Use of ECMO for Cardiogenic Shock in Pediatric Population
Abstract
:1. Introduction
2. Historical Perspective
3. Principles in ECMO Management
4. Medical Indications for VA ECMO
4.1. Myocarditis
4.2. Cardiomyopathy
4.3. Intractable Arrhythmia
4.4. Sepsis
4.5. SARS-CoV-2
4.6. Extracorporeal Cardiopulmonary Resuscitation
5. Surgical Indications for VA ECMO
5.1. Peri-Operative Use of VA ECMO
5.2. Pre-Operative Indications
- Failure to separate from cardiopulmonary bypass in the operating room.
- Low cardiac output state in the immediate post-operative period secondary to ventricular dysfunction, pulmonary hypertension or intractable arrhythmias recalcitrant to medical therapies.
- Cardiopulmonary arrest occurring in the acute post-operative period.
5.3. Trends and Outcomes
5.4. Residual Lesions
5.5. Surgical Indications for VA ECMO in the Single Ventricle Pathway
Stage 1 Palliation
5.6. Bidirectional Superior Cavopulmonary Anastomoses—Glenn Surgery
5.7. Total Cavopulmonary Anastomoses—Fontan Surgery
5.8. Hybrid Palliation
5.9. Surgical Indications for VA ECMO after Heart Transplantation
5.10. Special Considerations
6. Conclusions
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Jaquiss, R.D.B.; Bronicki, R.A. An Overview of Mechanical Circulatory Support in Children. Pediatr. Crit. Care Med. 2013, 14, S3–S6. [Google Scholar] [CrossRef]
- Baffes, T.G.; Fridman, J.L.; Bicoff, J.P.; Whitehill, J.L. Extracorporeal Circulation for Support of Palliative Cardiac Surgery in Infants. Ann. Thorac. Surg. 1970, 10, 354–363. [Google Scholar] [CrossRef]
- Soeter, J.R.; Mamiya, R.T.; Sprague, A.Y.; McNamara, J.J. Prolonged extracorporeal oxygenation for cardiorespiratory failure after tetrology correction. J. Thorac. Cardiovasc. Surg. 1973, 66, 214–218. [Google Scholar] [CrossRef]
- ECMO Registry of the Extracorporeal Life Support Organization, Ann Arbor, Michigan, July 2020. Available online: https://www.elso.org/ (accessed on 3 December 2020).
- Almond, C.S.; Singh, T.P.; Gauvreau, K.; Piercey, G.E.; Fynn-Thompson, F.; Rycus, P.T.; Bartlett, R.H.; Thiagarajan, R.R. Extracorporeal Membrane Oxygenation for Bridge to Heart Transplantation Among Children in the United States: Analysis of data from the Organ Procurement and Transplant Network and Extracorporeal Life Support Organization Registry. Circulation 2011, 123, 2975–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, M.; Thiagarajan, R.R.; Barrett, C.S.; Salvin, J.W.; Cooper, D.S.; Rycus, P.T.; Teele, S.A. Extracorporeal membrane oxygenation in patients undergoing superior cavopulmonary anastomosis. J. Thorac. Cardiovasc. Surg. 2014, 148, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.E.; Marino, B.S.; Chaouki, A.S.; Andrei, A.-C.; Gossett, J.G. Pediatric Acute Myocarditis: Predicting Hemodynamic Compromise at Presentation to Health Care. Hosp. Pediatr. 2019, 9, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.; Opgen-Rhein, B.; Boehne, M.; Weigelt, A.; Wagner, R.; Müller, G.; Zu Knyphausen, E.; Fischer, M.; Papakostas, K.; Wiegand, G.; et al. Severe heart failure and the need for mechanical circulatory support and heart transplantation in pediatric patients with myocarditis: Results from the prospective multicenter registry “MYKKE.”. Pediatr. Transplant. 2019, 23, e13548. [Google Scholar] [CrossRef]
