Predicting the Exception—CRP and Primary Hip Arthroplasty
Abstract
:- Seven hundred and eight patients over four years with a primary hip arthroplasty were retrospectively evaluated.
- On days 11 and 14 post operation, the CRP values were higher in the group with an early infection.
- As a single parameter, maximum CRP predicts an early infection with 75% sensitivity.
- A multinominal logistic regression can predict an early infection with a sensitivity and specificity of 87.50% and 78.85%, respectively.
- This is the first mathematical prediction of early acute periprosthetic infection in primary hip arthroplasty.
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Determination of Peak Value
2.5. Postoperative Kinetics
2.6. Determination of Variables for the Events “Peak CRP” and “Infection”
2.7. Statistics
3. Results
3.1. Cohort Characteristics: Non-Infection vs. Infection
3.2. Cohort Characteristics: Anterolateral vs. Posterior Approach
3.3. Prediction of Postoperative CRP Kinetics
3.4. Prediction of an Infection: Single Variables
3.4.1. Maximum CRP
3.4.2. Second Peak, Failure to Decline
3.5. Prediction of an Infection: Binary Logistic Regression
3.6. Prediction of an Infection: Multinominal Logistic Regression
3.7. Patients with Infections
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistisches Bundesamt. Gesundheit: Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Operationen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern 2019; Statistisches Bundesamt: Wiesbaden, Germany, 2017.
- Nowossadeck, E. Population aging and hospitalization for chronic disease in Germany. Dtsch. Arztebl. Int. 2012, 109, 151–157. [Google Scholar] [CrossRef]
- Pilz, V.; Hanstein, T.; Skripitz, R. Projections of primary hip arthroplasty in Germany until 2040. Acta Orthop. 2018, 89, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamath, A.F.; Ong, K.L.; Lau, E.; Chan, V.; Vail, T.P.; Rubash, H.E.; Berry, D.J.; Bozic, K.J. Quantifying the Burden of Revision Total Joint Arthroplasty for Periprosthetic Infection. J. Arthroplasty 2015, 30, 1492–1497. [Google Scholar] [CrossRef]
- Steinbrück, A.; Grimberg, A.W.; Elliott, J.; Melsheimer, O.; Jansson, V. Kurz- vs. Normalschaft bei zementfreier Hüfttotalendoprothese: Eine evidenzbasierte Register-Analyse zum mittelfristigen Überleben. Orthopade 2021, 50, 296–305. [Google Scholar] [CrossRef]
- Gundtoft, P.H.; Pedersen, A.B.; Varnum, C.; Overgaard, S. Increased Mortality After Prosthetic Joint Infection in Primary THA. Clin. Orthop. Relat. Res. 2017, 475, 2623–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.; Navale, S.M.; Nageeb, E.M.; Curtis, G.L.; Klika, A.K.; Barsoum, W.K.; Mont, M.A.; Higuera, C.A. Etiology of Above-knee Amputations in the United States: Is Periprosthetic Joint Infection an Emerging Cause? Clin. Orthop. Relat. Res. 2018, 476, 1951–1960. [Google Scholar] [CrossRef] [PubMed]
