Impact of Non-Valvular Non-Coronary Concomitant Procedures on Outcomes of Surgical Aortic Valve Replacement in Intermediate Risk Patients
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design and Patients
2.2. Data Collection and Follow-Up
2.3. Study Endpoints
2.4. Statistics
3. Results
3.1. Patient Population
3.2. Operative Outcomes
3.3. Postoperative Outcomes
3.4. Late and Follow-Up Outcomes
4. Discussion
5. Conclusions
6. Study Limitation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Beckmann, A.; Meyer, R.; Lewandowski, J.; Markewitz, A.; Harringer, W. German Heart Surgery Report 2018: The Annual Updated Registry of the German Society for Thoracic and Cardio-vascular Surgery. Thorac. Cardiovasc. Surg. 2019, 67, 331–344. [Google Scholar] [CrossRef]
- Shehada, S.-E.; Elhmidi, Y.; Mourad, F.; Wendt, D.; El Gabry, M.; Benedik, J.; Thielmann, M.; Jakob, H. Minimal access versus conventional aortic valve replacement: A meta-analysis of propensity-matched studies†. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 624–632. [Google Scholar] [CrossRef]
- Shehada, S.-E.; Öztürk, Ö.; Wottke, M.; Lange, R. Propensity score analysis of outcomes following minimal access versus conventional aortic valve replacement. Eur. J. Cardio-Thoracic Surg. 2015, 49, 464–470. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Shehada, S.E.; Wendt, D.; Peters, D.; Mourad, F.; Marx, P.; Thielmann, M.; El Gabry, M. Infections after transcatheter versus surgical aortic valve replacement: Mid-term results of 200 consecutive pa-tients. J. Thorac. Dis. 2018, 10, 4342–4352. [Google Scholar] [CrossRef]
- Wendt, D.; Shehada, S.-E.; König, L.; Kahlert, P.; Frey, U.; Mourad, F.; Jakob, H.; Thielmann, M.; El Gabry, M. Modified implantation height of the Sapien3™ transcatheter heart valve. Minim. Invasive Ther. Allied Technol. 2019, 29, 70–77. [Google Scholar] [CrossRef]
- Haddad, A.; Szalai, C.; van Brakel, L.; Elhmidi, Y.; Arends, S.; Rabis, M.; Pop, A.; Ruhparwar, A.; Brenner, T.; Shehada, S.-E. Fast-track anesthesia in lateral mini-thoracotomy for transapical transcatheter valve implantation. J. Thorac. Dis. 2021, 13, 4853–4863. [Google Scholar] [CrossRef]
- Barreto-Filho, J.A.; Wang, Y.; Dodson, J.A.; Desai, M.M.; Sugeng, L.; Geirsson, A.; Krumholz, H.M. Trends in Aortic Valve Replacement for Elderly Patients in the United States, 1999–2011. JAMA 2013, 310, 2078–2084. [Google Scholar] [CrossRef]
- Gleason, T.G.; Reardon, M.J.; Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Lee, J.S.; Kleiman, N.S.; Chetcuti, S.; Hermiller, J.B.; Heiser, J.; et al. 5-Year Outcomes of Self-Expanding Transcatheter Versus Surgical Aortic Valve Replacement in High-Risk Patients. J. Am. Coll. Cardiol. 2018, 72, 2687–2696. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.-H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef]
