.; Granjeiro, J.M. Bone morphogenetic proteins: Facts, challenges, and future perspectives. J. Dent. Res. 2014, 93, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.C.; Seol, Y.J.; Cirelli, J.A.; Pellegrini, G.; Jin, Q.; Franco, L.M.; Goldstein, S.A.; Chandler, L.A.; Sosnowski, B.; Giannobile, W.V. PDGF-B gene therapy accelerates bone engineering and oral implant osseointegration. Gene 2010, 17, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Takei, Y.; Minamizaki, T.; Yoshiko, Y. Functional diversity of fibroblast growth factors in bone formation. Int. J. Endocrinol. 2015, 2015, 729352. [Google Scholar] [CrossRef] [Green Version]
- Sendyk, D.I.; Deboni, M.C.; Pannuti, C.M.; Naclerio-Homem, M.G.; Wennerberg, A. The influence of statins on osseointegration: A systematic review of animal model studies. J. Oral Rehabil. 2016, 43, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Hasan, S.M.; Khan, R.S. Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review. J. Taibah Univ. Med. Sci. 2017, 12, 369–375. [Google Scholar] [CrossRef]
- Dharmayanti, C.; Gillam, T.A.; Williams, D.B.; Blencowe, A. Drug-Eluting Biodegradable Implants for the Sustained Release of Bisphosphonates. Polymers 2020, 12, 2930. [Google Scholar] [CrossRef] [PubMed]
- Bormann, N.; Schwabe, P.; Smith, M.D.; Wildemann, B. Analysis of parameters influencing the release of antibiotics mixed with bone grafting material using a reliable mixing procedure. Bone 2014, 59, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Persister cells: Molecular mechanisms related to antibiotic tolerance. Handb. Exp. Pharm. 2012, 121–133. [Google Scholar] [CrossRef]
- Antoci, V., Jr.; Adams, C.S.; Hickok, N.J.; Shapiro, I.M.; Parvizi, J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin. Orthop. Relat. Res. 2007, 462, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Herr, Y.; Woo, J.A.; Kwon, Y.H.; Park, J.B.; Heo, S.J.; Chung, J.H. Implant Surface Conditioning with Tetracycline-HCl: A SEM Study. Key Eng. Mater. 2008, 361–363, 849–852. [Google Scholar] [CrossRef]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Subramani, K.; Wismeijer, D. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: A literature review. Int. J. Oral Maxillofac. Implant. 2012, 27, 1043–1054. [Google Scholar]
- Valderrama, P.; Wilson, T.G., Jr. Detoxification of implant surfaces affected by peri-implant disease: An overview of surgical methods. Int. J. Dent. 2013, 2013, 740680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louropoulou, A.; Slot, D.E.; Van der Weijden, F. The effects of mechanical instruments on contaminated titanium dental implant surfaces: A systematic review. Clin. Oral Implant. Res. 2014, 25, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Furtsev, T.V.; Zeer, G.M. Efficiency of Cleaning the Various Types of Dental Implants’ Surfaces (Tiu-Nite, Sla, Rbm) Using the Air-Flow Erythritol Method. J. Int. Dent. Med. Res. 2020, 13, 448–452. [Google Scholar]
- Sanz-Martin, I.; Paeng, K.; Park, H.; Cha, J.K.; Jung, U.W.; Sanz, M. Significance of implant design on the efficacy of different peri-implantitis decontamination protocols. Clin. Oral Investig. 2020. [Google Scholar] [CrossRef]
- Rahmitasari, F.; Ishida, Y.; Kurahashi, K.; Matsuda, T.; Watanabe, M.; Ichikawa, T. PEEK with Reinforced Materials and Modifications for Dental Implant Applications. Dent. J. 2017, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Fage, S.W.; Muris, J.; Jakobsen, S.S.; Thyssen, J.P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact. Dermat. 2016, 74, 323–345. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Chowdhary, R. PEEK materials as an alternative to titanium in dental implants: A systematic review. Clin. Implant. Dent. Relat. Res. 2019, 21, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Wadhwani, C.P.K.; Schoenbaum, T.; King, K.E.; Chung, K.H. Techniques to Optimize Color Esthetics, Bonding, and Peri-implant Tissue Health With Titanium Implant Abutments. Compend Contin. Educ. Dent. 2018, 39, 110–119. [Google Scholar]
