ESA, Iron Therapy and New Drugs: Are There New Perspectives in the Treatment of Anaemia?
Abstract
:1. Introduction
2. Current Evidence for the Use of Erythropoiesis Stimulating Agents
3. The Benefits and Challenges of Iron Therapy
4. PHD Inhibitors for the Treatment of Anemia
Study | Design | Country | Patients | Drug | Dose | Comparator | Main Effect | Other Effects | Follow-Up |
---|---|---|---|---|---|---|---|---|---|
Chen et al. [63] | Double-blind then open label | China | 154, ND | Roxadustat | 70 mg < 60 kg body weight or 100 mg for ≥60 kg body weight 3 times a week | Placebo | Mean Hb change from baseline of 1.9 ± 1.2 g/dL with roxadustat and 0.4 ± 0.8 g/dL with placebo | Decrease of serum hepcidin and serum cholesterol | 8 + 18 weeks |
Chen et al. [64] | Open-label, active-controlled | China | 305, dialysis | Roxadustat | 100 mg < 60 kg body weight or 120 mg for ≥60 body weight 3 times a week | Epoetin alfa | Non-inferiority met: mean ΔHb change from baseline of 0.7 ± 1.1 g/dL with roxadustat and 0.5 ± 1.0 g/dL with epoetin alfa | Decrease of serum hepcidin, lower decrease of TSAT, decrease of serum cholesterol | 26 weeks |
Akizawa et al. [71] | Double-blind, double-dummy | Japan | 303, HD | Roxadustat | 70 mg or 100 mg | Darbepoetin alfa | Non-inferiority met: mean of Hb from baseline was −0.04 g/dL (95% CI, −0.16 to 0.08 g/dL) and −0.03 g/dL (95% CI, −0.14 to 0.09 g/dL) for roxadustat and DA, respectively, with the estimated difference of −0.02 g/dL (95% CI, −0.18 to 0.15 g/dL) | No remarkable changes in the mean hepcidin values in the two treatment groups; the use of oral and IV iron was gen- erally similar during the study. A trend was seen for higher median doses of DA in those with hs-CRP ≥ 3000 mg/L | 24 weeks |
Akizawa et al. [70] | Non-comparative, randomized | Japan | 75 ESA-naïve, dialysis | Roxadustat | 50 or 70 mg thrice a week | None | 73.0% of patients achieving average Hb 10.0–12.0 g/dL | Hepcidin decrease | 24 weeks |
Akizawa et al. [70] | Non-comparative, randomized | Japan | 164 ESA-converted, dialysis | Roxadustat | 70 or 100 mg thrice a week | None | 79.1% of patients achieving average Hb 10.0–12.0 g/dL | Hepcidin decrease | 52 weeks |
Akizawa et al. [72] | Non-comparative, randomized | Japan | 100, ND-CKD | Roxadustat | 50 or 70 mg three times weekly | None | 97.0% (CI 91.4, 99.4) achieving Hb ≥ 10.0 g/dL and 94.9% (CI 88.6, 98.3) achieving Hb ≥ 10.5 g/ dL | Hepcidin decrease | 24 weeks |
Akizawa et al. [73] | Randomized, double-blind, active-control | Japan | 271, HD | Daprodustat | 4 mg/day | Darbepoetin alfa | Non inferiority; mean Hb during weeks 40–52 within the target range in both groups (10.9 g/dL [95% CI, 10.8 to 11.0] for daprodustat, and 10.8 g/dL [95% CI, 10.7 to 11.0] for darbepoetin alfa. | Higher hepcidin decrease with daprodustat Broader range of darbepoetin alfa dose in comparison to daprodustat according to ERI categories | 52 weeks |
Nangaku et al. [74] | Single-arm | Japan | 42, PD | Vadadustat | 300 mg/day | None | Mean of average Hb at weeks 20 and 24 of 11.35 g/dL (within the target range) | NA | 24 weeks |
5. New Drugs Targeting the Hepcidin Pathway
6. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2015 DALYs; HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1603–1658. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 DALYs; HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [Green Version]
- Korzeniewski, S.J.; Pappas, A. Endogenous Erythropoietin. Vitam Horm 2017, 105, 39–56. [Google Scholar] [PubMed]