- Barili, F.; Freemantle, N.; Pilozzi Casado, A.; Rinaldi, M.; Folliguet, T.; Musumeci, F.; Parolari, A. Mortality in trials on transcatheter aortic valve implantation versus surgical aortic valve replacement: A pooled me-ta-analysis of Kaplan-Meier-derived individual patient data. Eur. J. Cardiothorac. Surg. 2020, 58, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Ashikhmina, E.A.; Schaff, H.V.; Dearani, J.A.; Sundt, T.M., III; Suri, R.M.; Park, S.J.; Daly, R.C. Aortic valve replacement in the elderly: Determinants of late outcome. Circulation 2011, 124, 1070–1078. [Google Scholar] [CrossRef]
- Rodriguez-Gabella, T.; Voisine, P.; Dagenais, F.; Mohammadi, S.; Perron, J.; Dumont, E.; Puri, R.; Asmarats, L.; Côté, M.; Bergeron, S.; et al. Long-Term Outcomes Following Surgical Aortic Bioprosthesis Implantation. J. Am. Coll. Cardiol. 2018, 71, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Anselmi, A.; Morelli, M.; Pragliola, C.; Tsiopoulos, V.; Glieca, F.; Possati, G. Aortic expansion rate in patients with dilated post-stenotic ascending aorta submitted only to aortic valve replace-ment long-term follow-up. J. Am. Coll. Cardiol. 2011, 58, 581–584. [Google Scholar] [CrossRef]
- Yoshitani, H.; Isotani, A.; Song, J.-K.; Shirai, S.; Umeda, H.; Jang, J.Y.; Onoue, T.; Toki, M.; Sun, B.-J.; Kim, D.-H.; et al. Surgical as Opposed to Transcatheter Aortic Valve Replacement Improves Basal Interventricular Septal Hypertrophy. Circ. J. 2018, 82, 2887–2895. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.V.; Manlhiot, C.; Feindel, C.M.; Yau, T.M.; Mueller, B.; David, T.E.; Ouzounian, M. Surgical Enlargement of the Aortic Root Does Not Increase the Operative Risk of Aortic Valve Replacement. Circulationaha 2018, 137, 1585–1594. [Google Scholar] [CrossRef]
- Di Tommaso, L.; Stassano, P.; Mannacio, V.; Russolillo, V.; Monaco, M.; Pinna, G.; Vosa, C. Asymmetric septal hypertrophy in patients with severe aortic stenosis: The usefulness of associated septal myec-tomy. J. Thorac. Cardiovasc. Surg. 2013, 145, 171–175. [Google Scholar] [CrossRef]
- Camm, C.F.; Nagendran, M.; Xiu, P.Y.; Maruthappu, M. How effective is cryoablation for atrial fibrillation during concomitant cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2011, 13, 410–414. [Google Scholar] [CrossRef]
- Duncan, A.I.; Lowe, B.S.; Garcia, M.J.; Xu, M.; Gillinov, A.M.; Mihaljevic, T.; Koch, C.G. Influence of Concentric Left Ventricular Remodeling on Early Mortality After Aortic Valve Replacement. Ann. Thorac. Surg. 2008, 85, 2030–2039. [Google Scholar] [CrossRef]
- Heg, D.; Khattab, A.A.; Meier, B.; Huber, C.; Windecker, S.; Pilgrim, T.; Nietlispach, F.; Jüni, P.; Glökler, S.; Stortecky, S.; et al. Atrial fibrillation and aortic stenosis: Impact on clinical outcomes among patients undergoing transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 2013, 6, 77–84. [Google Scholar] [CrossRef]