- Apratim, A.; Eachempati, P.; Krishnappa Salian, K.K.; Singh, V.; Chhabra, S.; Shah, S. Zirconia in dental implantology: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Jung, R.E.; Sailer, I.; Hammerle, C.H.; Attin, T.; Schmidlin, P. In vitro color changes of soft tissues caused by restorative materials. Int. J. Periodontics Restor. Dent. 2007, 27, 251–257. [Google Scholar]
- Kniha, K.; Kniha, H.; Grunert, I.; Edelhoff, D.; Holzle, F.; Modabber, A. Esthetic Evaluation of Maxillary Single-Tooth Zirconia Implants in the Esthetic Zone. Int. J. Periodontics Restor. Dent. 2019, 39, e195–e201. [Google Scholar] [CrossRef]
- Schunemann, F.H.; Galarraga-Vinueza, M.E.; Magini, R.; Fredel, M.; Silva, F.; Souza, J.C.M.; Zhang, Y.; Henriques, B. Zirconia surface modifications for implant dentistry. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Strickstrock, M.; Rothe, H.; Grohmann, S.; Hildebrand, G.; Zylla, I.; Liefeith, K. Influence of surface roughness of dental zirconia implants on their mechanical stability, cell behavior and osseointegration. BioNanoMaterials 2017, 18. [Google Scholar] [CrossRef]
- Sivaraman, K.; Chopra, A.; Narayan, A.I.; Balakrishnan, D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J. Prosthodont. Res. 2018, 62, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, O.; Angelov, N.; Gallez, F.; Jung, R.E.; Weber, F.E. The zirconia implant-bone interface: A preliminary histologic evaluation in rabbits. Int. J. Oral Maxillofac. Implant. 2008, 23, 691–695. [Google Scholar]
- Roehling, S.; Astasov-Frauenhoffer, M.; Hauser-Gerspach, I.; Braissant, O.; Woelfler, H.; Waltimo, T.; Kniha, H.; Gahlert, M. In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J. Periodontol. 2017, 88, 298–307. [Google Scholar] [CrossRef]
- Daou, E.E. The zirconia ceramic: Strengths and weaknesses. Open Dent. J. 2014, 8, 33–42. [Google Scholar] [CrossRef]
- Al Qahtani, W.M.; Schille, C.; Spintzyk, S.; Al Qahtani, M.S.; Engel, E.; Geis-Gerstorfer, J.; Rupp, F.; Scheideler, L. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed. Tech. (Berl.) 2017, 62, 75–87. [Google Scholar] [CrossRef]
- Han, A.; Tsoi, J.; Matinlinna, J.; Chen, Z. Influence of Grit-Blasting and Hydrofluoric Acid Etching Treatment on Surface Characteristics and Biofilm Formation on Zirconia. Coatings 2017, 7, 130. [Google Scholar] [CrossRef]
- Calvo-Guirado, J.L.; Aguilar-Salvatierra, A.; Delgado-Ruiz, R.A.; Negri, B.; Fernandez, M.P.; Mate Sanchez de Val, J.E.; Gomez-Moreno, G.; Romanos, G.E. Histological and Histomorphometric Evaluation of Zirconia Dental Implants Modified by Femtosecond Laser versus Titanium Implants: An Experimental Study in Fox Hound Dogs. Clin. Implant. Dent. Relat. Res. 2015, 17, 525–532. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Kakura, K.; Yamamoto, K.; Kido, H.; Yamazaki, J. Accelerated Osteogenic Differentiation and Bone Formation on Zirconia with Surface Grooves Created with Fiber Laser Irradiation. Clin. Implant. Dent. Relat. Res. 2016, 18, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira, M.S.; Carvalho, A.; Pelaez-Vargas, A.; Hansford, D.; Ferraz, M.P.; Coimbra, S.; Costa, E.; Santos-Silva, A.; Fernandes, M.H.; Monteiro, F.J. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications. Sci. Technol. Adv. Mater. 2014, 15, 025001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardun, K.; Treccani, L.; Volkmann, E.; Streckbein, P.; Heiss, C.; Gerlach, J.W.; Maendl, S.; Rezwan, K. Magnesium-containing mixed coatings on zirconia for dental implants: Mechanical characterization and in vitro behavior. J. Biomater. Appl. 2015, 30, 104–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Liu, N.; Liu, K.; Li, Y.; Zhang, W.; Zhu, B.; Gu, B.; Wen, N. Effects of carbon and nitrogen plasma immersion ion implantation on bioactivity of zirconia. RSC Adv. 2020, 10, 35917–35929. [Google Scholar] [CrossRef]
- Aboushelib, M.; Shawky, R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles. Int. J. Implant. Dent. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Brezavscek, M.; Fawzy, A.; Bachle, M.; Tuna, T.; Fischer, J.; Att, W. The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials. Material 2016, 9, 958. [Google Scholar] [CrossRef] [Green Version]