- Tsuma, Y.; Mori, J.; Ota, T.; Kawabe, Y.; Morimoto, H.; Fukuhara, S.; Kodo, K.; Umemura, A.; Nakajima, H.; Hosoi, H. Erythropoietin and long-acting erythropoiesis stimulating agent ameliorate non-alcoholic fatty liver disease by increasing lipolysis and decreasing lipogenesis via EPOR/STAT pathway. Biochem. Biophys. Res. Commun. 2019, 509, 306–313. [Google Scholar] [CrossRef]
- El-Komy, M.H.; Schmidt, R.L.; Widness, J.A.; Veng-Pedersen, P. Differential pharmacokinetic analysis of in vivo erythropoietin receptor interaction with erythropoietin and continuous erythropoietin receptor activator in sheep. Biopharm. Drug Dispos. 2011, 32, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Pisoni, R.L.; Combe, C.; Bommer, J.; Andreucci, V.E.; Piera, L.; Greenwood, R.; Feldman, H.I.; Port, F.K.; Held, P.J. Anaemia in haemodialysis patients of five European countries: Association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant. 2004, 19, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlagopoulos, P.T.; Tighiouart, H.; Weiner, D.E.; Griffith, J.; Pettitt, D.; Salem, D.N.; Levey, A.S.; Sarnak, M.J. Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: The impact of chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 3403–3410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toft, G.; Heide-Jørgensen, U.; van Haalen, H.; James, G.; Hedman, K.; Birn, H.; Christiansen, C.F.; Thomsen, R.W. Anemia and clinical outcomes in patients with non-dialysis dependent or dialysis dependent severe chronic kidney disease: A Danish population-based study. J. Nephrol. 2020, 33, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Besarab, A.; Bolton, W.K.; Browne, J.K.; Egrie, J.C.; Nissenson, A.R.; Okamoto, D.M.; Schwab, S.J.; Goodkin, D.A. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 1998, 339, 584–590. [Google Scholar] [CrossRef]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef] [Green Version]
- Drüeke, T.B.; Locatelli, F.; Clyne, N.; Eckardt, K.U.; Macdougall, I.C.; Tsakiris, D.; Burger, H.U.; Scherhag, A. CREATE Investigators. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 2006, 355, 2071–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. TREAT Investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, S.C.; Navaneethan, S.D.; Craig, J.C.; Johnson, D.W.; Tonelli, M.; Garg, A.X.; Pellegrini, F.; Ravani, P.; Jardine, M.; Perkovic, V.; et al. Meta-analysis: Erythropoiesis-stimulating agents in patients with chronic kidney disease. Ann. Intern. Med. 2010, 153, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Uno, H.; Lewis, E.F.; Eckardt, K.U.; Lin, J.; Burdmann, E.A.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; Parfrey, P.; et al. Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) Investigators. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 2010, 363, 1146–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczech, L.A.; Barnhart, H.X.; Inrig, J.K.; Reddan, F.N.; Sapp, S.; Califf, R.M. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008, 74, 791–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurray, J.; Parfrey, P.; Adamson, J.W.; Aljama, P.; Berns, J.S.; Bohlius, J.; Finkelstein, F.O.; Fishbane, S.; Ganz, T.; MacDougall, I.C.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int. Suppl. 2012, 2, 279–335. [Google Scholar]
- Locatelli, F.; Bárány, P.; Covic, A.; De Francisco, A.; Del Vecchio, L.; Goldsmith, D.; Hörl, W.; London, G.; Vanholder, R.; Van Biesen, W. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: A European Renal Best Practice position statement. Nephrol. Dial. Transplant. 2013, 28, 1346–1359. [Google Scholar] [CrossRef]