- Lancellotti, P.; Magne, J.; Dulgheru, R.; Clavel, M.-A.; Donal, E.; Vannan, M.A.; Chambers, J.; Rosenhek, R.; Habib, G.; Lloyd, G.; et al. Outcomes of Patients With Asymptomatic Aortic Stenosis Followed Up in Heart Valve Clinics. JAMA Cardiol. 2018, 3, 1060–1068. [Google Scholar] [CrossRef]
- Fallon, J.M.; DeSimone, J.P.; Brennan, J.M.; O’Brien, S.; Thibault, D.P.; DiScipio, A.W.; Pibarot, P.; Jacobs, J.P.; Malenka, D.J. The Incidence and Consequence of Prosthesis-Patient Mismatch After Surgical Aortic Valve Replacement. Ann. Thorac. Surg. 2018, 106, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Kume, Y.; Fujita, T.; Fukushima, S.; Hata, H.; Shimahara, Y.; Matsumoto, Y.; Yamashita, K.; Kobayashi, J. Reducing Prosthesis-Patient Mismatch With Edwards Magna Prosthesis for Aortic Valve Replacement. Circ. J. 2017, 81, 468–475. [Google Scholar] [CrossRef]
- Ghoneim, A.; Bouhout, I.; Demers, P.; Mazine, A.; Francispillai, M.; El-Hamamsy, I.; Carrier, M.; Lamarche, Y.; Bouchard, D. Management of small aortic annulus in the era of sutureless valves: A comparative study among different biological options. J. Thorac. Cardiovasc. Surg. 2016, 152, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Theron, A.; Gariboldi, V.; Grisoli, D.; Jaussaud, N.; Morera, P.; Lagier, D.; Leroux, S.; Amanatiou, C.; Guidon, C.; Riberi, A.; et al. Rapid Deployment of Aortic Bioprosthesis in Elderly Patients With Small Aortic Annulus. Ann. Thorac. Surg. 2016, 101, 1434–1441. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; Bartolomeo, R.D.; Kravchenko, I. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic dis-eases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the Euro-pean Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2873–2926. [Google Scholar]
- Yasuda, H.; Nakatani, S.; Stugaard, M.; Tsujita-Kuroda, Y.; Bando, K.; Kobayashi, J.; Yamagishi, M.; Kitakaze, M.; Kitamura, S.; Miyatake, K. Failure to Prevent Progressive Dilation of Ascending Aorta by Aortic Valve Replacement in Patients With Bicuspid Aortic Valve: Comparison With Tricuspid Aortic Valve. Circ. 2003, 108, II291-4. [Google Scholar] [CrossRef]
- Girdauskas, E.; Rouman, M.; Disha, K.; Dubslaff, G.; Fey, B.; Misfeld, M.; Kuntze, T. The fate of mild-to-moderate proximal aortic dilatation after isolated aortic valve replacement for bicuspid aortic valve stenosis: A magnetic resonance imaging follow-up studydagger. Eur. J. Cardiothorac. Surg. 2016, 49, e80-6; discussion e86-7. [Google Scholar] [CrossRef]
- Ancona, M.B.; Moroni, F.; Chieffo, A.; Spangaro, A.; Federico, F.; Ferri, L.A.; Bellini, B.; Carlino, M.; Romano, V.; Palmisano, A.; et al. Impact of Ascending Aorta Dilation on Mid-Term Outcome After Transcatheter Aortic Valve Implantation. J Invasive Cardiol. 2019, 31, 278–281. [Google Scholar]
