Differential microRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients and Samples
2.2. Genomic Mutation Testing
2.3. Determining miRNA Expression Profile with Next Generation Sequencing (NGS)
2.4. Gene Expression Profiling
2.5. Prediction of miRNA–mRNA Interactions
2.6. Statistical Analysis
3. Results
3.1. USP8 and USP48 Mutations
3.2. Comparing miRNA Expression in USP8mut and USP8wt Corticotroph Tumors
3.3. Putative mRNA Targets for Differentially Expressed miRNAs
3.4. Difference in miRNA Profile and Differential Gene Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bujko, M.; Kober, P.; Boresowicz, J.; Rusetska, N.; Paziewska, A.; Dabrowska, M.; Piaścik, A.; Pȩkul, M.; Zieliński, G.; Kunicki, J.; et al. USP8 mutations in corticotroph adenomas determine a distinct gene expression profile irrespective of functional tumour status. Eur. J. Endocrinol. 2019, 181, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Neou, M.; Villa, C.; Armignacco, R.; Jouinot, A.; Raffin-Sanson, M.L.; Septier, A.; Letourneur, F.; Diry, S.; Diedisheim, M.; Izac, B.; et al. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 2020, 37, 123–134.e5. [Google Scholar] [CrossRef] [PubMed]
- Albani, A.; Theodoropoulou, M.; Reincke, M. Genetics of Cushing’s disease. Clin. Endocrinol. (Oxf). 2018, 88, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reincke, M.; Sbiera, S.; Hayakawa, A.; Theodoropoulou, M.; Osswald, A.; Beuschlein, F.; Meitinger, T.; Mizuno-Yamasaki, E.; Kawaguchi, K.; Saeki, Y.; et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 2015, 47, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Y.; Song, Z.-J.; Chen, J.-H.; Wang, Y.-F.; Li, S.-Q.; Zhou, L.-F.; Mao, Y.; Li, Y.-M.; Hu, R.-G.; Zhang, Z.-Y.; et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015, 25, 306–317. [Google Scholar] [CrossRef]
- Perez-Rivas, L.G.; Theodoropoulou, M.; Ferraù, F.; Nusser, C.; Kawaguchi, K.; Stratakis, C.A.; Rueda Faucz, F.; Wildemberg, L.E.; Assié, G.; Beschorner, R.; et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing cushing’s disease. J. Clin. Endocrinol. Metab. 2015, 100, E997–E1004. [Google Scholar] [CrossRef]
- Faucz, F.R.; Tirosh, A.; Tatsi, C.; Berthon, A.; Hernández-Ramírez, L.C.; Settas, N.; Angelousi, A.; Correa, R.; Papadakis, G.Z.; Chittiboina, P.; et al. Somatic USP8 gene mutations are a common cause of pediatric cushing disease. J. Clin. Endocrinol. Metab. 2017, 102, 2836–2843. [Google Scholar] [CrossRef]
- Hayashi, K.; Inoshita, N.; Kawaguchi, K.; Ardisasmita, A.I.; Suzuki, H.; Fukuhara, N.; Okada, M.; Nishioka, H.; Takeuchi, Y.; Komada, M.; et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur. J. Endocrinol. 2016, 174, 213–226. [Google Scholar] [CrossRef]