- Palmer, S.C.; Saglimbene, V.; Mavridis, D.; Salanti, G.; Craig, J.C.; Tonelli, M.; Wiebe, N.; Strippoli, G.F. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: A network meta-analysis. Cochrane Database Syst Rev. 2014, 12, CD010590. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hamano, T.; Wada, A.; Masakane, I. Types of Erythropoietin-Stimulating Agents and Mortality among Patients Undergoing Hemodialysis. J. Am. Soc. Nephrol. 2019, 30, 1037–1048. [Google Scholar] [CrossRef]
- Minutolo, R.; Garofalo, C.; Chiodini, P.; Aucella, F.; Del Vecchio, L.; Locatelli, F.; Scaglione, F.; De Nicola, L. Types of erythropoiesis-stimulating agents and risk of end-stage kidney disease and death in patients with non-dialysis chronic kidney disease. Nephrol. Dial. Transplant. 2020. Online Ahead of Print. [Google Scholar] [CrossRef]
- Locatelli, F.; Hannedouche, T.; Fishbane, S.; Morgan, Z.; Oguey, D.; White, W.B. Cardiovascular safety and all-cause mortality of methoxy polyethylene glycol-epoetin beta and other erythropoiesis-stimulating agents in anemia of ckd: A randomized noninferiority trial. Clin. J. Am. Soc. Nephrol. 2019, 14, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Karaboyas, A.; Port, F.K.; Massy, Z.; Locatelli, F.; Cases, A.; Nitta, K.; Liabeuf, S.; Jager, K.J.; Robinson, B.M. Long- Versus Short-Acting Erythropoiesis-Stimulating Agent Type and Mortality. Kidney Int. Rep. 2020, 6, 214–218. [Google Scholar] [CrossRef]
- Brown, D.A.; Perry, J.B.; Allen, M.E.; Sabbah, H.N.; Stauffer, B.L.; Shaikh, S.R.; Cleland, J.G.; Colucci, W.S.; Butler, J.; Voors, A.A. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 2017, 14, 238–250. [Google Scholar] [CrossRef]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- Minutolo, R.; Locatelli, F.; Gallieni, M.; Bonofiglio, R.; Fuiano, G.; Oldrizzi, L.; Conte, G.; De Nicola, L.; Mangione, F.; Esposito, P.; et al. Anaemia management in non-dialysis chronic kidney disease (CKD) patients: A multicenter prospective study in renal clinics. Nephrol. Dial. Transplant. 2013, 28, 3035–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stack, A.G.; Alghali, A.; Li, X.; Ferguson, G.P.; Casserly, L.F.; Cronin, C.J.; Reddan, D.R.; Hussein, W.; Elsayed, M.E. Quality of care and practice patterns in anaemia management at specialist kidney clinics in Ireland: A national study. Clin. Kidney J. 2018, 11, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dmitrieva, O.; de Lusignan, S.; Macdougall, I.C.; Gallagher, H.; Tomson, C.; Harris, K.; Desombre, T.; Goldsmith, D. Association of anaemia in primary care patients with chronic kidney disease: Cross sectional study of quality improvement in chronic kidney disease (QICKD) trial data. BMC Nephrol. 2013, 14, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iimori, S.; Naito, S.; Noda, Y.; Nishida, H.; Kihira, H.; Yui, N.; Okado, T.; Sasaki, S.; Uchida, S.; Rai, T. Anaemia management and mortality risk in newly visiting patients with chronic kidney disease in Japan: The CKD-ROUTE study. Nephrology 2015, 20, 601–608. [Google Scholar] [CrossRef]
- Robinson, B.M.; Larkina, M.; Bieber, B.; Kleophas, W.; Li, Y.; Locatelli, F.; McCullough, K.P.; Nolen, J.G.; Port, F.K.; Pisoni, R.L. Evaluating the effectiveness of IV iron dosing for anemia management in common clinical practice: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). BMC Nephrol. 2017, 18, 330. [Google Scholar] [CrossRef]
- Locatelli, F.; Del Vecchio, L.; De Nicola, L.; Minutolo, R. Are all erythropoiesis-stimulating agents created equal? Nephrol Dial. Transplant. 2020. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Bock, A.H.; Carrera, F.; Eckardt, K.U.; Gaillard, C.; Wyck, D.V.; Meier, Y.; Larroque, S.; Perrin, A.; Roger, S.D.; et al. Erythropoietic response to oral iron in patients with nondialysis-dependent chronic kidney disease in the FIND-CKD trial. Clin. Nephrol. 2017, 88, 301–310. [Google Scholar] [CrossRef] [Green Version]