- Anselmi, A.; Ruggieri, V.G.; Lelong, B.; Flecher, E.; Corbineau, H.; Langanay, T.; Verhoye, J.-P.; Leguerrier, A. Mid-term durability of the Trifecta bioprosthesis for aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2017, 153, 21–28.e1. [Google Scholar] [CrossRef] [PubMed]
- Forcillo, J.; Pellerin, M.; Perrault, L.P.; Cartier, R.; Bouchard, D.; Demers, P.; Carrier, M. Carpentier-Edwards Pericardial Valve in the Aortic Position: 25-Years Experience. Ann. Thorac. Surg. 2013, 96, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Saxena, A.; McMahon, R.; Wilson, A.; Newcomb, A. A systematic review on the quality of life benefits after aortic valve replacement in the elderly. J. Thorac. Cardiovasc. Surg. 2013, 145, 1173–1189. [Google Scholar] [CrossRef] [PubMed]
Variable | Total n = 464 | Isolated–SAVR n = 211 | Combined-SAVR n = 253 | p-Value |
---|---|---|---|---|
Demographics | ||||
Age, years | 75.6 ± 4 | 75.2 ± 3.6 | 75.9 ± 4.3 | 0.06 |
Gender, male | 245 (52.8) | 123 (58.3) | 122 (48.2) | 0.03 |
BMI *, kg/m2 | 27.8 ± 5.1 | 28.2 ± 4.8 | 27.5 ± 5.3 | 0.14 |
Risk factors & comorbidities | ||||
Peripheral vascular disease | 34 (7.3) | 17 (8.1) | 17 (6.7) | 0.59 |
Hypertension | 397 (85.6) | 176 (83.4) | 221 (87.3) | 0.24 |
COPD * | 89 (19.2) | 48 (22.7) | 41 (16.2) | 0.08 |
Diabetes mellitus | 115 (24.8) | 53 (25.1) | 62 (24.5) | 0.91 |
Pulmonary hypertension | 78 (16.8) | 39 (18.5) | 39 (15.4) | 0.39 |
Hyperlipidaemia | 229 (49.3) | 94 (44.5) | 135 (53.4) | 0.06 |
Prior dialysis | 7 (1.5) | 4 (1.9) | 3 (1.2) | 0.71 |
Prior myocardial infarction | 18 (3.9) | 7 (3.3) | 11 (4.3) | 0.64 |
Prior cerebrovascular accident | 36 (7.7) | 11 (5.2) | 25 (9.9) | 0.08 |
Prior pacemaker implantation | 25 (5.4) | 10 (4.7) | 15 (5.9) | 0.68 |
NYHA * III-IV | 238 (51.3) | 128 (60.7) | 110 (43.5) | <0.0001 |
Urgent/Emergent indication | 28 (6.0) | 15 (7.1) | 13 (5.1) | 0.31 |
Risk-scores | ||||
Logistic EuroSCORE I | 12.6 ± 10.6 | 9.6 ± 7 | 15.2 ± 12.3 | <0.0001 |
EuroSCORE II | 5.2 ± 5 | 2.9 ± 2.4 | 6.7 ± 6.2 | <0.0001 |
STS-PROM | 2.3 ± 1.7 | 2.3 ± 1.6 | 2.4 ± 1.8 | 0.411 |
Variable | Total n = 464 | Isolated–SAVR n = 211 | Combined-SAVR n = 253 | p-Value |
---|---|---|---|---|
Aortic valve Pathology | ||||
Isolated stenosis | 234 (50.4) | 109 (51.7) | 125 (49.4) | 0.64 |
Isolated regurgitation | 25 (5.4) | 6 (2.8) | 19 (7.5) | 0.04 |
Combined stenosis & regurgitation | 197 (42.5) | 93 (44.1) | 104 (41.1) | 0.57 |
Aortic valve endocarditis | 8 (1.7) | 3 (1.4) | 5 (2.0) | 0.73 |
Aortic valve morphology | ||||
Unicuspid | 2 (0.4) | 1 (0.5) | 1 (0.4) | 1.0 |
Bicuspid | 89 (19.2) | 36 (17.1) | 53 (20.9) | 0.34 |