- Dyamenahalli, U.; Tuzcu, V.; Fontenot, E.; Papagiannis, J.; Jaquiss, R.D.B.; Bhutta, A.; Morrow, W.R.; Erickson, C.C.; Imamura, M.; Prodhan, P. Extracorporeal membrane oxygenation support for intractable primary arrhythmias and complete congenital heart block in newborns and infants: Short-term and medium-term outcomes. Pediatr. Crit. Care Med. 2012, 13, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Robb, K.; Badheka, A.; Wang, T.; Rampa, S.; Allareddy, V.; Allareddy, V. Use of extracorporeal membrane oxygenation and associated outcomes in children hospitalized for sepsis in the United States: A large population-based study. PLoS ONE 2019, 14, e0215730. [Google Scholar] [CrossRef]
- Davis, A.L.; Carcillo, J.A.; Aneja, R.K.; Deymann, A.J.; Lin, J.C.; Nguyen, T.C.; Okhuysen-Cawley, R.S.; Relvas, M.S.; Rozenfeld, R.A.; Skippen, P.W.; et al. The American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock: Executive Summary. Pediatr. Crit. Care Med. 2017, 18, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Laurence, C.; Haini, M.; Thiruchelvam, T.; Derrick, G.; Burch, M.; Yates, R.W.M.; Simmonds, J. Endomyocardial Biopsy in a Pediatric Patient with Cardiac Manifestations of COVID-19. Circ. Heart Fail. 2020, 13, e007384. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, R.M.; Antiel, R.M.; Najaf, T.; Said, A.S.; Warner, B.W.; Raval, M.V.; Shakhsheer, B. Extracorporeal Membrane Oxygenation for Pediatric Patients with Coronavirus Disease 2019–Related Illness*. Pediatr. Crit. Care Med. 2020, 21, 893–897. [Google Scholar] [CrossRef]
- Topjian, A.; Raymond, T.T.; Atkins, D.; Chan, M.; Duff, J.P.; Joyner, B.L., Jr.; Lasa, J.J.; Lavonas, E.J.; Levy, A.; Mahgoub, M. Part 4: Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S469–S523. [Google Scholar] [CrossRef] [PubMed]
- Sperotto, F.; Cogo, P.; Amigoni, A.; Pettenazzo, A.; Thiagarajan, R.R.; Polito, A. Extracorporeal Membrane Oxygenation Support for Failure to Wean from Cardiopulmonary Bypass After Pediatric Cardiac Surgery: Analysis of Extracorporeal Life Support Organization Registry Data. Crit. Care Explor. 2020, 2, e0183. [Google Scholar] [CrossRef]
- Hoskote, A.; Carter, C.; Rees, P.; Elliott, M.; Burch, M.; Brown, K. Acute right ventricular failure after pediatric cardiac transplant: Predictors and long-term outcome in current era of transplantation medicine. J. Thorac. Cardiovasc. Surg. 2010, 139, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Trinkaus, K.; Huddleston, C.B.; Mendeloff, E.N.; Spray, T.L.; Canter, C.E. Risk factors for primary graft failure after pediatric cardiac transplantation: Importance of recipient and donor characteristics. J. Heart Lung Transplant. 2004, 23, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.A.; Gómez, D.; Joy, B.F.; Fernandez, R.P.; Cheatham, J.P.; Galantowicz, M.; Cua, C.L. ECMO: Incidence and Outcomes of Patients Undergoing the Hybrid Procedure. Congenit. Heart Dis. 2016, 11, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Rito, M.L.; Lee, K.-J.; Haller, C.; Guerguerian, A.M.; Ben Sivarajan, V.; Honjo, O. Impacts of early cardiac catheterization for children with congenital heart disease supported by extracorporeal membrane oxygenation. Catheter. Cardiovasc. Interv. 2016, 89, 898–905. [Google Scholar] [CrossRef]
- Alsoufi, B.; Awan, A.; Manlhiot, C.; Al-Halees, Z.; Al-Ahmadi, M.; McCrindle, B.W.; Alwadai, A. Does Single Ventricle Physiology Affect Survival of Children Requiring Extracorporeal Membrane Oxygenation Support Following Cardiac Surgery? World J. Pediatr. Congenit. Heart Surg. 2014, 5, 7–15. [Google Scholar] [CrossRef]