- O’Lone, E.L.; Hodson, E.M.; Nistor, I.; Bolignano, D.; Webster, A.C.; Craig, J.C. Parenteral versus oral iron therapy for adults and children with chronic kidney disease. Cochrane Database Syst. Rev. 2019, 2, CD007857. [Google Scholar] [CrossRef] [PubMed]
- Shepshelovich, D.; Rozen-Zvi, B.; Avni, T.; Gafter, U.; Gafter-Gvili, A. Intravenous versus oral iron supplementation for the treatment of anemia in CKD: An updated systematic review and meta-analysis. Am. J. Kidney Dis. 2016, 68, 677–690. [Google Scholar] [CrossRef]
- Macdougall, I.C. Intravenous iron therapy in patients with chronic kidney disease: Recent evidence and future directions. Clin. Kidney J. 2017, 10 (Suppl. 1), i16–i24. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Kusek, J.W.; Pappas, M.K. A randomized trial of intravenous and oral iron in chronic kidney disease. Kidney Int. 2015, 88, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Macdougall, I.C.; White, C.; Anker, S.D.; Bhandari, S.; Farrington, K.; Kalra, P.A.; McMurray, J.J.V.; Murray, H.; Tomson, C.R.V.; Wheeler, D.C.; et al. Intravenous Iron in Patients Undergoing Maintenance Hemodialysis. N. Engl. J. Med. 2019, 380, 447–458. [Google Scholar] [CrossRef]
- Kalra, P.A.; Bhandari, S. Safety of intravenous iron use in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2016, 25, 529–535. [Google Scholar] [CrossRef]
- Roger, S.D.; Gaillard, C.A.; Bock, A.H.; Carrera, F.; Eckardt, K.U.; Van Wyck, D.B.; Cronin, M.; Meier, Y.; Larroque, S.; Macdougall, I.C.; et al. Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: An analysis of the 1-year FIND-CKD trial. Nephrol. Dial. Transplant. 2017, 32, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Macdougall, I.C.; Bhandari, S.; White, C.; Anker, S.D.; Farrington, K.; Kalra, P.A.; Mark, P.B.; McMurray, J.J.V.; Reid, C.; Robertson, M.; et al. PIVOTAL Investigators and Committees.Intravenous iron dosing and infection risk in patients on hemodialysis: A prespecified secondary analysis of the PIVOTAL Trial. J. Am. Soc. Nephrol. 2020, 31, 1118–1127. [Google Scholar] [CrossRef] [Green Version]
- Avni, T.; Bieber, A.; Grossman, A.; Green, F.; Leibovici, L.; Gafter-Gvili, A. The safety of intravenous iron preparations: Systematic review and meta-analysis. Mayo Clin. Proc. 2015, 90, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Klip, I.T.; Comin-Colet, J.; Voors, A.A.; Ponikowski, P.; Enjuanes, C.; Banasiak, W.; Lok, D.J.; Rosentryt, P.; Torrens, A.; Polonski, L.; et al. Iron deficiency in chronic heart failure: An international pooled analysis. Am. Heart J. 2013, 165, 575–582. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; von Haehling, S.; Doehner, W.; Banasiak, W.; et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010, 31, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Toblli, J.E.; Lombrana, A.; Duarte, P.; Di Gennaro, F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 2007, 50, 1657–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Veldhuisen, D.J.; Ponikowski, P.; van der Meer, P.; Metra, M.; Böhm, M.; Doletsky, A.; Voors, A.A.; Macdougall, I.C.; Anker, S.D.; Roubert, B.; et al. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation 2017, 136, 1374–1383. [Google Scholar] [CrossRef]
- Okonko, D.O.; Grzeslo, A.; Witkowski, T.; Mandal, A.K.J.; Slater, R.M.; Roughton, R.; Foldes, G.; Thum, T.; Majda, J.; Banasiak, W.; et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: A randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 2008, 51, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Comin-Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. CONFIRM-HF Investigators. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef]