Tricuspid | 373 (80.4) | 174 (82.4) | 199 (78.7) | 0.35 |
Impaired Left ventricle ejection friction | ||||
EF < 30% | 10 (2.1) | 4 (1.9) | 6 (2.4) | 0.76 |
EF 30–50% | 84 (18.1) | 43 (20.4) | 41 (16.2) | 0.28 |
Aortic valve orifice area (cm2) | 0.93 ± 0.3 | 0.91 ± 0.3 | 0.96 ± 0.3 | 0.04 |
Mean gradient, mmHg | 50.6 ± 23.3 | 48.5 ± 21.2 | 54 ± 26.1 | 0.19 |
Variable | Total n = 464 | Isolated–SAVR n = 211 | Combined-SAVR n = 253 | p-Value |
---|---|---|---|---|
Biological prosthesis | 453 (97.6) | 209 (99.1) | 244 (96.4) | 0.07 |
Prosthesis size, mm | 23 ± 2 | 23 ± 2 | 23 ± 2 | 0.88 |
Aortic cross clamp time, min | 66 ± 21 | 61 ± 17 | 70 ± 23 | <0.0001 |
Intraoperative Blood transfusion, ml | 525 ± 490 | 450 ± 436 | 588 ± 494 | <0.0001 |
Concomitant Procedures | ||||
Ascending aorta repair/replacement | 76 | - | 76 (30) | - |
Aortic root enlargement | 22 | - | 22 (8.7) | - |
Sub-valvular myectomy/decalcification | 177 | - | 177 (70) | |
* PFO closure | 23 | - | 23 (9.1) | - |
* LAA occlusion ± Ablation | 34 | - | 34 (13.4) | - |
Atrial tumours resection | 4 | - | 4 (1.6) | - |
Variable | Total n = 464 | Isolated–SAVR n = 211 | Combined-SAVR n = 253 | p-Value |
---|---|---|---|---|
Early outcomes | ||||
Ventilation time, hours | 10 (7–18) | 10 (6–18) | 10 (7–17) | 0.21 |
Intensive-care stay, hours | 25 (21–70) | 25 (21–50) | 28 (21–91) | 0.94 |
Blood transfusion, ml | 600 (0–600) | 300 (0–600) | 600 (0–600) | 0.07 |
Re-exploration for bleeding | 31 (6.7) | 14 (6.6) | 17 (6.7) | 1.0 |
Deep wound infection | 2 (0.4) | 2 (0.8) | 0 | 0.21 |
Low cardiac output syndrome | 14 (3.0) | 4 (1.9) | 10 (3.9) | 0.28 |
Myocardial infarction | 1 (0.2) | 1 (0.5) | 0 | 0.46 |
Temporary dialysis | 37 (8.0) | 13 (6.2) | 24 (9.5) | 0.23 |
Re-Intubation | 25 (5.4) | 12 (5.7) | 13 (5.1) | 0.84 |
Stroke | 3 (0.6) | 2 (0.9) | 1 (0.4) | 0.59 |
New onset atrial fibrillation | 141 (30.4) | 71 (33.6) | 70 (27.6) | 0.19 |
Pacemaker implantation | 14 (3.0) | 7 (3.3) | 7 (2.8) | 0.79 |
30-days mortality | 23 (4.9) | 5 (2.4) | 18 (7.1) | 0.03 |
Cardiac-related mortality | 11 (2.4) | 4 (1.9) | 7 (2.8) | 0.76 |
One year mortality | 47 (10.1) | 12 (5.7) | 35 (13.8) | 0.003 |
Due to cardiac causes | 16 (3.4) | 5 (2.4) | 11 (4.3) | |
Due to non-cardiac causes | 18 (3.9) | 4 (1.9) | 14 (5.5) | |
Due to unknown causes | 13 (2.8) | 3 (1.4) | 10 (3.9) | |
Five-year mortality | 84 (18.1) | 26 (12.3) | 58 (22.9) | 0.007 |
Due to cardiac causes | 17 (3.7) | 5 (2.4) | 12 (4.7) | |
Due to non-cardiac causes | 36 (7.8) | 11 (5.2) | 25 (9.9) | |
Due to unknown causes | 31 (6.7) | 10 (4.7) | 21 (8.3) | |
Overall mortality | 147 (31.7) | 52 (24.6) | 95 (37.5) | 0.002 |
Due to cardiac causes | 20 (4.3) | 5 (2.4) | 15 (5.9) | |
Due to non-cardiac causes | 62 (13.4) | 22 (10.4) | 40 (15.8) | |