- Guren, E.; Figved, W.; Frihagen, F.; Watne, L.O.; Westberg, M. Prosthetic joint infection-a devastating complication of hemiarthroplasty for hip fracture. Acta Orthop. 2017, 88, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zmistowski, B.; Karam, J.A.; Durinka, J.B.; Casper, D.S.; Parvizi, J. Periprosthetic joint infection increases the risk of one-year mortality. J. Bone Joint Surg. Am. 2013, 95, 2177–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragsted, C.; Aagaard, T.; Ohrt-Nissen, S.; Gehrchen, M.; Dahl, B. Mortality and health-related quality of life in patients surgically treated for spondylodiscitis. J. Orthop. Surg. 2017, 25, 2309499017716068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-H.; Lee, S.-H.; Lin, Y.-C.; Wang, Y.-C.; Chang, C.-J.; Hsieh, P.-H. Increased periprosthetic hip and knee infection projected from 2014 to 2035 in Taiwan. J. Infect. Public Health 2020, 13, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplasty 2012, 27, 61–65.e1. [Google Scholar] [CrossRef] [PubMed]
- Vergison, L.; Schepens, A.; Liekens, K.; de Kesel, R.; van der Bracht, H.; Victor, J. Periprosthetic joint infection of a total hip arthroplasty with Candida parapsilosis. Int. J. Surg. Case Rep. 2020, 69, 72–75. [Google Scholar] [CrossRef]
- Pellegrini, A.; Suardi, V.; Legnani, C. Classification and management options for prosthetic joint infection. Ann. Joint 2021. [Google Scholar] [CrossRef]
- Rupp, M.; Kerschbaum, M.; Freigang, V.; Bärtl, S.; Baumann, F.; Trampuz, A.; Alt, V. PJI-TNM als neues Klassifikationssystem für Endoprotheseninfektionen: Eine Evaluation von 20 Fällen. Orthopade 2021, 50, 198–206. [Google Scholar] [CrossRef]
- Compté, N.; Dumont, L.; Bron, D.; de Breucker, S.; Praet, J.-P.; Bautmans, I.; Pepersack, T. White blood cell counts in a geriatric hospitalized population: A poor diagnostic marker of infection. Exp. Gerontol. 2018, 114, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Deirmengian, G.K.; Zmistowski, B.; Jacovides, C.; O’Neil, J.; Parvizi, J. Leukocytosis is common after total hip and knee arthroplasty. Clin. Orthop. Relat. Res. 2011, 469, 3031–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrindt, O.; Schmelzer, L.; Müller, M.; Perka, C.-F. Geringe Diagnostische Wertigkeit des CRP bei Low-Grade Infektionen von Hüftendoprothesen. In Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2014); German Medical Science GMS Publishing House: Moscow, Russia, 2014. [Google Scholar]
- Mitbreĭt, I.M.; Lavrishcheva, G.I.; Khorkin, N.N. Reparativnyĭ osteogenez pri perelome kosteĭ pod vliianiem vozdeĭstviia v rannem periode travmy élektricheskogo polia UVCh v éksperimente i klinike. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 1991, 6, 49–53. [Google Scholar]
- Tsukayama, D.T.; Estrada, R.; Gustilo, R.B. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J. Bone Joint Surg. Am. 1996, 78, 512–523. [Google Scholar] [CrossRef]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühlhofer, H.M.L.; Gollwitzer, H.; Lenze, F.; Feihl, S.; Pohlig, F.; von Eisenhart-Rothe, R.; Schauwecker, J. Periprothetischer Infekt des Hüftgelenks: Klinisches Vorgehen. Orthopade 2015, 44, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Tornero, E.; Soriano, A. Importance of selection and duration of antibiotic regimen in prosthetic joint infections treated with debridement and implant retention-authors’ response. J. Antimicrob. Chemother. 2016, 71, 3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Maio, F.; Fidone, G.; Caterini, A.; Gorgolini, G.; Petrungaro, L.; Farsetti, P. Monitoring of C-reactive protein level (CRP) and Erythrocyte sedimentation rate (ESR) after total hip and knee arthroplasty. J. Biol. Regul. Homeost. Agents 2020, 34, 63–68. [Google Scholar] [PubMed]