- Debrunner, M.G.; Porayette, P.; Breinholt, J.P.; Turrentine, M.W.; Cordes, T.M. Midterm Survival of Infants Requiring Postoperative Extracorporeal Membrane Oxygenation After Norwood Palliation. Pediatr. Cardiol. 2012, 34, 570–575. [Google Scholar] [CrossRef]
- Mascio, C.E.; Austin, E.H.; Jacobs, J.P.; Jacobs, M.L.; Wallace, A.S.; He, X.; Pasquali, S.K. Perioperative mechanical circulatory support in children: An analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J. Thorac. Cardiovasc. Surg. 2014, 147, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Stephens, E.H.; Shakoor, A.; Jacobs, S.E.; Okochi, S.; Zenilman, A.L.; Middlesworth, W.; Kalfa, D.; Chai, P.J.; Chaves, D.V.; Bacha, E.; et al. Characterization of Extracorporeal Membrane Oxygenation Support for Single Ventricle Patients. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 183–191. [Google Scholar] [CrossRef]
- Bhat, P.; Hirsch, J.C.; Gelehrter, S.; Cooley, E.; Donohue, J.; King, K.; Gajarski, R.J. Outcomes of Infants Weighing Three Kilograms or Less Requiring Extracorporeal Membrane Oxygenation After Cardiac Surgery. Ann. Thorac. Surg. 2013, 95, 656–661. [Google Scholar] [CrossRef]
- Allan, C.K.; Thiagarajan, R.R.; Del Nido, P.J.; Roth, S.J.; Almodovar, M.C.; Laussen, P.C. Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J. Thorac. Cardiovasc. Surg. 2007, 133, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Kolovos, N.S.; Schuerer, D.J.E.; Moler, F.W.; Bratton, S.L.; Swaniker, F.; Bartlett, R.H.; Custer, J.R.; Annich, G. Extracorporal life support for pulmonary hemorrhage in children: A case series. Crit. Care Med. 2002, 30, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Walters, H.L., 3rd; Hakimi, M.; Rice, M.D.; Lyons, J.M.; Whittlesey, G.C.; Klein, M.D. Pediatric cardiac surgical ECMO: Multivariate analysis of risk factors for hospital death. Ann. Thorac. Surg. 1995, 60, 329–337. [Google Scholar] [CrossRef]
- Sasaki, T.; Asou, T.; Takeda, Y.; Onakatomi, Y.; Tominaga, T.; Yamamoto, Y. Extracorporeal Life Support After Cardiac Surgery in Children: Outcomes from a Single Institution. Artif. Organs 2013, 38, 34–40. [Google Scholar] [CrossRef]
- Kumar, T.S.; Zurakowski, D.; Dalton, H.; Talwar, S.; Allard-Picou, A.; Duebener, L.F.; Sinha, P.; Moulick, A. Extracorporeal membrane oxygenation in postcardiotomy patients: Factors influencing outcome. J. Thorac. Cardiovasc. Surg. 2010, 140, 330–336.e2. [Google Scholar] [CrossRef] [Green Version]
- Merrill, E.D.; Schoeneberg, L.; Sandesara, P.; Molitor-Kirsch, E.; O’Brien, J.; Dai, H.; Raghuveer, G. Outcomes after prolonged extracorporeal membrane oxygenation support in children with cardiac disease—Extracorporeal Life Support Organization registry study. J. Thorac. Cardiovasc. Surg. 2014, 148, 582–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C.; Ittenbach, R.F.; Godinez, R.I.; Portnoy, J.D.; Tabbutt, S.; Hanna, B.D.; Hoffman, T.M.; Gaynor, J.W.; Connelly, J.T.; Helfaer, M.A.; et al. Risk factors for mortality in 137 pediatric cardiac intensive care unit patients managed with extracorporeal membrane oxygenation*. Crit. Care Med. 2004, 32, 1061–1069. [Google Scholar] [CrossRef]
- Joffe, A.R.; Lequier, L.; Robertson, C.M. Pediatric Outcomes After Extracorporeal Membrane Oxygenation for Cardiac Disease and for Cardiac Arrest. ASAIO J. 2012, 58, 297–310. [Google Scholar] [CrossRef]