- Henningsen, A.; Smeets, R.; Heuberger, R.; Jung, O.T.; Hanken, H.; Heiland, M.; Cacaci, C.; Precht, C. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Eur. J. Oral Sci. 2018, 126, 126–134. [Google Scholar] [CrossRef]
- Cai, Z.; Li, Y.; Wang, Y.; Chen, S.; Jiang, S.; Ge, H.; Lei, L.; Huang, X. Disinfect Porphyromonas gingivalis Biofilm on Titanium Surface with Combined Application of Chlorhexidine and Antimicrobial Photodynamic Therapy. Photochem. Photobiol. 2019, 95, 839–845. [Google Scholar] [CrossRef]
- Pu, Z.; Jing, X.; Yang, C.; Wang, F.; Ehmann, K.F. Wettability modification of zirconia by laser surface texturing and silanization. Int. J. Appl. Ceram. Technol. 2020, 17, 2182–2192. [Google Scholar] [CrossRef]
- Huang, Y.S.; Hung, C.Y.; Huang, H.H. Surface changes and bacterial adhesion on implant abutment materials after various clinical cleaning procedures. JCMA 2019, 82, 643–650. [Google Scholar] [CrossRef]
- Hu, J.; Atsuta, I.; Ayukawa, Y.; Zhou, T.; Narimatsu, I.; Koyano, K. Effect of titanium or zirconia implant abutments on epithelial attachments after ultrasonic cleaning. J. Oral Sci. 2020, 62, 331–334. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platzer, N.; Encyclopedia of Polymer Science and Engineering; Mark, H.F.; Bikales, N.M.; Overberger, C.G.; Menges, G. Wiley-Interscience, New York, 1985, 720 pp. J. Polym. Sci. Part C Polym. Lett. 1986, 24, 359–360. [Google Scholar] [CrossRef]
- Lee, W.T.; Koak, J.Y.; Lim, Y.J.; Kim, S.K.; Kwon, H.B.; Kim, M.J. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1044–1052. [Google Scholar] [CrossRef]
- Wang, H.; Xu, M.; Zhang, W.; Kwok, D.T.; Jiang, J.; Wu, Z.; Chu, P.K. Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone. Biomaterials 2010, 31, 8181–8187. [Google Scholar] [CrossRef] [PubMed]
- Goutam, M.; Giriyapura, C.; Mishra, S.K.; Gupta, S. Titanium allergy: A literature review. Indian J. Derm. 2014, 59, 630. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, A.; Muller, W.D. PEEK dental implants: A review of the literature. J. Oral Implant. 2013, 39, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Hacking, S.A.; Harvey, E.J.; Tanzer, M.; Krygier, J.J.; Bobyn, J.D. Acid-etched microtexture for enhancement of bone growth into porous-coated implants. J. Bone Jt. Surg. Br. 2003, 85, 1182–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Liu, C.; Chen, T.; Liu, H. The Study of PEEK Composites as the Dental Implant Materials. J. Simul. 2017, 5, 5–7. [Google Scholar]
- Sarot, J.R.; Contar, C.M.; Cruz, A.C.; de Souza Magini, R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J. Mater. Sci. Mater. Med. 2010, 21, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Khurshid, Z.; Matinlinna, J.P.; Siddiqui, F.; Nassani, M.Z.; Baroudi, K. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int. J. Dent. 2015, 2015, 381759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Liu, X.; Xu, A.; Wang, L.; Luo, Z.; Zheng, Y.; Deng, F.; Wei, J.; Tang, Z.; Wei, S. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int. J. Nanomed. 2015, 10, 1425–1447. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Smeets, R.; Kluwe, L.; Hartjen, P.; Barbeck, M.; Cacaci, C.; Gosau, M.; Henningsen, A. Cytocompatibility of Titanium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma. Int. J. Mol. Sci. 2019, 20, 5596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almasi, D.; Iqbal, N.; Sadeghi, M.; Sudin, I.; Abdul Kadir, M.R.; Kamarul, T. Preparation Methods for Improving PEEK’s Bioactivity for Orthopedic and Dental Application: A Review. Int. J. Biomater. 2016, 2016, 8202653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Judy, H. Biomechanical Effect of Nitrogen Plasma Treatment of Polyetheretherketone Dental Implant in Comparison to Commercially Pure Titanium. J. Res. Med. Dent. Sci. 2018. [Google Scholar] [CrossRef]