Due to unknown causes | 65 (14) | 25 (11.8) | 40 (15.8) | |
Lost during follow-up | 23 (5) | 7 (3.3) | 16 (13.8) | 0.002 |
Follow-up time, months | 88.8 ± 39.4 | 87.3 ± 36.7 | 89.9 ± 41.4 | 0.21 |
Variable | Total n = 294 | Isolated–SAVR n = 152 | Combined-SAVR n = 142 | p-Value |
---|---|---|---|---|
Social history | ||||
Independently patient | 216 (73.5) | 112 (73.7) | 104 (73.2) | 0.54 |
Need help | 78 (26.5) | 40 (26.3) | 38 (26.7) | 0.54 |
Survivals * NYHA classification | ||||
NYHA I-II | 220 (74.8) | 110 (72.4) | 110 (77.5) | 0.35 |
NYHA III-IV | 74 (25.2) | 42 (27.6) | 32 (22.5) | 0.35 |
Stroke | 16 (5.4) | 9 (5.9) | 7 (4.9) | 0.8 |
Myocardial infarction | 2 (0.7) | 0 | 2 (1.4) | 0.23 |
* PCI / Stent implantation | 6 (2.0) | 4 (2.6) | 2 (1.4) | 0.69 |
Pacemaker implantation | 15 (5.1) | 4 (2.6) | 11 (7.7) | 0.06 |
New temporary haemodialysis | 3 (1.0) | 3 (2.0) | 0 | 0.25 |
Prosthesis dysfunction requiring * Re-SAVR | ||||
Severe prosthesis endocarditis | 5 (1.7) | 3 (2.0) | 2 (1.4) | 1.0 |
Prosthesis dysfunction without * Re-SAVR | 12 (4.0) | 7 (4.6) | 5 (3.5) | 0.88 |
Prosthesis stenosis | 3 (1.0) | 1 (0.7) | 2 (1.4) | |
Prosthesis insufficiency | 6 (2.0) | 4 (2.6) | 2 (1.4) | |
Prosthesis endocarditis | 3 (1.0) | 2 (1.3) | 1 (0.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourad, F.; Haddad, A.; Nowak, J.; Elbarraki, M.; Elhmidi, Y.; Jasarevic, M.; Marx, P.; Demircioglu, E.; Wendt, D.; Thielmann, M.; et al. Impact of Non-Valvular Non-Coronary Concomitant Procedures on Outcomes of Surgical Aortic Valve Replacement in Intermediate Risk Patients. J. Clin. Med. 2021, 10, 5592. https://doi.org/10.3390/jcm10235592
Mourad F, Haddad A, Nowak J, Elbarraki M, Elhmidi Y, Jasarevic M, Marx P, Demircioglu E, Wendt D, Thielmann M, et al. Impact of Non-Valvular Non-Coronary Concomitant Procedures on Outcomes of Surgical Aortic Valve Replacement in Intermediate Risk Patients. Journal of Clinical Medicine. 2021; 10(23):5592. https://doi.org/10.3390/jcm10235592
Chicago/Turabian StyleMourad, Fanar, Ali Haddad, Janine Nowak, Mohamed Elbarraki, Yacine Elhmidi, Marinela Jasarevic, Philipp Marx, Ender Demircioglu, Daniel Wendt, Matthias Thielmann, and et al. 2021. "Impact of Non-Valvular Non-Coronary Concomitant Procedures on Outcomes of Surgical Aortic Valve Replacement in Intermediate Risk Patients" Journal of Clinical Medicine 10, no. 23: 5592. https://doi.org/10.3390/jcm10235592
APA StyleMourad, F., Haddad, A., Nowak, J., Elbarraki, M., Elhmidi, Y., Jasarevic, M., Marx, P., Demircioglu, E., Wendt, D., Thielmann, M., Schmack, B., Ruhparwar, A., & Shehada, S.-E. (2021). Impact of Non-Valvular Non-Coronary Concomitant Procedures on Outcomes of Surgical Aortic Valve Replacement in Intermediate Risk Patients. Journal of Clinical Medicine, 10(23), 5592. https://doi.org/10.3390/jcm10235592