- Butt, W.W.; Chiletti, R. ECMO for Neonatal Sepsis in 2019. Front. Pediatr. 2020, 8. [Google Scholar] [CrossRef]
- Teele, S.A.; Allan, C.K.; Laussen, P.C.; Newburger, J.W.; Gauvreau, K.; Thiagarajan, R.R. Management and Outcomes in Pediatric Patients Presenting with Acute Fulminant Myocarditis. J. Pediatr. 2011, 158, 638–643. [Google Scholar] [CrossRef]
- Wu, H.-P.; Lin, M.-J.; Yang, W.-C.; Wu, K.-H.; Chen, C.-Y. Predictors of Extracorporeal Membrane Oxygenation Support for Children with Acute Myocarditis. BioMed Res. Int. 2017, 2017, 2510695. [Google Scholar] [CrossRef]
- Butto, A.; Rossano, J.W.; Nandi, D.; Ravishankar, C.; Lin, K.Y.; O’Connor, M.J.; Shaddy, R.E.; Shamszad, P. Elevated Troponin in the First 72 h of Hospitalization for Pediatric Viral Myocarditis is Associated with ECMO: An Analysis of the PHIS+ Database. Pediatr. Cardiol. 2018, 39, 1139–1143. [Google Scholar] [CrossRef]
- Kociol, R.D.; Cooper, L.T.; Fang, J.C.; Moslehi, J.J.; Pang, P.S.; Sabe, M.A.; Shah, R.V.; Sims, D.B.; Thiene, G.; Vardeny, O.; et al. Recognition and Initial Management of Fulminant Myocarditis. Circulation 2020, 141, e69–e92. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.; Thiagarajan, R.R.; Rycus, P.T.; Rajagopal, S.K. Survival of neonates with enteroviral myocarditis requiring extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 2011, 12, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Xia, B.; Zhu, J.; Li, B.; Huang, W. Clinical Outcomes in Pediatric Patients Hospitalized with Fulminant Myocarditis Requiring Extracorporeal Membrane Oxygenation: A Meta-analysis. Pediatr. Cardiol. 2016, 38, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.L.; Rossano, J.W.; VanderPluym, C.; Lorts, A.; Cantor, R.; Louis, J.D.S.; Koeh, D.; Sutcliffe, D.L.; Adachi, I.; Kirklin, J.K.; et al. Third Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report: Preimplant Characteristics and Outcomes. Ann. Thorac. Surg. 2019, 107, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Parekh, D.; Jeewa, A.; Tume, S.C.; Dreyer, W.J.; Pignatelli, R.; Horne, D.; Justino, H.; Qureshi, A.M. Percutaneous Mechanical Circulatory Support Using Impella Devices for Decompensated Cardiogenic Shock. ASAIO J. 2017, 64, 98–104. [Google Scholar] [CrossRef]
- Dimas, V.V.; Morray, B.H.; Kim, D.W.; Almond, C.S.; Shahanavaz, S.; Tume, S.C.; Peng, L.F.; McElhinney, D.B.; Justino, H. A multicenter study of the impella device for mechanical support of the systemic circulation in pediatric and adolescent patients. Catheter Cardiovasc. Interv. 2017, 90, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.R.; Russo, M.J.; Mital, S.; Martens, T.M.; Sorabella, R.S.; Hong, K.N.; Gelijns, A.C.; Moskowitz, A.J.; Quaegebeur, J.M.; Mosca, R.S.; et al. Predicting survival among high-risk pediatric cardiac transplant recipients: An analysis of the United Network for Organ Sharing database. J. Thorac. Cardiovasc. Surg. 2008, 135, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehman, B.; Stafford, K.A.; Bittle, G.J.; Kon, Z.N.; Evans, C.F.; Rajagopal, K.; Pietris, N.; Kaushal, S.; Griffith, B.P. Modern Outcomes of Mechanical Circulatory Support as a Bridge to Pediatric Heart Transplantation. Ann. Thorac. Surg. 2016, 101, 2321–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLaren, G.; Butt, W.; Best, D.; Donath, S. Central extracorporeal membrane oxygenation for refractory pediatric septic shock. Pediatr. Crit. Care Med. 2011, 12, 133–136. [Google Scholar] [CrossRef]