- Chen, M.; Ouyang, L.; Lu, T.; Wang, H.; Meng, F.; Yang, Y.; Ning, C.; Ma, J.; Liu, X. Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone. ACS Appl. Mater. Interfaces 2017, 9, 16824–16833. [Google Scholar] [CrossRef]
- Johansson, P.; Jimbo, R.; Kjellin, P.; Currie, F.; Chrcanovic, B.R.; Wennerberg, A. Biomechanical evaluation and surface characterization of a nano-modified surface on PEEK implants: A study in the rabbit tibia. Int. J. Nanomed. 2014, 9, 3903–3911. [Google Scholar] [CrossRef] [Green Version]
- Han, C.M.; Lee, E.J.; Kim, H.E.; Koh, Y.H.; Kim, K.N.; Ha, Y.; Kuh, S.U. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials 2010, 31, 3465–3470. [Google Scholar] [CrossRef]
- Cheng, B.C.; Koduri, S.; Wing, C.A.; Woolery, N.; Cook, D.J.; Spiro, R.C. Porous titanium-coated polyetheretherketone implants exhibit an improved bone-implant interface: An in vitro and in vivo biochemical, biomechanical, and histological study. Med. Devices (Auckl.) 2018, 11, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-L.; Chang, Y.-Y.; Chen, H.-J.; Chou, Y.-K.; Lai, C.-H.; Chen, M.Y.C. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. J. Vac. Sci. Technol. A 2014, 32, 02B117. [Google Scholar] [CrossRef]
- Vimbela, G.V.; Ngo, S.M.; Fraze, C.; Yang, L.; Stout, D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed. 2017, 12, 3941–3965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, K.; Yamada, N.; Hanada, S.; Jung, T.K.; Itoi, E. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus. Acta Biomater. 2011, 7, 2320–2326. [Google Scholar] [CrossRef] [PubMed]
- Sandler, J.; Werner, P.; Shaffer, M.S.P.; Demchuk, V.; Altstädt, V.; Windle, A.H. Carbon-nanofibre-reinforced poly(ether ether ketone) composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1033–1039. [Google Scholar] [CrossRef]
- Shimizu, T.; Fujibayashi, S.; Yamaguchi, S.; Otsuki, B.; Okuzu, Y.; Matsushita, T.; Kokubo, T.; Matsuda, S. In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model. PLoS ONE 2017, 12, e0184495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimer, S.; Schmidlin, P.R.; Stawarczyk, B. Effect of different cleaning methods of polyetheretherketone on surface roughness and surface free energy properties. J. Appl. Biomater. Funct. Mater. 2016, 14, e248–e255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Xhajanka, E.; Romeo, D.M.; Romeo, M.; Zappone, C.M.F.; Malcangi, G.; Scarano, A.; Lorusso, F.; et al. The Effectiveness of Osseodensification Drilling Protocol for Implant Site Osteotomy: A Systematic Review of the Literature and Meta-Analysis. Materials 2021, 14, 1147. [Google Scholar] [CrossRef]
Modifying Approach | Category | Sub-Category | Technique/Resulting Surface | Notable Effect on Osseointegration/Biofilm Formation | Ref. |
---|---|---|---|---|---|
Shape | Physical | Macro | Tapered apex | Improves primary stability, favorable for immediate placement and immediate loading, superior in site with root proximity | [45,46] |
Diameter and Length | Physical | Macro | Increased implant diameter | Increases ISQ, improves force distribution, reduces stress along implant length, elevates load-bearing capacity of prosthesis | [47,48] |
Threads | Physical | Macro | V shape threads | Thread design that achieves most stability, least stress; | [48] |
Machining | Physical | Micro | Polished surface with average roughness of 0.96 μm | Slightly promotes osteogenic cells to attach and deposit bone matrix | [32,49] |
Grit-blasting | Physical | Micro | Roughened surface created by titanium dioxide particles of 25–50 um | Higher success rates compared to machined implants, more predictable long-term clinical outcomes | [50,51] |
Acid-etching/Sandblasting | Physical | Micro | Macrostructure remodeled by large grit particles (250–500 μm), micro-irregularities created by HNO3/HF | Improves bioadhesion, accelerates osteoblast attachment and retention, facilitates osseointegration and bone apposition, increases bone anchorage; More severe colonization in vitro compared to machined and acid-etched implants | [50,52,53] |
