Effects of Head and Neck Position on Nasotracheal Tube Intracuff Pressure: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anesthetic Management and Measurements
2.3. Study Endpoints
2.4. Statistical Analysis
2.5. Sample Number Calculation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seegobin, R.D.; van Hasselt, G.L. Endotracheal cuff pressure and tracheal mucosal blood flow: Endoscopic study of effects of four large volume cuffs. Br. Med. J. (Clin. Res. Ed.) 1984, 288, 965–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouadma, L.; Wolff, M.; Lucet, J.C. Ventilator-associated pneumonia and its prevention. Curr. Opin. Infect. Dis. 2012, 25, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Gong, W.; Li, S.; Wang, F.; Fu, S.; Zhang, M.; Hang, Y. Correlations between controlled endotracheal tube cuff pressure and postprocedural complications: A multicenter study. Anesth. Analg. 2010, 111, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Combes, X.; Schauvliege, F.; Peyrouset, O.; Motamed, C.; Kirov, K.; Dhonneur, G.; Duvaldestin, P. Intracuff pressure and tracheal morbidity: Influence of filling with saline during nitrous oxide anesthesia. Anesthesiology 2001, 95, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Coorey, A.; Brimacombe, J.; Keller, C. Saline as an alternative to air for filling the laryngeal mask airway cuff. Br. J. Anaesth. 1998, 81, 398–400. [Google Scholar] [CrossRef] [Green Version]
- Rosero, E.B.; Ozayar, E.; Eslava-Schmalbach, J.; Minhajuddin, A.; Joshi, G.P. Effects of Increasing Airway Pressures on the Pressure of the Endotracheal Tube Cuff During Pelvic Laparoscopic Surgery. Anesth. Analg. 2018, 127, 120–125. [Google Scholar] [CrossRef]
- Okgun Alcan, A.; van Yavuz Giersbergen, M.; Dincarslan, G.; Hepcivici, Z.; Kaya, E.; Uyar, M. Effect of patient position on endotracheal cuff pressure in mechanically ventilated critically ill patients. Aust. Crit. Care 2017, 30, 267–272. [Google Scholar] [CrossRef]
- Kako, H.; Goykhman, A.; Ramesh, A.S.; Krishna, S.G.; Tobias, J.D. Changes in intracuff pressure of a cuffed endotracheal tube during prolonged surgical procedures. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 76–79. [Google Scholar] [CrossRef]
- Kim, J.E.; Nam, Y.T.; Chae, Y.H. The Effect of the Body Position and CO2 Gas Insufflation on Airway Pressure and Compliance in Normal Subjects during Laparoscopy or Pelviscopy. Korean J. Anesthesiol. 1999, 36, 802–807. [Google Scholar] [CrossRef]
- Wu, C.Y.; Yeh, Y.C.; Wang, M.C.; Lai, C.H.; Fan, S.Z. Changes in endotracheal tube cuff pressure during laparoscopic surgery in head-up or head-down position. BMC Anesthesiol. 2014, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Aeppli, N.; Lindauer, B.; Steurer, M.P.; Weiss, M.; Dullenkopf, A. Endotracheal tube cuff pressure changes during manual cuff pressure control manoeuvres: An in-vitro assessment. Acta Anaesthesiol. Scand. 2019, 63, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Lorente, L.; Ferrer, M.; Rouzé, A.; Gonzalez, O.; Bassi, G.L.; Duhamel, A.; Torres, A. Continuous control of tracheal cuff pressure for VAP prevention: A collaborative meta-analysis of individual participant data. Ann. Intensive Care 2015, 5, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S. Comparison of the cuff pressures of a TaperGuard endotracheal tube during ipsilateral and contralateral rotation of the head: A randomized prospective study. Medicine 2018, 97, e12702. [Google Scholar] [CrossRef]
- Komasawa, N.; Mihara, R.; Imagawa, K.; Hattori, K.; Minami, T. Comparison of Pressure Changes by Head and Neck Position between High-Volume Low-Pressure and Taper-Shaped Cuffs: A Randomized Controlled Trial. BioMed Res. Int. 2015, 2015, 386080. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, Y.H.; Kim, E.; Oh, E.A.; Jeon, Y.T.; Park, H.P. Comparison of the endotracheal tube cuff pressure between a tapered- versus a cylindrical-shaped cuff after changing from the supine to the lateral flank position. Can. J. Anaesth. 2015, 62, 1063–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tailleur, R.; Bathory, I.; Dolci, M.; Frascarolo, P.; Kern, C.; Schoettker, P. Endotracheal tube displacement during head and neck movements. Observational clinical trial. J. Clin. Anesth. 2016, 32, 54–58. [Google Scholar] [CrossRef]