- Tavazzi, G.; Pellegrini, C.; Maurelli, M.; Belliato, M.; Sciutti, F.; Bottazzi, A.; Sepe, P.A.; Resasco, T.; Camporotondo, R.; Bruno, R.; et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020, 22, 911–915. [Google Scholar] [CrossRef] [Green Version]
- Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; et al. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic. Circulation 2020, 142, 429–436. [Google Scholar] [CrossRef]
- Di Nardo, M.; Hoskote, A.; Thiruchelvam, T.; Lillie, J.; Horan, M.; Hofheinz, S.B.; Dupic, L.; Gimeno, R.; De Piero, M.E.; Coco, V.L.; et al. Extracorporeal membrane oxygenation in children with COVID-19: Preliminary report from the collaborative EuroELSO prospective survey. ASAIO J. 2020, 67, 121–124. [Google Scholar] [CrossRef]
- Aronoff, S.C.; Hall, A.; Del Vecchio, M.T. The Natural History of Severe Acute Respiratory Syndrome Coronavirus 2–Related Multisystem Inflammatory Syndrome in Children: A Systematic Review. J. Pediatr. Infect. Dis. Soc. 2020, 9, 746–751. [Google Scholar] [CrossRef]
- Lasa, J.J.; Rogers, R.S.; Localio, R.; Shults, J.; Raymond, T.T.; Gaies, M.G.; Thiagarajan, R.R.; Laussen, P.C.; Kilbaugh, T.J.; Berg, R.A.; et al. Extracorporeal Cardiopulmonary Resuscitation (E-CPR) During Pediatric In-Hospital Cardiopulmonary Arrest Is Associated with Improved Survival to Discharge: A Report from the American Heart Association’s Get with The Guidelines-Resuscitation (GWTG-R) Registry. Circulation 2016, 133, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Esangbedo, I.D.; Brunetti, M.A.; Campbell, F.M.; Lasa, J.J. Pediatric Extracorporeal Cardiopulmonary Resuscitation. Pediatr. Crit. Care Med. 2020, 21, e934–e943. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, M.J.; Geri, G.; Wiberg, S.; Guerguerian, A.-M.; Donnino, M.W.; Nolan, J.P.; Deakin, C.D.; Andersen, L.W. Extracorporeal cardiopulmonary resuscitation for cardiac arrest: A systematic review. Resuscitation 2018, 131, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bembea, M.M.; Ng, D.K.; Rizkalla, N.; Rycus, P.; Lasa, J.J.; Dalton, H.; Topjian, A.A.; Thiagarajan, R.R.; Nadkarni, V.M.; Hunt, E.A. Outcomes After Extracorporeal Cardiopulmonary Resuscitation of Pediatric In-Hospital Cardiac Arrest: A Report from the Get with the Guidelines-Resuscitation and the Extracorporeal Life Support Organization Registries. Crit. Care Med. 2019, 47, e278–e285. [Google Scholar] [CrossRef] [PubMed]
- Jolley, M.; Yarlagadda, V.V.; Rajagopal, S.K.; Almodovar, M.C.; Rycus, P.T.; Thiagarajan, R.R. Extracorporeal Membrane Oxygenation–Supported Cardiopulmonary Resuscitation Following Stage 1 Palliation for Hypoplastic Left Heart Syndrome*. Pediatr. Crit. Care Med. 2014, 15, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.C.; Wernovsky, G.; Kulik, T.J.; Jonas, R.A.; Wessel, D.L. Management of the neonate with transposition of the great arteries and persistent pulmonary hypertension. Am. J. Cardiol. 1991, 68, 1253–1255. [Google Scholar] [CrossRef]
- del Nido, P.J.; Dalton, H.J.; Thompson, A.E.; Siewers, R.D. Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circulation 1992, 86 (Suppl. S5), II300–II304. [Google Scholar] [PubMed]
- Lorusso, R.; Raffa, G.M.; Alenizy, K.; Sluijpers, N.; Makhoul, M.; Brodie, D.; McMullan, M.; Wang, I.-W.; Meani, P.; MacLaren, G.; et al. Structured review of post-cardiotomy extracorporeal membrane oxygenation: Part 1—Adult patients. J. Heart Lung Transplant. 2019, 38, 1125–1143. [Google Scholar] [CrossRef]