- Santas, E.; Miñana, G.; Cardells, I.; Palau, P.; Llàcer, P.; Fácila, L.; Almenar, L.; López-Lereu, M.P.; Monmeneu, J.V.; Sanchis, J.; et al. Short-term changes in left and right systolic function following ferric carboxymaltose: A substudy of the Myocardial-IRON trial. ESC Heart Fail. 2020. [Google Scholar] [CrossRef]
- Anker, S.D.; Kirwan, B.A.; van Veldhuisen, D.J.; Filippatos, G.; Comin-Colet, J.; Ruschitzka, F.; Lüscher, T.F.; Arutyunov, G.P.; Motro, M.; Mori, C.; et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: An individual patient data meta-analysis. Eur. J. Heart Fail. 2018, 20, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Kirwan, B.A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. AFFIRM-AHF investigators. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet 2020, 396, 1895–1904. [Google Scholar] [CrossRef]
- Ponikowski, P.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACCF/ACC/HFSA focused update on new pharmacological therapy for heart failure: An update of the 2013 ACCF/AHA guidelines for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar]
- Kobak, K.A.; Radwańska, M.; Dzięgała, M.; Kasztura, M.; Josiak, K.; Banasiak, W.; Ponikowski, P.; Jankowska, E.A. Structural and functional abnormalities in iron-depleted heart. Heart Fail. Rev. 2019, 24, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Hoes, M.F.; Grote Beverborg, N.; Kijlstra, J.D.; Kuipers, J.; Swinkels, D.W.; Giepmans, B.N.G.; Rodenburg, R.J.; van Veldhuisen, D.J.; de Boer, R.A.; van der Meer, P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur. J. Heart Fail. 2018, 20, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Melenovsky, V.; Petrak, J.; Mracek, T.; Benes, J.; Borlaug, A.B.; Nuskova, H.; Pluhacek, T.; Spatenka, J.; Kovalcikova, J.; Drahota, Z.; et al. Myocardial iron content and mitochondrial function in human heart failure: A direct tissue analysis. Eur. J. Heart Fail. 2017, 19, 522–530. [Google Scholar] [CrossRef]
- Gamboa, J.L.; Billings, F.T.; Bojanowski, M.T.; Gilliam, L.A.; Yu, C.; Roshanravan, B.; Roberts, L.J.; Himmelfarb, J.; Ikizler, T.A.; Brown, N.J. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol. Rep. 2016, 4, e12780. [Google Scholar] [CrossRef]
- Gamboa, J.L.; Roshanravan, B.; Towse, T.; Keller, C.A.; Falck, A.M.; Yu, C.; Frontera, W.R.; Brown, N.J.; Ikizler, T.A. Skeletal muscle mitochondrial dysfunction is present in patients with CKD before initiation of maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 2020, 15, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [Green Version]
- Gleadle, J.M.; Ebert, B.L.; Firth, J.D.; Ratcliffe, P.J. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am. J. Physiol. 1995, 268, C1362–C1368. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, E.R.; Smith, M.T.; Maroni, B.J.; Zuraw, Q.C.; de Goma, E.M. Clinical trial of vadadustat in patients with anemia secondary to stage 3 or 4 chronic kidney disease. Am. J. Nephrol. 2017, 45, 380–388. [Google Scholar] [CrossRef]
- Haase, V.H.; Chertow, G.M.; Block, G.A.; Pergola, P.E.; de Goma, E.M.; Khawaja, Z.; Sharma, A.; Maroni, B.J.; McCullough, P.A. Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrol. Dial. Transplant. 2019, 34, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Hao, C.; Peng, X.; Lin, H.; Yin, A.; Hao, L.; Tao, Y.; Liang, X.; Liu, Z.; Xing, C.; et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 2019, 381, 1001–1010. [Google Scholar] [CrossRef]