- Castellnou, S.; Vasiljevic, A.; Lapras, V.; Raverot, V.; Alix, E.; Borson-Chazot, F.; Jouanneau, E.; Raverot, G.; Lasolle, H. Sst5 expression and usp8 mutation in functioning and silent corticotroph pituitary tumors. Endocr. Connect. 2020, 9, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.S.; Camargo, R.C.; Coeli-Lacchini, F.B.; Saggioro, F.P.; Moreira, A.C.; De Castro, M. USP8 Mutations and Cell Cycle Regulation in Corticotroph Adenomas. Horm. Metab. Res. 2020, 52, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Ballmann, C.; Thiel, A.; Korah, H.E.; Reis, A.-C.; Saeger, W.; Stepanow, S.; Köhrer, K.; Reifenberger, G.; Knobbe-Thomsen, C.B.; Knappe, U.J.; et al. USP8 Mutations in Pituitary Cushing Adenomas—Targeted Analysis by Next-Generation Sequencing. J. Endocr. Soc. 2018, 2, 266–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanichi, I.Q.; de Paula Mariani, B.M.; Frassetto, F.P.; Siqueira, S.A.C.; de Castro Musolino, N.R.; Cunha-Neto, M.B.C.; Ochman, G.; Cescato, V.A.S.; Machado, M.C.; Trarbach, E.B.; et al. Cushing’s disease due to somatic USP8 mutations: A systematic review and meta-analysis. Pituitary 2019, 22, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Losa, M.; Mortini, P.; Pagnano, A.; Detomas, M.; Cassarino, M.F.; Pecori Giraldi, F. Clinical characteristics and surgical outcome in USP8-mutated human adrenocorticotropic hormone-secreting pituitary adenomas. Endocrine 2019, 63, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Albani, A.; Pérez-Rivas, L.G.; Dimopoulou, C.; Zopp, S.; Colón-Bolea, P.; Roeber, S.; Honegger, J.; Flitsch, J.; Rachinger, W.; Buchfelder, M.; et al. The USP8 mutational status may predict long-term remission in patients with Cushing’s disease. Clin. Endocrinol. (Oxf). 2018, 89, 454–458. [Google Scholar] [CrossRef]
- Weigand, I.; Knobloch, L.; Flitsch, J.; Saeger, W.; Monoranu, C.M.; Höfner, K.; Herterich, S.; Rotermund, R.; Ronchi, C.L.; Buchfelder, M.; et al. Impact of USP8 Gene Mutations on Protein Deregulation in Cushing Disease. J. Clin. Endocrinol. Metab. 2019, 104, 2535–2546. [Google Scholar] [CrossRef]
- Centorrino, F.; Ballone, A.; Wolter, M.; Ottmann, C. Biophysical and structural insight into the USP8/14-3-3 interaction. FEBS Lett. 2018, 592, 1211–1220. [Google Scholar] [CrossRef] [Green Version]
- Sbiera, S.; Perez-Rivas, L.G.; Taranets, L.; Weigand, I.; Flitsch, J.; Graf, E.; Monoranu, C.M.; Saeger, W.; Hagel, C.; Honegger, J.; et al. Driver mutations in USP8 wild-type Cushing’s disease. Neuro. Oncol. 2019, 21, 1273–1283. [Google Scholar] [CrossRef]
- Chen, J.; Jian, X.; Deng, S.; Ma, Z.; Shou, X.; Shen, Y.; Zhang, Q.; Song, Z.; Li, Z.; Peng, H.; et al. Identification of recurrent USP48 and BRAF mutations in Cushing’s disease. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.V.; Kovacs, K.; Young, W.F., Jr.; Farrell, W.E.; Asa, S.L. Pituitary Tumours. In World Health Organization Classification of Tumours: Tumours of Endocrine Organs, 3rd ed.; DeLellis, R.A., Lloyd, R.V., Heitz, P.U., Eng, C., Eds.; IARC Press: Lyon, France, 2004. [Google Scholar]
- Asa, S.L. Tumors of the Pituitary Gland; American Registry of Pathology in Collaboration with the Armed Forces Institute of Pathology: Washington, DC, USA, 2011. [Google Scholar]