Laser Ablation | Physical | Nano | Complex, precise, high-resolution geometry generated | Induces significantly more bone-to-implant contact, larger torque removal values compared to machined surface, encourages attachment of connective tissue and bone; Lower biofilm formation compared to machined and grit-blasted surfaces and enamel | [54,55,56] |
Nanocomposite | Physical | Nano | Various nanoparticles added through nanoparticle compaction, plasma spraying deposition, physical vapor deposition, and hot isostatic pressing | Improves biocompatibility and osseointegration; Reduces biofilm formation (Staphylococcus aureus) | [57,58,59] |
Hydrophilic | Chemical | Hydroxylated (or hydrated), rinsed under nitrogen protection, and stored in isotonic saline solution | Encourages cell attachment and migration, promotes osteoblast differentiation/maturation, enhances neoangiogenesis, improves bone-to-implant contact, increases bone density, benefits earlier stages of osseointegration; Discourages hydrophobic bacterial attachment (P. gingivalis, A. actinomycetemcomitans, and F. nucleatum) | [60,61,62,63,64] | |
Discrete Crystalline Deposition | Chemical | Calcium phosphate particles of 20–100 nm compose 50% of surface | Better osteoconduction compared to cpTi/Ti6Al4V, increases bone-to-implant contact, beneficial for immediate loading; Reduction of bacterial adhesion (A. actinomycetemcomitan, S. mutans, and S. sanguis) | [65,66,67,68] | |
Anodic Oxidation/Anodization | Chemical | TiO2 layer (600–1000 nm) produced | Encourages gingival fibroblast deposition/adhesion/proliferation, and osteoblast adhesion, improves bone-to-implant contact, higher success rate versus machined implants during immediate loading; Reduction of bacterial adhesion by 1–2 logs | [32,50,69,70,71] | |
Fluoride Treatment | Chemical | Cathodic reduction reaction applies fluoride to surface | Stimulates undifferentiated osteoblasts/osteoprogenitor cells to proliferate/differentiate and have increased alkaline phosphatase activity, more firm bone-to-implant contact, greater removal torque; Facilitates the structural disruption and detachment of biofilm | [54,72,73,74,75,76] | |
Hydroxyapatite | Chemical | 40–50 um HA layer created by plasma spraying | Beneficial where rapid bone-to-implant contact is needed; Antibacterial effects against S. aureus and P. gingivalis | [77,78] | |
UV Treatment/Photofunctionalization | Chemical | UVA (320–400 nm) and UVC (200–280 nm) waves alter hydrophilicity of TiO2 | Enhances osteogenic cell attachment/proliferation and plasma protein adsorption, promotes bone formation in the early phase of osseointegration; Reduction in the attachment of S. mutans, S. salivarius, and S. sanguis | [54,79,80] | |
Atmospheric Pressure Plasma Processing | Chemical | Plasma | Hydrophilicity increased with piezo brush | Increased cell adhesion, alkaline phosphatase activity, and factors related to bone differentiation; Reduction in Gram-negative bacteria | [81,82] |
Plasma Oxidation | Chemical | Plasma | Radio frequency plasma-enhanced chemical vapor deposition system achieves plasma oxidation | Increases removal torque and bone-to-implant contact | [83] |
Calcium Chloride Treatment | Chemical | Hydrothermal treatment with calcium chloride (CaCl2) | Improves osseointegration and soft tissue seal, adsorption of laminin-332 and osteopontin and adhesion of osteoblasts, greater attachment of gingival epithelial-like cells and fibroblasts; No enhancement of bacterial adhesion | [19] | |
Platelet Rich Plasma | Biological | PRP with zoledronic acid applied to surface | Enhances initial bone apposition and primary healing | [84] | |
Extracellular Matrix (ECM) | Biological | Coating of collagen/chondroitin sulfate or collagen/sulfated hyaluronan | Enhances bone healing, increases bone formation and maturation compared to uncoated implants | [85,86] | |
RGD Peptide | Biological | Peptides | Specific amino acid sequence applied to surface | Improves bone-to-implant contact three months post-implantation, no effects on bone-to-implant contact, new bone fill, or removal torque values two weeks post-implantation | [78,87] |