- Iorio, R.; Viglietta, E.; Mazza, D.; Iannotti, F.; Nicolosi, I.; Carrozzo, A.; Speranza, A.; Ferretti, A. Do serum markers correlate with invasiveness of the procedure in THA? A prospective randomized study comparing direct anterior and lateral approaches. Orthop. Traumatol. Surg. Res. 2021, 102937. [Google Scholar] [CrossRef] [PubMed]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.W.; Solomkin, J.S.; Edwards, M.J. Updated recommendations for control of surgical site infections. Ann. Surg. 2011, 253, 1082–1093. [Google Scholar] [CrossRef]
- Mehta, J.A.; Sable, S.A.; Nagral, S. Updated recommendations for control of surgical site infections. Ann. Surg. 2015, 261, e65. [Google Scholar] [CrossRef] [PubMed]
- Saul, D.; Hünicke, P.; Böker, K.O.; Spering, C.; Maheshwari, A.K.; Acharya, M.; Lehmann, W. Predicting the disaster—The role of CRP in acetabular surgery. Clin. Biochem. 2021, 94, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Hoeller, S.; Roch, P.J.; Weiser, L.; Hubert, J.; Lehmann, W.; Saul, D. C-reactive protein in spinal surgery: More predictive than prehistoric. Eur. Spine J. 2021, 30, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Garfield, K.; Noble, S.; Lenguerrand, E.; Whitehouse, M.R.; Sayers, A.; Reed, M.R.; Blom, A.W. What are the inpatient and day case costs following primary total hip replacement of patients treated for prosthetic joint infection: A matched cohort study using linked data from the National Joint Registry and Hospital Episode Statistics. BMC Med. 2020, 18, 335. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, J.W.; Moon, S.Y.; Lee, Y.K.; Ha, Y.C.; Koo, K.H. Current and Future Burden of Periprosthetic Joint Infection from National Claim Database. J. Korean Med. Sci. 2020, 35, e410. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, F.; Prati, P.; Fidanza, A.; Iorio, R.; Ferretti, A.; Pèrez Prieto, D.; Kort, N.; Violante, B.; Pipino, G.; Schiavone Panni, A.; et al. Prevention of Periprosthetic Joint Infection (PJI): A Clinical Practice Protocol in High-Risk Patients. Trop. Med. Infect. Dis. 2020, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- Goswami, K.; Parvizi, J.; Maxwell Courtney, P. Current Recommendations for the Diagnosis of Acute and Chronic PJI for Hip and Knee-Cell Counts, Alpha-Defensin, Leukocyte Esterase, Next-generation Sequencing. Curr. Rev. Musculoskelet. Med. 2018, 11, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, L.; Wang, J.; Hu, N.; Huang, W. Combined serum and synovial C-reactive protein tests: A valuable adjunct to the diagnosis of chronic prosthetic joint infection. BMC Musculoskelet. Disord. 2021, 22, 670. [Google Scholar] [CrossRef] [PubMed]
- Vanhegan, I.S.; Malik, A.K.; Jayakumar, P.; Ul Islam, S.; Haddad, F.S. A financial analysis of revision hip arthroplasty: The economic burden in relation to the national tariff. J. Bone Joint Surg. Br. 2012, 94, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; George, J.; Faour, M.; Klika, A.K.; Higuera, C.A. Serum biomarkers in periprosthetic joint infections. Bone Joint Res. 2018, 7, 85–93. [Google Scholar] [CrossRef]