- Zampetti, B.; Grossrubatscher, E.; Ciaramella, P.D.; Boccardi, E.; Loli, P. Bilateral inferior petrosal sinus sampling. Endocr. Connect. 2016, 5, R12–R25. [Google Scholar] [CrossRef] [Green Version]
- Knosp, E.; Steiner, E.; Kitz, K.; Matula, C.; Parent, A.D.; Laws, E.R.; Ciric, I. Pituitary adenomas with invasion of the cavernous sinus space: A magnetic resonance imaging classification compared with surgical findings. Neurosurgery 1993, 33, 610–618. [Google Scholar] [CrossRef]
- Tokar, T.; Pastrello, C.; Rossos, A.E.M.; Abovsky, M.; Hauschild, A.C.; Tsay, M.; Lu, R.; Jurisica, I. MirDIP 4.1-Integrative database of human microRNA target predictions. Nucleic Acids Res. 2018, 46, D360–D370. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Huang, S.; Zhang, Z.; Qian, X.; Sun, P.; Zhou, X. Pan-cancer analysis on microRNA-associated gene activation. EBioMedicine 2019, 43, 82–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sesta, A.; Cassarino, M.F.; Terreni, M.; Ambrogio, A.G.; Libera, L.; Bardelli, D.; Lasio, G.; Losa, M.; Pecori Giraldi, F. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2020, 110, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Dufner, A.; Knobeloch, K.P. Ubiquitin-specific protease 8 (USP8/UBPy): A prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem. Soc. Trans. 2019, 47, 1867–1879. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Stavast, C.J.; Erkeland, S.J. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Wu, Q.; Yu, J.; Rao, Y.; Kou, Z.; Fang, G.; Shi, X.; Liu, W.; Han, H. A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers. Front. Genet. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Gallo, L.H.; Ko, J.; Donoghue, D.J. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 2017, 16, 634–648. [Google Scholar] [CrossRef] [Green Version]
- Sze, C.C.; Shilatifard, A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb. Perspect. Med. 2016, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kirtana, R.; Manna, S.; Patra, S.K. Molecular mechanisms of KDM5A in cellular functions: Facets during development and disease. Exp. Cell Res. 2020, 396, 112314. [Google Scholar] [CrossRef]
- Local, A.; Huang, H.; Albuquerque, C.P.; Singh, N.; Lee, A.Y.; Wang, W.; Wang, C.; Hsia, J.E.; Shiau, A.K.; Ge, K.; et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 2018, 50, 73–82. [Google Scholar] [CrossRef]
- Kumari, N.; Hassan, M.A.; Lu, X.; Roeder, R.G.; Biswas, D. AFF1 acetylation by p300 temporally inhibits transcription during genotoxic stress response. Proc. Natl. Acad. Sci. USA 2019, 116, 22140–22151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhou, X.; Zhang, Y.; Zhu, H.; Zhao, L.; Fan, L.; Wang, Y.; Gang, Y.; Wu, K.; Liu, Z.; et al. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. FEBS J. 2012, 279, 3652–3664. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Qin, Y.; Wei, P.; Lian, P.; Li, Y.; Xu, Y.; Li, X.; Li, D.; Cai, S. Gas1 inhibits metastatic and metabolic phenotypes in colorectal Carcinoma. Mol. Cancer Res. 2016, 14, 830–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dexheimer, P.J.; Cochella, L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020, 8, 1–18. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, T.; Fan, Y.D.; Serick; Du, G.; Wu, P.; Geng, D. MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumor Biol. 2016, 37, 13469–13477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lin, J.K.; Chen, J.; Liu, X.F.; Liu, J.L.; Luo, H.S.; Li, Y.Q.; Cui, S. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) Expression by targeting Mitogen-activated protein Kinase 8. J. Biol. Chem. 2013, 288, 10361–10373. [Google Scholar] [CrossRef] [Green Version]
- Grzywa, T.M.; Klicka, K.; Rak, B.; Mehlich, D.; Garbicz, F.; Zieliński, G.; Maksymowicz, M.; Sajjad, E.; Włodarski, P.K. Lineage-dependent role of miR-410-3p as oncomiR in gonadotroph and corticotroph pituitary adenomas or tumor suppressor miR in somatotroph adenomas via MAPK, PTEN/AKT, and STAT3 signaling pathways. Endocrine 2019, 65, 646–655. [Google Scholar] [CrossRef] [Green Version]
Number of Patients: | 48 |
---|---|
Diagnosis (percentage of patients) | |
Cushing’s disease | 58% (28/48) |
Silent corticotroph adenoma | 42% (20/48) |
Age (years) | |
Range | 23–77 |
Median | 49 |
Gender (percentage of patients) | |
Male | 25% (12/48) |
Female | 75% (36/48) |
Ultrastructural characteristics (percentage of patients) | |
Sparsely granulated | 44% (21/48) |
Densely granulated | 56% (27/48) |
KNOSP grade (percentage of patients) | |
0 | 16% (7/48) |
1 | 44% (21/48) |
2 | 19% (9/48) |
3 | 10% (5/48) |
4 | 12.5% (6/48) |
Tumor size (percentage of patients) | |
Macroadenoma | 77% (37/48) |
Microadenoma | 23% (11/48) |
Mutation status (percentage of patients) | |
USP8 mutation | 31% (15/48) |
USP48 mutation | 4% (2/48) |
Clinical Feature | Cushing’s Disease | Silent Corticotroph Tumors | ||||
---|---|---|---|---|---|---|
USP8-mutated | USP8-wild type * | p-value | USP8-mutated | USP8-wild type | p-value | |
Number of patients | n = 11 | n = 15 | n = 4 | n = 16 | ||
Sex (ratio females/males) | 10/1 | 13/2 | 1.00a | 4/0 | 9/7 | 0.2487 a |
Age at surgery (years; median (range)) | 36 (23-67) | 48 (24–76) | 0.3993b | 41.5 (23-77) | 54.5 (34–77) | 0.394 c |
Cortisol 08:00 h (µg/dL; median (range)) | 26.3 (21-49.7) | 26.4 (11.9–38.6) | 0.6036c | 16.75 (9.1–50.8) | 18.15 (6.8–29.7) | 0.7408 c |
ACTH 08:00 h (pg/dL; median (range)) | 48.2 (37.3–102) | 82.3 (36.9–129) | 0.1945 c | 47.7 (42.1–61.3) | 49 (14.7–74.9) | 0.7408 c |
UFC (μg/24 h; median (range)) | 490 (276–810) | 497 (215–739) | 0.7974 b | 124 (94.76–139) | 66.32 (13.70–126) | 0.0334 c |
Tumor volume (mm3; median (range)) | 445.5 (32–6750) | 2730 (62.5–6000) | 0.0798 c | 1844 (900–7350) | 3893 (1080–11088) | 0.1707 c |