P15 Peptide | Biological | Peptides | Synthetic 15 amino acid peptide applied to surface | Promotes osseointegration, increases osteoblast and mesenchymal cell attachment/spreading, and osteogenic gene expression and differentiation | [88,89] |
Strontium Incorporated Protein | Biological | Peptides | Magnetron sputtering/hydrothermal treatment coating method used | Improves bone-to-implant contact, bone formation, and biomechanical properties, enhances early adhesion, proliferation, and osteogenic differentiation of bone marrow stromal cells, increases expression of osteogenic related genes (i.e., BMP-2), and significant capability of new bone formation in vivo | [90,91,92,93] |
Bactericidal Peptides | Biological | Peptides | GL13K and human beta defensins (HBDs) applied to surface | GL13K maintains cytocompatibility with adequate proliferation of osteoblasts/gingival fibroblasts. HBDs maintain the proliferation of osteoblasts and mesenchymal stem cells; GL13K has a bactericidal effect against P. gingivalis. HBDs exhibited broad-spectrum antibacterial functions | [94,95] |
Sclerostin-Antibody | Biological | Peptides | Decreased sclerostin | Promotes osteoblast differentiation | [96] |
Bone Morphogenic Protein (BMP) | Biological | Growth Factors | BMP-2 coating | Promotes bone regeneration, increases density of surrounding bone compared to acid-etched implants, improves bone-to-implant contact and new bone formation compared to anodized implants | [97,98,99] |
Platelet-Derived Growth Factor (PDGF) | Biological | Growth Factors | PDGF coating | Enhances osseointegration, accelerates soft tissue healing around implant surface | [100,101] |
Fibroblast Growth Factor (FGF) | Biological | Growth Factors | FGF-2 nanoparticle coating | Increases cell spreading and differentiation in vitro, increases osseointegration in rabbit tibia in vivo | [102] |
Statins | Biological | Drugs | Simvastatin | Increases alkaline phosphatase activity, type I collagen synthesis, and osteocalcin release from pre-osteoblasts in vitro | [103] |
Bisphosphonates | Biological | Drugs | Pamidronate disodium, ibandronate | Strengthens mechanical fixation; Increases bacterial adhesion and biofilm formation | [104,105] |
Antimicrobials | Biological | Drugs | Tetracycline/Vancomycin | Tetracycline coating promoted cell proliferation and bone healing. Vancomycin coating boosted bone healing; Tetracycline killed contaminating microorganisms; Vancomycin inhibited colonization by S. aureus | [106,107] |
Modifying Approach | Category | Technique/Resulting Surface | Notable Effect on Osseointegration/ Biofilm Formation | Ref |
---|---|---|---|---|
Machined | Physical | Polished surface with average roughness of 0.96 μm | Decreased cell proliferation of osteoblasts, similar bone-to-implant contact compared to machined titanium; Significant decrease in biofilm thickness compared to machined titanium | [213,217,219] |
Acid-etching/Sandblasting | Physical | Sandblasted with 250 mm sized particles | Enhances osteoblast cell adhesion in vitro; Grit-blasted with or without acid-etching significantly prohibits S. sanguis and P. gingivalis biofilm formation | [219,220] |
Laser Modification | Physical | Increased surface free energy/wettability | Bone-to-implant contact and crestal resorption at one and three months comparable to SLA titanium implants, greater bone-to-implant contact and removal torque versus machined zirconia, increased cell proliferation, phosphatase activity, osteocalcin expression, and calcification | [221,222] |
Coatings | Physical | Coating with silica, magnesium, nitrogen, carbon, and HA | Silica coating enhances HA formation and osteoblast proliferation. Magnesium coatings induce more cell proliferation and differentiation compared to pure zirconia-calcium phosphate coatings. HA-coating increases volume of new bone formation; Silica coating reduces bacterial adhesion. C:H:N layer harbors less initially adherent microorganisms | [223,224,225,226] |