- Polito, A.; Barrett, C.S.; Rycus, P.T.; Favia, I.; Cogo, P.E.; Thiagarajan, R.R. Neurologic Injury in Neonates with Congenital Heart Disease During Extracorporeal Membrane Oxygenation: An analysis of extracorporeal life support organization registry data. ASAIO J. 2015, 61, 43–48. [Google Scholar] [CrossRef]
- Ford, M.A.; Gauvreau, K.; McMullan, D.M.; Almodovar, M.C.; Cooper, D.S.; Rycus, P.T.; Thiagarajan, R. Factors Associated with Mortality in Neonates Requiring Extracorporeal Membrane Oxygenation for Cardiac Indications: Analysis of the Extracorporeal Life Support Organization Registry Data. Pediatr. Crit. Care Med. 2016, 17, 860–870. [Google Scholar] [CrossRef]
- Polimenakos, A.C.; Rizzo, V.; El-Zein, C.F.; Ilbawi, M.N. Post-cardiotomy Rescue Extracorporeal Cardiopulmonary Resuscitation in Neonates with Single Ventricle After Intractable Cardiac Arrest: Attrition After Hospital Discharge and Predictors of Outcome. Pediatr. Cardiol. 2016, 38, 314–323. [Google Scholar] [CrossRef]
- Agarwal, H.S.; Hardison, D.C.; Saville, B.R.; Donahue, B.S.; Lamb, F.S.; Bichell, D.P.; Harris, Z.L. Residual lesions in postoperative pediatric cardiac surgery patients receiving extracorporeal membrane oxygenation support. J. Thorac. Cardiovasc. Surg. 2014, 147, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Xie, A.; Forrest, P.; Loforte, A. Left ventricular decompression in veno-arterial extracorporeal membrane oxygenation. Ann. Cardiothorac. Surg. 2019, 8, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Abraham, B.P.; Gilliam, E.; Kim, D.W.; Wolf, M.J.; Vincent, R.N.; Petit, C.J. Early catheterization after initiation of extracorporeal membrane oxygenation support in children is associated with improved survival. Catheter. Cardiovasc. Interv. 2016, 88, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Tabbutt, S.; Ghanayem, N.; Ravishankar, C.; Sleeper, L.A.; Cooper, D.S.; Frank, D.U.; Lu, M.; Pizarro, C.; Frommelt, P.; Goldberg, C.S.; et al. Risk factors for hospital morbidity and mortality after the Norwood procedure: A report from the Pediatric Heart Network Single Ventricle Reconstruction trial. J. Thorac. Cardiovasc. Surg. 2012, 144, 882–895. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, E.D.; Gauvreau, K.; Scheurer, M.A.; Rycus, P.T.; Salvin, J.W.; Almodovar, M.C.; Fynn-Thompson, F.; Thiagarajan, R.R. Extracorporeal membrane oxygenation after stage 1 palliation for hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 2012, 144, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Hoskote, A.; Bohn, D.; Gruenwald, C.; Edgell, D.; Cai, S.; Adatia, I.; Van Arsdell, G. Extracorporeal life support after staged palliation of a functional single ventricle: Subsequent morbidity and survival. J. Thorac. Cardiovasc. Surg. 2006, 131, 1114–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, K.L.; Roth, S.J.; Thiagarajan, R.R.; Almodovar, M.C.; Del Nido, P.J.; Laussen, P.C. Extracorporeal membrane oxygenation support of the Fontan and bidirectional Glenn circulations. Ann. Thorac. Surg. 2004, 77, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Rood, K.L.; Teele, S.A.; Barrett, C.S.; Salvin, J.W.; Rycus, P.T.; Fynn-Thompson, F.; Laussen, P.C.; Thiagarajan, R.R. Extracorporeal membrane oxygenation support after the Fontan operation. J. Thorac. Cardiovasc. Surg. 2011, 142, 504–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schranz, D.; Bauer, A.; Reich, B.; Steinbrenner, B.; Recla, S.; Schmidt, D.; Apitz, C.; Thul, J.; Valeske, K.; Bauer, J.; et al. Fifteen-year Single Center Experience with the “Giessen Hybrid” Approach for Hypoplastic Left Heart and Variants: Current Strategies and Outcomes. Pediatr. Cardiol. 