- Lim, S.-J.; Choi, K.-H.; Lee, J.H.; Jung, J.Y.; Han, W.; Lee, B.H. Different Kinetics of Perioperative CRP after Hip Arthroplasty for Elderly Femoral Neck Fracture with Elevated Preoperative CRP. Biomed Res. Int. 2018, 2018, 2140105. [Google Scholar] [CrossRef] [PubMed]
- Akgün, D.; Müller, M.; Perka, C.; Winkler, T. The serum level of C-reactive protein alone cannot be used for the diagnosis of prosthetic joint infections, especially in those caused by organisms of low virulence. Bone Joint J. 2018, 100, 1482–1486. [Google Scholar] [CrossRef]
- Praz, C.; Gubbiotti, L.; Buia, G.; Chapus, V.; Dunet, J.; Grandhomme, F.; Michon, J.; Rochcongar, G.; Hulet, C. Value of the synovial C-reactive protein test in the diagnosis of total hip and knee periprosthetic joint infections: A case-control study. Orthop. Traumatol. Surg. Res. 2021, 107, 102903. [Google Scholar] [CrossRef]
- Sigmund, I.K.; Holinka, J.; Staats, K.; Sevelda, F.; Lass, R.; Kubista, B.; Giurea, A.; Windhager, R. Inferior performance of established and novel serum inflammatory markers in diagnosing periprosthetic joint infections. Int. Orthop. 2021, 45, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Van den Kieboom, J.; Tirumala, V.; Xiong, L.; Klemt, C.; Kwon, Y.-M. Concomitant Hip and Knee Periprosthetic Joint Infection in Periprosthetic Fracture: Diagnostic Utility of Serum and Synovial Fluid Markers. J. Arthroplasty 2021, 36, 722–727. [Google Scholar] [CrossRef]
- Kim, S.-J.; Cho, Y.J. Current Guideline for Diagnosis of Periprosthetic Joint Infection: A Review Article. Hip Pelvis 2021, 33, 11–17. [Google Scholar] [CrossRef] [PubMed]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection. Bone Joint J. 2021, 103, 18–25. [Google Scholar] [CrossRef]
- Tubb, C.C.; Polkowksi, G.G.; Krause, B. Diagnosis and Prevention of Periprosthetic Joint Infections. J. Am. Acad. Orthop. Surg. 2020, 28, e340–e348. [Google Scholar] [CrossRef] [PubMed]
- Berbari, E.; Mabry, T.; Tsaras, G.; Spangehl, M.; Erwin, P.J.; Murad, M.H.; Steckelberg, J.; Osmon, D. Inflammatory blood laboratory levels as markers of prosthetic joint infection: A systematic review and meta-analysis. J. Bone Joint Surg. Am. 2010, 92, 2102–2109. [Google Scholar] [CrossRef] [PubMed]
- Gołąbek-Dropiewska, K.; Pawłowska, J.; Witkowski, J.; Lasek, J.; Marks, W.; Stasiak, M.; Jaskólski, D.; Kawecka, A.; Łuczkiewicz, P.; Baczkowski, B. Analysis of selected pro- and anti-inflammatory cytokines in patients with multiple injuries in the early period after trauma. Cent. Eur. J. Immunol. 2018, 43, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdemli, B.; Özbek, E.A.; Başarir, K.; Karahan, Z.C.; Öcal, D.; Biriken, D. Proinflammatory biomarkers’ level and functional genetic polymorphisms in periprosthetic joint infection. Acta Orthop. Traumatol. Turc. 2018, 52, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Schutz, R.; Boukebous, B.; Boutroux, P.; Guillon, P. C-reactive protein levels for early detection of early postoperative complications after proximal femoral fracture surgery. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 907–913. [Google Scholar] [CrossRef]
- Klim, S.M.; Amerstorfer, F.; Glehr, G.; Hauer, G.; Smolle, M.A.; Leitner, L.; Leithner, A.; Glehr, M. Combined serum biomarker analysis shows no benefit in the diagnosis of periprosthetic joint infection. Int. Orthop. 2020, 44, 2515–2520. [Google Scholar] [CrossRef]