Invasive tumor growth (Knosp grade ratio 0, I, II/III, IV) | 3/8 | 4/11 | 1.0000 a | 4/0 | 12/4 | 0.5377 a |
Proliferation index (ratio Ki67 ≥ 3%/Ki67 < 3%) | 4/7 | 3/12 | 0.4065 a | 1/3 | 4/12 | 1.0000 a |
Clinical remission | 11/0 | 9/6 | 0.0237 a | - | - | - |
Histology (ratio sparsely/densely granulated) | 3/8 | 6/9 | 0.6828 a | 2/2 | 10/6 | 1.0000 a |
Differentially Expressed miRNA | Fold Change of miRNA Expression | Adjusted p-Value | Predicted Target Gene | Spearman R | p-Value |
---|---|---|---|---|---|
Ubiquitin-conjugating enzyme | |||||
hsa-miR-182-5p | 2.11 | 0.03245 | UBE2D4 | 0.733 | 0.000359 |
hsa-miR-133a-3p | 3.07 | 0.040107 | UBE2Q1 | 0.720 | 0.000503 |
hsa-miR-153-3p | 2.04 | 0.022436 | UBE2K | −0.594 | 0.007305 |
hsa-miR-96-5p | 2.09 | 0.023363 | UBE2K | −0.582 | 0.008914 |
hsa-miR-137 | 2.57 | 0.003923 | UBE2G2 | −0.592 | 0.007544 |
hsa-miR-330-3p | 2.62 | 0.00294 | UBE2J1 | −0.587 | 0.008197 |
E3-ubiquitin ligase | |||||
hsa-miR-137 | 2.57 | 0.003923 | RNF165 | −0.721 | 0.000495 |
hsa-miR-382-5p | 2.71 | 0.022428 | KLHL42 | −0.704 | 0.000763 |
hsa-miR-433-3p | 2.93 | 0.011477 | FBXO22 | −0.634 | 0.003579 |
hsa-miR-127-5p | 2.14 | 0.022624 | PELI2 | −0.624 | 0.004318 |
hsa-miR-133b | 2.79 | 0.029053 | KLHL9 | 0.613 | 0.005292 |
hsa-miR-498 | 0.37 | 0.001367 | AMFR | −0.603 | 0.006319 |
hsa-miR-329-3p | 2.79 | 0.006727 | PELI2 | −0.592 | 0.007635 |
hsa-miR-338-5p | 2.06 | 0.003694 | PJA2 | 0.590 | 0.007876 |
hsa-miR-153-3p | 2.04 | 0.022436 | RNF26 | −0.587 | 0.008254 |
hsa-miR-410-3p | 2.65 | 0.011477 | RNF144B | −0.585 | 0.008572 |
hsa-miR-498 | 0.37 | 0.001367 | MARCH4 | −0.583 | 0.008784 |
hsa-miR-432-5p | 2.85 | 0.00294 | KLHL20 | −0.580 | 0.009173 |
hsa-miR-432-5p | 2.85 | 0.00294 | CUL5 | −0.578 | 0.009531 |
Deubiquitinase | |||||
hsa-miR-381-3p | 2.50 | 0.022163 | USP46 | −0.689 | 0.001117 |
hsa-miR-498 | 0.37 | 0.001367 | USP46 | −0.664 | 0.001953 |
Correlation Analysis | Differential Gene Expression | Differential miRNA Expression | |||||
---|---|---|---|---|---|---|---|
Gene | MicroRNA | Spearman R | p-value | Fold change | Adjusted p-value | Fold change | Adjusted p-value |
PGGT1B | hsa-miR-96-5p | −0.739 | 0.000302 | 0.55 | 0.015538 | 2.09 | 0.023363 |
SLAIN2 | hsa-miR-96-5p | −0.689 | 0.001096 | 0.65 | 0.043609 | 2.09 | 0.023363 |
RBM33 | hsa-miR-708-5p | −0.734 | 0.000348 | 0.70 | 0.024614 | 4.84 | 0.000013 |
SNX13 | hsa-miR-708-5p | −0.700 | 0.000684 | 0.62 | 0.030738 | 4.84 | 0.000013 |
KIAA0355 | hsa-miR-708-5p | −0.664 | 0.001928 | 0.59 | 0.033981 | 4.84 | 0.000013 |
ANKRD52 | hsa-miR-708-5p | −0.617 | 0.004874 | 0.65 | 0.008329 | 4.84 | 0.000013 |
GAS1 | hsa-miR-655-3p | −0.612 | 0.005347 | 0.27 | 0.020942 | 2.17 | 0.037144 |
APLF | hsa-miR-539-5p | −0.615 | 0.005108 | 0.15 | 0.003026 | 2.77 | 0.013880 |
RAB15 | hsa-miR-513a-5p | 0.601 | 0.006558 | 2.67 | 0.015333 | 2.11 | 0.006640 |
PALM2 | hsa-miR-513a-5p | 0.603 | 0.006263 | 2.34 | 0.032974 | 2.11 | 0.006640 |