2015, 36, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, J.; Dominguez, T.; Longman, J.; Shastri, N.; O’Callaghan, M.; Hoskote, A.; Fenton, M.; Burch, M.; Tsang, V.; Brown, K. Predictors and Outcome of Extracorporeal Life Support After Pediatric Heart Transplantation. Ann. Thorac. Surg. 2015, 99, 2166–2172. [Google Scholar] [CrossRef]
- Tissot, C.; Buckvold, S.; Phelps, C.M.; Ivy, D.D.; Campbell, D.N.; Mitchell, M.B.; Da Cruz, S.O.; Pietra, B.A.; Miyamoto, S.D. Outcome of Extracorporeal Membrane Oxygenation for Early Primary Graft Failure After Pediatric Heart Transplantation. J. Am. Coll. Cardiol. 2009, 54, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Godown, J.; Bearl, D.W.; Thurm, C.; Hall, M.; Feingold, B.; Soslow, J.H.; Mettler, B.A.; Smith, A.H.; Profita, E.L.; Singh, T.P.; et al. Extracorporeal membrane oxygenation use in the first 24 hours following pediatric heart transplantation: Incidence, risk factors, and outcomes. Pediatr. Transplant. 2019, 23, e13414. [Google Scholar] [CrossRef] [PubMed]
- Hacking, D.F.; Best, D.; D’Udekem, Y.; Brizard, C.P.; Konstantinov, I.E.; Millar, J.; Butt, W. Elective Decompression of the Left Ventricle in Pediatric Patients May Reduce the Duration of Venoarterial Extracorporeal Membrane Oxygenation. Artif. Organs 2015, 39, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, L.; Flörchinger, B.; Schopka, S.; Schmid, C.; Philipp, A.; Lunz, D.; Müller, T.; Camboni, D. Cardiac Decompression on Extracorporeal Life Support. ASAIO J. 2013, 59, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Zampi, J.D.; Alghanem, F.; Yu, S.; Callahan, R.; Curzon, C.L.; Delaney, J.W.; Gray, R.G.; Herbert, C.E.; Leahy, R.A.; Lowery, R.; et al. Relationship Between Time to Left Atrial Decompression and Outcomes in Patients Receiving Venoarterial Extracorporeal Membrane Oxygenation Support: A Multicenter Pediatric Interventional Cardiology Early-Career Society Study. Pediatr. Crit. Care Med. 2019, 20, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.L.S.; Adachi, I.; Peng, D.M.; Sinha, P.; Lorts, A.; Fields, K.; Conway, J.; St.-Louis, J.D.S.T.; Cantor, R.; Koehl, D.; et al. Fourth Annual Pediatric Interagency Registry for Mechanical Circultory Support (Pedimacs). Ann. Thorac. Surg. 2020, 110, 1819–1831. [Google Scholar] [CrossRef]
- Trivedi, J.; Alsoufi, B.; Slaughter, M.; Deshpande, S.; Das, B.B. Outcomes of ECMO versus VAD in Children with Congenital Heart Disease as a Bridge to Transplant in recent Era: Analysis from United Network for Organ Sharing Database. J. Heart Lung Transplant. 2021, 40, S88–S89. [Google Scholar] [CrossRef]
- Byrnes, J.; Villa, C.; Lorts, A. Ventricular Assist Devices in Pediatric Cardiac Intensive Care. Pediatr Crit Care Med. 2016, 8 (Suppl. 1), S160–S170. [Google Scholar] [CrossRef]
Indications | Survival to Hospital Discharge after ECMO | Notes | |
---|---|---|---|
Medical | Myocarditis | 21.4–83.3% survival to hospital discharge [6,7] | Incidence 36% [6] |
Cardiomyopathy | 61% survival to hospital discharge [5] | Incidence 28% in patients with cardiomyopathy and listed for transplant [8] | |