- Schinsky, M.F.; Della Valle, C.J.; Sporer, S.M.; Paprosky, W.G. Perioperative testing for joint infection in patients undergoing revision total hip arthroplasty. J. Bone Joint Surg. Am. 2008, 90, 1869–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.E.; Wallis, J.A.; Taylor, N.F.; Holden, C.T.; Marks, P.; Smith, C.L.; Armstrong, M.S.; Singh, P.J. A Prospective Randomized Clinical Trial in Total Hip Arthroplasty-Comparing Early Results between the Direct Anterior Approach and the Posterior Approach. J. Arthroplasty 2017, 32, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Higgins, B.T.; Barlow, D.R.; Heagerty, N.E.; Lin, T.J. Anterior vs. posterior approach for total hip arthroplasty, a systematic review and meta-analysis. J. Arthroplasty 2015, 30, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, W.; Bingham, R.; Lorimer, M.; Hatton, A.; de Steiger, R.N. Early Rate of Revision of Total Hip Arthroplasty Related to Surgical Approach: An Analysis of 122,345 Primary Total Hip Arthroplasties. J. Bone Joint Surg. Am. 2020, 102, 1874–1882. [Google Scholar] [CrossRef]
- Moerenhout, K.; Derome, P.; Laflamme, G.Y.; Leduc, S.; Gaspard, H.S.; Benoit, B. Direct anterior versus posterior approach for total hip arthroplasty: A multicentre, prospective, randomized clinical trial. Can. J. Surg. 2020, 63, E412–E417. [Google Scholar] [CrossRef]
- Petis, S.; Howard, J.L.; Lanting, B.L.; Vasarhelyi, E.M. Surgical approach in primary total hip arthroplasty: Anatomy, technique and clinical outcomes. Can. J. Surg. 2015, 58, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putananon, C.; Tuchinda, H.; Arirachakaran, A.; Wongsak, S.; Narinsorasak, T.; Kongtharvonskul, J. Comparison of direct anterior, lateral, posterior and posterior-2 approaches in total hip arthroplasty: Network meta-analysis. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.; Goralski, S.; Pempe, C. Zugangswege Hüftendoprothetik—Anterolateraler Zugang in Rückenlage. Orthopädie Unf. Up2date 2021, 16, 43–66. [Google Scholar] [CrossRef]
- Nogler, M.; Thaler, M. Operative Zugangswege zur Hüfte beim älteren Menschen. Orthopade 2017, 46, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claes, L.; Kirschner, P.; Perka, C.; Rudert, M. AE-Manual der Endoprothetik: Hüfte und Hüftrevision; Arbeitsgemeinschaft Endoprothetik: Berlin, Heidelberg, 2012; ISBN 978-3-642-14646-6. [Google Scholar]
- Wagner, M.; Breusch, S.; Ewerbeck, V.; Aldinger, P.; Rudert, M.; Holzapfel, B.M.; Günther, K.-P.; Gotterbarm, T.; Kirschner, P.; Halder, A.M.; et al. Operation. In AE-Manual der Endoprothetik; Claes, L., Kirschner, P., Perka, C., Rudert, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 161–323. ISBN 978-3-642-14645-9. [Google Scholar]
- Wang, G.; Gu, G.; Li, D.; Sun, D.; Zhang, W.; Wang, T. Comparative study of anterolateral approach versus posterior approach for total hip replacement in the treatment of femoral neck fractures in elderly patients. Chin. J. Traumatol. 2010, 13, 234–239. [Google Scholar]
- Shohat, N.; Goswami, K.; Clarkson, S.; Chisari, E.; Breckenridge, L.; Gursay, D.; Tan, T.L.; Parvizi, J. Direct Anterior Approach to the Hip Does Not Increase the Risk for Subsequent Periprosthetic Joint Infection. J. Arthroplasty 2021, 36, 2038–2043. [Google Scholar] [CrossRef]