DNAJC6 | hsa-miR-498 | −0.659 | 0.002133 | 1.65 | 0.0347725 | 0.37 | 0.001367 |
RASAL2 | hsa-miR-383-5p | −0.611 | 0.005419 | 1.72 | 0.035180 | 0.46 | 0.048076 |
ELMO2 | hsa-miR-383-5p | 0.680 | 0.001352 | 0.54 | 0.002362 | 0.46 | 0.048076 |
KDM5A | hsa-miR-382-5p | −0.762 | 0.000149 | 0.69 | 0.013025 | 2.71 | 0.022428 |
SNX13 | hsa-miR-382-5p | −0.729 | 0.000400 | 0.62 | 0.030738 | 2.71 | 0.022428 |
KMT2C | hsa-miR-382-5p | −0.701 | 0.000819 | 0.63 | 0.002765 | 2.71 | 0.022428 |
LRP12 | hsa-miR-382-5p | −0.698 | 0.000880 | 0.61 | 0.013395 | 2.71 | 0.022428 |
FAM135A | hsa-miR-382-5p | −0.696 | 0.000923 | 0.70 | 0.042200 | 2.71 | 0.022428 |
GMFB | hsa-miR-382-5p | −0.695 | 0.000952 | 0.65 | 0.012156 | 2.71 | 0.022428 |
SORT1 | hsa-miR-382-5p | −0.610 | 0.005543 | 0.64 | 0.017393 | 2.71 | 0.022428 |
FAM133B | hsa-miR-382-5p | −0.595 | 0.007159 | 0.42 | 0.014833 | 2.71 | 0.022428 |
AFF1 | hsa-miR-382-5p | −0.584 | 0.008682 | 0.65 | 0.020921 | 2.71 | 0.022428 |
SLAIN2 | hsa-miR-382-5p | −0.583 | 0.008789 | 0.65 | 0.043609 | 2.71 | 0.022428 |
NFIA | hsa-miR-330-3p | −0.615 | 0.005067 | 0.37 | 0.010137 | 2.62 | 0.002940 |
PCDHAC2 | hsa-miR-330-3p | −0.587 | 0.008183 | 0.56 | 0.00004 | 2.62 | 0.002940 |
JPH3 | hsa-miR-330-3p | 0.580 | 0.008024 | 4.88 | 0.000058 | 2.62 | 0.002940 |
CCDC88C | hsa-miR-329-3p | −0.689 | 0.001105 | 0.28 | 0.023204 | 2.79 | 0.006727 |
RBM33 | hsa-miR-329-3p | −0.594 | 0.007343 | 0.70 | 0.024614 | 2.79 | 0.006727 |
AFF1 | hsa-miR-326 | −0.662 | 0.001997 | 0.65 | 0.020921 | 2.31 | 0.000016 |
PCDHAC2 | hsa-miR-153-3p | −0.583 | 0.008848 | 0.56 | 0.036190 | 2.04 | 0.022436 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujko, M.; Kober, P.; Boresowicz, J.; Rusetska, N.; Zeber-Lubecka, N.; Paziewska, A.; Pekul, M.; Zielinski, G.; Styk, A.; Kunicki, J.; et al. Differential microRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes. J. Clin. Med. 2021, 10, 375. https://doi.org/10.3390/jcm10030375
Bujko M, Kober P, Boresowicz J, Rusetska N, Zeber-Lubecka N, Paziewska A, Pekul M, Zielinski G, Styk A, Kunicki J, et al. Differential microRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes. Journal of Clinical Medicine. 2021; 10(3):375. https://doi.org/10.3390/jcm10030375
Chicago/Turabian StyleBujko, Mateusz, Paulina Kober, Joanna Boresowicz, Natalia Rusetska, Natalia Zeber-Lubecka, Agnieszka Paziewska, Monika Pekul, Grzegorz Zielinski, Andrzej Styk, Jacek Kunicki, and et al. 2021. "Differential microRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes" Journal of Clinical Medicine 10, no. 3: 375. https://doi.org/10.3390/jcm10030375
APA StyleBujko, M., Kober, P., Boresowicz, J., Rusetska, N., Zeber-Lubecka, N., Paziewska, A., Pekul, M., Zielinski, G., Styk, A., Kunicki, J., Ostrowski, J., Siedlecki, J. A., & Maksymowicz, M. (2021). Differential microRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes. Journal of Clinical Medicine, 10(3), 375. https://doi.org/10.3390/jcm10030375