UV Treatment | Chemical | Surface free energy, wettability, and hydrophilicity enhanced by electron excitation | Enhances attachment, proliferation, and differentiation of osteoblasts, faster osseointegration, greater bone volume and bone-to-implant contact | [213,227,228] |
Modifying Approach | Category | Technique/Resulting Surface | Notable Effect on Osseointegration/ Biofilm Formation | Ref |
---|---|---|---|---|
Roughening | Physical | Acid-etched or sandblasted | Improve osseointegration | [239,240] |
Reinforcing | Physical | Reinforced with different materials (i.e., glass/carbon), fiber lengths and orientations changed | Carbon-fiber-reinforced PEEK (CFR-PEEK) improves bone-to-implant contact, but increases stress concentrations compared to titanium implants, exhibits black coloration | [206,238,241] |
Creation of Nanocomposites | Physical | HA or titanium nanoparticles applied through melt-blending/nano-scale fluorohydroxyapatite | PEEK/CF/n-HA promotes osteogenesis and encourages cell growth, cell attachment, and proliferation. PEEK/nano-HAF increases bone cell proliferation; PEEK/nano-HAF possesses antibacterial properties against S. mutans | [208,242,243] |
Nitration, Sulfonation, Amination | Chemical | Chemical groups introduced to surface | Enhances biocompatibility, achieves early osseointegration; Sulfonation treatment used to incorporate lactam-based antibiofilm establishes a surface more resistant to bacterial contamination (S. aureus and Escherichia coli) | [206,208] |
UV Treatment | Chemical | Increased hydrophilicity/wettability | Favorable for early attachment of soft tissue and cell proliferation, attachment of fibroblasts | [206,242,244] |
Plasma | Chemical | Gas plasma (exposure to low-power plasma gases such as water vapor, ammonia, oxygen/argon, and nitrogen) introduces several functional groups to the surface. Plasma immersion ion implantation accelerates and deposits ions onto the surface, creating a thin film of various particles | Gas plasma treatment accelerates mesenchymal cell proliferation for bone formation. Nitrogen-plasma-treatment increase torque removal values and bone formation, comparable to titanium implants; Fluorinated PEEK created through plasma immersion ion implantation improves cell adhesion, cell spreading, proliferation, and alkaline phosphatase activity compared to pure PEEK; Fluorinated PEEK shows bacteriostatic properties against P. gingivalis | [242,245,246,247] |
Coating Techniques | Chemical | Spin coating (thin layer of nanohydroxyapatite created by spinning implant at high speed and then heat-treating). Electron beam deposition (thin titanium coating deposited) | Spin-coating with nanohydroxyapatite leads to higher removal torque value; Electron beam deposition of thin titanium coating increases cellular adhesion, significantly greater bone-to-implant contact than uncoated PEEK implants | [242,248,249,250] |
Antibacterial Modification | Chemical | Silver-nanoparticles | Increases success rate and reduces peri-implantitis; Titanium pentoxide (Ti3O5) combined with 12.5% silver applied on PEEK surfaces effective against S. aureus | [251,252] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kligman, S.; Ren, Z.; Chung, C.-H.; Perillo, M.A.; Chang, Y.-C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. https://doi.org/10.3390/jcm10081641
Kligman S, Ren Z, Chung C-H, Perillo MA, Chang Y-C, Koo H, Zheng Z, Li C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. Journal of Clinical Medicine. 2021; 10(8):1641. https://doi.org/10.3390/jcm10081641
Chicago/Turabian StyleKligman, Stefanie, Zhi Ren, Chun-Hsi Chung, Michael Angelo Perillo, Yu-Cheng Chang, Hyun Koo, Zhong Zheng, and Chenshuang Li. 2021. "The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation" Journal of Clinical Medicine 10, no. 8: 1641. https://doi.org/10.3390/jcm10081641
APA StyleKligman, S., Ren, Z., Chung, C.-H., Perillo, M. A., Chang, Y.-C., Koo, H., Zheng, Z., & Li, C. (2021). The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. Journal of Clinical Medicine, 10(8), 1641. https://doi.org/10.3390/jcm10081641