- Maezawa, K.; Nozawa, M.; Gomi, M.; Sugimoto, M.; Maruyama, Y. Changes in serum creatine kinase and C-reactive protein after posterior and direct anterior approaches in total hip arthroplasty. Hip Int. 2020. [Google Scholar] [CrossRef]
Parameter | Non-Infection (±SD) (n = 700) | Infection (±SD) (n = 8) | p-Value | |
---|---|---|---|---|
Age (years) | 71.18 (±11.92) | 68.38 (±6.02) | 0.325 (n.s.) 1 | |
Sex | 0.026 (*) 2 | |||
Male | 44.86% | 87.5% | ||
Female | 55.14% | 12.5% | ||
BMI (kg/m2) | 27.08 (±5.40) | 27.57 (±4.29) | 0.382 (n.s.) 1 | |
Days until surgery | 1.66 (±3.19) | 3.38 (±5.01) | 0.237 (n.s.) 1 | |
Days in hospital (total) | 11.94 (±5.67) | 29.25 (±22.89) | 0.053 (n.s.) 1 | |
Days in hospital (postop) | 10.30 (±4.25) | 25.86 (±20.95) | 0.044 (*) 1 | |
Time operation (min) | 106.04 (±37.65) | 117.8 (±53.96) | 0.655 (n.s.) 1 | |
Preoperative CRP (mean) | 13.07 (±25.90) | 23.24 (±41.99) | 0.806 (n.s.) 1 | |
Preoperative CRP (max) | 14.17 (±28.30) | 29.49 (±58.57) | 0.821 (n.s.) 1 | |
Postoperative CRP (max) | 97.60 (±60.95) | 143.38 (±72.31) | 0.046 (*) 1 | |
Postoperative CRP (mean) | 65.89 (±37.57) | 82.92 (±42.20) | 0.200 (n.s.) 1 | |
CRP overall (max) | 98.06 (±60.99) | 143.38(±72.31) | 0.049 (*) 1 | |
CRP overall (mean) | 52.41 (±33.10) | 73.40 (±41.77) | 0.109 (n.s.) 1 | |
Average day of 2nd CRP peak | 9.46 (±3.15) | 8.25 (±3.20) | 0.516 (n.s.) 1 | |
Preoperative WBC (mean) | 8.45 (±3.89) | 7.59 (±2.55) | 0.390 (n.s.) 1 | |
Postoperative WBC (max) | 10.41 (±5.11) | 11.01 (±5.30) | 0.829 (n.s.) 1 | |
WBC overall (max) | 10.93 (±5.54) | 11.28 (±5.24) | 0.923 (n.s.) 1 | |
Preoperative Hb (mean) | 13.43 (±2.06) | 12.32 (±1.89) | 0.105 (n.s.) 1 | |
Postoperative Hb (max) | 11.07 (±3.00) | 10.05 (±0.86) | 0.130 (n.s.) 1 | |
Hb overall (max) | 13.71 (±3.04) | 12.4 (±1.71) | 0.103 (n.s.) 1 | |
Approach | 0.151 (n.s.) 3 | |||
Anterolateral (Watson-Jones) | 50.86% | 25% | ||
posterior | 40.71% | 50% | ||
Lateral (Bauer) | 4.71% | 25% | ||
Anterior intrapelvic (STOPPA) | 0% | 0% | ||
Kocher-Langenbeck | 0.14% | 0% | ||
anterior | 0.29% | 0% | ||
Emergency-Ind? | 0.724 (n.s.) 2 | |||
Yes | 33.00% | 37.50% | ||
No | 67.00% | 62.50% | ||
Indication | 1.000 (n.s.) 2 | |||
Trauma | 34.29% | 37.5% | ||
Other | 65.71% | 62.5% | ||
2nd CRP peak | 0.013 (*) 2 | |||
yes | 12.86% | 50% | ||
no | 87.14% | 50% |
Parameter | Anterolateral (±SD) (n = 358) | Posterior (±SD) (n = 289) | p-Value | |
---|---|---|---|---|
Age (years) | 73.74 (±11.69) | 67.51 (±11.46) | <0.0001 (****) 1 (n.s.) 1 | |
Sex | 0.026 (*) 2 | |||
Male | 42.46% | 49.66% | ||
Female | 57.54% | 50.34% | ||
BMI (kg/m2) | 25.92 (±4.58) | 28.63 (±6.16) | <0.0001 (****) 1 | |
Days until surgery | 1.43 (±2.42) | 2.10 (±4.17) | <0.0001 (****) 1 | |
Days in hospital (total) | 11.64 (±5.82) | 13.03 (±7.02) | 0.002 (**) 1 | |
Days in hospital (postop) | 10.25 (±4.94) | 10.93 (±4.98) | 0.022 (*) 1 | |
Time operation (min) | 105.69 (±36.43) | 108.23 (±41.18) | 0.391 (n.s.) 1 | |
Preoperative CRP (mean) | 13.89 (±25.35) | 11.95 (±25.22) | 0.371 (n.s.) 1 | |
Preoperative CRP (max) | 15.30 (±28.28) | 13.99 (±28.33) | 0.459 (n.s.) 1 | |
Postoperative CRP (max) | 102.47 (±59.63) | 93.90 (±63.91) | 0.009 (**) 1 | |