- Chen, N.; Hao, C.; Liu, B.C.; Lin, H.; Wang, C.; Xing, C.; Liang, X.; Jiang, G.; Liu, Z.; Li, X.; et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 2019, 381, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Arai, M.; Koretomo, R.; Maeda, K.; Miyazawa, Y.; Hirakata, H. Enarodustat, conversion and maintenance therapy for anemia in hemodialysis patients: A randomized, placebo-controlled phase 2b trial followed by long-term trial. Nephron 2019, 143, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Tsubakihara, Y.; Nangaku, M.; Endo, Y.; Nakajima, H.; Kohno, T.; Imai, K.; Kawase, N.; Hara, K.; Lepore, J.; et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am. J. Nephrol. 2017, 45, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Holdstock, L.; Cizman, B.; Meadowcroft, A.M.; Biswas, N.; Johnson, B.M.; Kim, S.G.; Zeig, S.; Lepore, J.J.; Cobitz, A.R. Daprodustat for anemia: A 24-week, open-label, randomized controlled trial in participants with chronic kidney disease. Clin. Kidney J. 2019, 12, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Yang, H.; Fu, X.; Huang, Y.; Wei, R.; Wang, Y.; Liu, Y.N.; Liu, W.J. The efficacy and safety of roxadustat for anemia in patients with chronic kidney disease: A meta-analysis. Nephrol. Dial. Transplant. 2020. [Google Scholar] [CrossRef]
- Zheng, Q.; Yang, H.; Sun, L.; Wei, R.; Fu, X.; Wang, Y.; Huang, Y.; Liu, Y.N.; Liu, W.J. Efficacy and safety of HIF prolyl-hydroxylase inhibitor vs epoetin and darbepoetin for anemia in chronic kidney disease patients not undergoing dialysis: A network meta-analysis. Pharmacol. Res. 2020, 159, 105020. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Ueno, M.; Shiga, T.; Reusch, M. Oral roxadustat three times weekly in ESA-naive and ESA-converted patients with anemia of chronic kidney disease on hemodialysis: Results from two phase 3 studies. Ther. Apher. Dial. 2020, 24, 628–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akizawa, T.; Iwasaki, M.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M. Phase 3, randomized, double-blind, active-comparator (darbepoetin alfa) study of oral roxadustat in CKD patients with anemia on hemodialysis in Japan. J. Am. Soc. Nephrol. 2020, 31, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Yamaguchib, Y.; Otsukac, T.; Reusch, M. A phase 3, multicenter, randomized, two-arm, open-label study of intermittent oral dosing. Nephron 2020, 144, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Nangaku, M.; Yonekawa, T.; Okuda, N.; Kawamatsu, S.; Onoue, T.; Endo, Y.; Hara, K.; Cobitz, A.R. Efficacy and safety of daprodustat compared with darbepoetin alfa in Japanese hemodialysis patients with anemia. A randomized, double-blind, phase 3 trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1155–1165. [Google Scholar] [CrossRef]
- Nangaku, M.; Kondo, K.; Takabe, S.; Ueta, K.; Kaneko, G.; Otsuka, M.; Kawaguchi, Y.; Komatsu, K. Vadadustat for anemia in chronic kidney disease on peritoneal dialysis: A phase 3 open-label study in Japan. Ther. Apher. Dial. 2020. [Google Scholar] [CrossRef]
- Provenzano, R.; Kumar, J.; Fishbane, S.; Rastogi, A.; Poole, L.; Liu, C.S.; Little, D.J.; Yu, K.-H.P. Subgroup Analyses of Efficacy of Roxadustat for Treatment of Anemia in Patients with Incident Dialysis-Dependent CKD. In Proceedings of the American Society of Nephrology Kidney Week, Denver, CO, USA, 14–22 October 2020. PO0259. [Google Scholar]
- Fishbane, S.; Provenzano, R.; Rastogi, A.; Coyne, D.W.; Pecoits-Filho, R.; Charytan, C.; Pola, M.; Poole, L.; Saha, G.; Chou, W.; et al. Roxadustat lowers risk of red blood cell transfusion in patients with anemia of CKD. In Proceedings of the American Society of Nephrology Kidney Week, Denver, CO, USA, 14–22 October 2020. PO0256. [Google Scholar]