Intractable arrhythmia | 100% survival to hospital discharge in single center study (n = 9) [9] | Often associated with cardiomyopathies or myocarditis | |
Sepsis | 59% survival to hospital discharge [10] | Central cannulation may be necessary to maximize support | |
Novel reasons | 50% survival to hospital discharge (n = 6) [11] | SARS-CoV-2 is a novel indication for both primary respiratory disease and MIS-C [11] | |
Cardiopulmonary arrest | 37–41% survival to hospital discharge [12,13] | 59% of ECPR was after cardiac surgery [13] | |
Surgical | Peri-operative | 49–58% survival to hospital discharge [14]; Failure to separate from cardio-pulmonary bypass: survival 45% to hospital discharge [15] | Incidence 2.4% [14] |
Single ventricle palliation | Please see Table 2 | ||
Heart transplantation | 54–87.4% survival to hospital discharge [16,17] | Overall incidence 7.9–9%; Primary graft failure is the most common indication [16,17] |
Single Ventricle Palliation Stage | Cannulation Strategy | Survival to Hospital Discharge | Notes |
---|---|---|---|
Hybrid | Internal jugular Carotid | ECMO cannulation in 2/149 patients with hybrid procedure, both died [18] | Early conversion to central or proceed to single ventricle palliation if possible |
Norwood | Central | Incidence of ECMO 13–20%; survival 29–81% with highest survival in BT * shunt occlusion [19,20,21] | May require high flows for parallel circulation |
Bidirectional Glenn | Internal jugular Carotid | Incidence 0.8% [22]; survival 41% [6] | Early conversion to central |
Fontan | Internal jugular Femoral vein Carotid | Incidence 4% [23] survival 35% | Early conversion to central; alternative cannulation strategy includes veno-arterial-venous strategy |
Predictors of Mortality |
---|
Prematurity & younger age [24,27,28,55,59] |
Low bodyweight (<3 kg) [26,54,55] |
Single-ventricle physiology [26,54,59,61] |
Pre-ECMO high inotrope score [26] |
Pre-ECMO mechanical ventilation [27,54] |
Pre ECMO acidosis [25,54,55] |
Failure to clear lactate on ECMO [25,29,62] |
Renal failure & fluid overload on ECMO initiation [25,27,29] |
Bleeding during ECMO and need for PRBC transfusion [25] |
Duration of ECMO support > 7 days [25,30,55] |
Summary of Left Ventricular Decompression Techniques |
---|
Surgical |
Right upper pulmonary vein, with tip terminating in LA or LV |
Pulmonary artery |
LA appendage |
LV apex |
Percutaneous |
Transseptal venting |
Transseptal needle puncture |
Balloon septostomy |
Blade septostomy |
Transseptal cannulation |
Transpulmonary venting |
Ventricular assist devices |
Impella |
Intra-aortic balloon pump |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhaskar, P.; Davila, S.; Hoskote, A.; Thiagarajan, R. Use of ECMO for Cardiogenic Shock in Pediatric Population. J. Clin. Med. 2021, 10, 1573. https://doi.org/10.3390/jcm10081573
Bhaskar P, Davila S, Hoskote A, Thiagarajan R. Use of ECMO for Cardiogenic Shock in Pediatric Population. Journal of Clinical Medicine. 2021; 10(8):1573. https://doi.org/10.3390/jcm10081573
Chicago/Turabian StyleBhaskar, Priya, Samuel Davila, Aparna Hoskote, and Ravi Thiagarajan. 2021. "Use of ECMO for Cardiogenic Shock in Pediatric Population" Journal of Clinical Medicine 10, no. 8: 1573. https://doi.org/10.3390/jcm10081573
APA StyleBhaskar, P., Davila, S., Hoskote, A., & Thiagarajan, R. (2021). Use of ECMO for Cardiogenic Shock in Pediatric Population. Journal of Clinical Medicine, 10(8), 1573. https://doi.org/10.3390/jcm10081573