Postoperative CRP (mean) | 67.26 (±35.59) | 65.34 (±41.01) | 0.090 (n.s.) 1 | |
CRP overall (max) | 102.77 (±59.47) | 94.42 (±64.15) | 0.009 (**) 1 | |
CRP overall (mean) | 53.84 (±31.40) | 51.68 (±36.18) | 0.072 (n.s.) 1 | |
Average day of 2nd peak | 9.45 (±3.06) | 9.39 (±3.37) | 0.749 (n.s.) 1 | |
Preoperative WBC (mean) | 8.88 (±4.70) | 7.80 (±2.52) | 0.001 (**) 1 | |
Postoperative WBC (max) | 10.55 (±4.10) | 10.32 (±6.43) | 0.002 (**) 1 | |
WBC overall (max) | 11.18 (±4.99) | 10.64 (±6.45) | <0.0001 (****) 1 | |
Preoperative Hb (mean) | 13.43 (±1.89) | 13.45 (±2.35) | 0.638 (n.s.) 1 | |
Postoperative Hb (max) | 10.93 (±2.69) | 11.29 (±3.44) | 0.125 (n.s.) 1 | |
Hb overall (max) | 13.64 (±2.64) | 13.85 (±3.60) | 0.910 (n.s.) 1 | |
Infection | 0.415 (n.s.) ³ | |||
Yes | 0.56% | 1.38% | ||
No | 99.44% | 98.62% | ||
2nd peak | 0.389 (n.s.) 2 | |||
yes | 14.80% | 12.46% | ||
no | 85.20% | 87.54% |
Independent Variable | Standardized Coefficients β | p-Value |
---|---|---|
CRP (preop mean) | 0.272 | 0.000 (****) |
Appearance of a 2nd peak | 0.216 | 0.000 (****) |
Age | 0.161 | 0.001 (**) |
Postoperative days in hospital | 0.126 | 0.008 (**) |
Failure to decline on day 5 | −0.125 | 0.006 (**) |
Gender (1 = m) | −0.110 | 0.015 (*) |
Covariate Variable | Exp | p-Value |
---|---|---|
Second peak | 0.087 | 0.186 (n.s.) |
CRP max | 1.004 | 0.410 (n.s.) |
BMI | 1.030 | 0.764 (n.s.) |
Sex | 0.222 | 0.217 (n.s.) |
CRP (preop mean) | 1.024 | 0.035 (*) |
CRP (max day) | 1.464 | 0.008 (**) |
Pat. | Peak (Day) | Peak (mg/L) | Specimen | 2nd CRP Peak (Day) | Failure to Decline? | Predicted CRP (mg/L) | Actual CRP (mg/L) |
---|---|---|---|---|---|---|---|
1 | 11 | 256.4 | S. aureus | No | 165.81 (day 4) | - | |
2 | 6 | 91.5 | S. aureus | No | 59.17 (day 4) | - | |
3 | 6 | 105.1 | P. aeroginosa | Yes | 67.96 (day 4) | 96.60 | |
4 | 6 | 63.4 | S. aureus | No | 41.00 (day 4) | - | |
5 | 1 | 139.1 | S. aureus | No | 89.95 (day 4) | 28.30 | |
6 | 5 | 74.6 | Staphylococcus saccharolyticus | Yes | 53.93 (day 3) | 68.9 | |
7 | 14 | 203.2 | Enterococcus | 11 | No | 131.4 (day 4) | - |
8 | 1 | 213.7 | P. aeroginosa | No | 138.19 (day 4) | 129.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, M.-P.; Bauer, I.J.; Maheshwari, A.K.; Husen, M.; Jäckle, K.; Hubert, J.; Hawellek, T.; Lehmann, W.; Saul, D. Predicting the Exception—CRP and Primary Hip Arthroplasty. J. Clin. Med. 2021, 10, 4985. https://doi.org/10.3390/jcm10214985
Meier M-P, Bauer IJ, Maheshwari AK, Husen M, Jäckle K, Hubert J, Hawellek T, Lehmann W, Saul D. Predicting the Exception—CRP and Primary Hip Arthroplasty. Journal of Clinical Medicine. 2021; 10(21):4985. https://doi.org/10.3390/jcm10214985
Chicago/Turabian StyleMeier, Marc-Pascal, Ina Juliana Bauer, Arvind K. Maheshwari, Martin Husen, Katharina Jäckle, Jan Hubert, Thelonius Hawellek, Wolfgang Lehmann, and Dominik Saul. 2021. "Predicting the Exception—CRP and Primary Hip Arthroplasty" Journal of Clinical Medicine 10, no. 21: 4985. https://doi.org/10.3390/jcm10214985
APA StyleMeier, M.-P., Bauer, I. J., Maheshwari, A. K., Husen, M., Jäckle, K., Hubert, J., Hawellek, T., Lehmann, W., & Saul, D. (2021). Predicting the Exception—CRP and Primary Hip Arthroplasty. Journal of Clinical Medicine, 10(21), 4985. https://doi.org/10.3390/jcm10214985