- Frede, S.; Berchner-Pfannschmidt, U.; Fandrey, J. Regulation of hypoxia-inducible factors during inflammation. Methods Enzymol. 2007, 435, 405–419. [Google Scholar]
- Akizawa, T.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M. Factors affecting the doses of roxadustat versus darbepoetin alfa for anemia treatment in hemodialysis patients. Ther. Apher. Dial. 2020. [Google Scholar] [CrossRef]
- Sepah, Y.; Nguyen, Q.D.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M.; Akizawa, T. Ophthalmological effects of roxadustat in the treatment of anaemia in chronic kidney disease patients on dialysis in a phase 3, randomised, double-blind, active-comparator conversion study. Abstract MO002. Nephrol. Dial. Transplant. 2020, 35 (Suppl. 3). [Google Scholar] [CrossRef]
- Kurata, Y.; Tanaka, T.; Nangaku, M. Prolyl hydroxylase domain inhibitors: A new era in the management of renal anemia. Ann. Transl. Med. 2019, 7 (Suppl. 8), S334. [Google Scholar] [CrossRef] [PubMed]
- Blanchette, N.L.; Manz, D.H.; Torti, F.M.; Torti, S.V. Modulation of hepcidin to treat iron deregulation: Potential clinical applications. Expert Rev. Hematol. 2016, 9, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Renders, L.; Budde, K.; Rosenberger, C.; van Swelm, R.; Swinkels, D.; Dellanna, F.; Feuerer, W.; Wen, M.; Erley, C.; Bader, B.; et al. First-in-human Phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. PLoS ONE 2019, 14, e0212023. [Google Scholar]
- Poli, M.; Asperti, M.; Naggi, A.; Campostrini, N.; Girelli, D.; Corbella, M.; Benzi, M.; Besson-Fournier, C.; Coppin, H.; Maccarinelli, F.; et al. Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo. Blood 2014, 123, 1564–1573. [Google Scholar] [CrossRef] [Green Version]
- Asperti, M.; Denardo, A.; Gryzik, M.; Castagna, A.; Girelli, D.; Naggi, A.; Arosio, P.; Poli, M. Pentosan polysulfate to control hepcidin expression in vitro and in vivo. Biochem. Pharmacol. 2020, 175, 113867. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-J.; Jin, H.-M.; Cho, H.-N.; Kang, J.-H.; Jung, H.-J.; Kang, J.-H.; Kim, J.-E.; Yim, Y.-R.; Lee, J.-W.; Lee, K.-E.; et al. Clinical and hematological effects of tocilizumab on serum hepcidin, anemia response and disease activity in patients with active rheumatoid arthritis. J. Rheum. Dis. 2016, 23, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Pergola, P.E.; Devalaraja, M.; Fishbane, S.; Chonchol, M.; Mathur, V.S.; Smith, M.T.; Lo, L.; Herzog, K.; Kakkar, R.; Davidson, M.H. Ziltivekimab for treatment of anemia of inflammation in patients on hemodialysis: Results from a phase 1/2 multicenter, randomized, double-blind, placebo-controlled trial. J. Am. Soc. Nephrol 2021, 32, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Sheetz, N.; Barrington, P.; Callies, S.; Berg, P.H.; McColm, J.; Marbury, T.; Decker, B.; Dyas, G.L.; Truhlar, S.M.; Benschop, R.; et al. Targeting the hepcidin-ferroportin pathway in anaemia of chronic kidney disease. Br. J. Clin. Pharmacol. 2019, 85, 935–948. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Vecchio, L.; Minutolo, R. ESA, Iron Therapy and New Drugs: Are There New Perspectives in the Treatment of Anaemia? J. Clin. Med. 2021, 10, 839. https://doi.org/10.3390/jcm10040839
Del Vecchio L, Minutolo R. ESA, Iron Therapy and New Drugs: Are There New Perspectives in the Treatment of Anaemia? Journal of Clinical Medicine. 2021; 10(4):839. https://doi.org/10.3390/jcm10040839
Chicago/Turabian StyleDel Vecchio, Lucia, and Roberto Minutolo. 2021. "ESA, Iron Therapy and New Drugs: Are There New Perspectives in the Treatment of Anaemia?" Journal of Clinical Medicine 10, no. 4: 839. https://doi.org/10.3390/jcm10040839