- Kako, H.; Krishna, S.G.; Ramesh, A.S.; Merz, M.N.; Elmaraghy, C.; Grischkan, J.; Jatana, K.R.; Ruda, J.; Tobias, J.D. The relationship between head and neck position and endotracheal tube intracuff pressure in the pediatric population. Paediatr. Anaesth. 2014, 24, 316–321. [Google Scholar] [CrossRef]
- Jordi Ritz, E.M.; Von Ungern-Sternberg, B.S.; Keller, K.; Frei, F.J.; Erb, T.O. The impact of head position on the cuff and tube tip position of preformed oral tracheal tubes in young children. Anaesthesia 2008, 63, 604–609. [Google Scholar] [CrossRef]
- Hartrey, R.; Kestin, I.G. Movement of oral and nasal tracheal tubes as a result of changes in head and neck position. Anaesthesia 1995, 50, 682–687. [Google Scholar] [CrossRef]
- Hall, C.E.; Shutt, L.E. Nasotracheal intubation for head and neck surgery. Anaesthesia 2003, 58, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Kako, H.; Alkhatib, O.; Krishna, S.G.; Khan, S.; Naguib, A.; Tobias, J.D. Changes in intracuff pressure of a cuffed endotracheal tube during surgery for congenital heart disease using cardiopulmonary bypass. Paediatr. Anaesth. 2015, 25, 705–710. [Google Scholar] [CrossRef]
- Brimacombe, J.; Keller, C.; Giampalmo, M.; Sparr, H.J.; Berry, A. Direct measurement of mucosal pressures exerted by cuff and non-cuff portions of tracheal tubes with different cuff volumes and head and neck positions. Br. J. Anaesth. 1999, 82, 708–711. [Google Scholar] [CrossRef]
- Yamanaka, H.; Tsukamoto, M.; Hitosugi, T.; Yokoyama, T. Changes in nasotracheal tube depth in response to head and neck movement in children. Acta Anaesthesiol. Scand. 2018, 62, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Bernet, V.; Dullenkopf, A.; Cannizzaro, V.; Stutz, K.; Weiss, M. An in vitro study of the compliance of paediatric tracheal tube cuffs and tracheal wall pressure. Anaesthesia 2006, 61, 978–983. [Google Scholar] [CrossRef]
- Matsuki, Y.; Matsuura, N.; Ichinohe, T. Effect of Cuff Pressure Elevation on Internal Diameter of Tracheal Tube in Simulated Trachea. Bull. Tokyo Dent. Coll. 2016, 57, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, A.; Hegarty, M.; Erb, T.O.; von Ungern-Sternberg, B.S. Predictors of postoperative sore throat in intubated children. Paediatr. Anaesth. 2012, 22, 239–243. [Google Scholar] [CrossRef]
- Özcan, A.T.D.; Döğer, C.; But, A.; Kutlu, I.; Aksoy, Ş.M. Comparison of endotracheal tube cuff pressure values before and after training seminar. J. Clin. Monit. Comput. 2018, 32, 527–531. [Google Scholar] [CrossRef]
- Giusti, G.D.; Rogari, C.; Gili, A.; Nisi, F. Cuff pressure monitoring by manual palpation in intubated patients: How accurate is it? A manikin simulation study. Aust. Crit. Care 2017, 30, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Michlig, S.A. Anaesthetic staff cannot identify extremely high tracheal tube cuff pressures by palpation of the pilot balloon. Br. J. Anaesth. 2013, 111, 300–301. [Google Scholar] [CrossRef] [Green Version]
- Pisano, A.; Verniero, L.; Galdieri, N.; Corcione, A. Assessing the correct inflation of the endotracheal tube cuff: A larger pilot balloon increases the sensitivity of the ‘finger-pressure’ technique, but it remains poorly reliable in clinical practice. J. Clin. Monit. Comput. 2019, 33, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Pisano, A. Pitfalls From Physics: Why We Can’t “Feel” the Tube Cuff Pressure With Our Fingers. Anesth. Analg. 2017, 124, 1368. [Google Scholar] [CrossRef] [PubMed]
- Spapen, H.D.; Suys, E.; Diltoer, M.; Stiers, W.; Desmet, G.; Honoré, P.M. A newly developed tracheal tube offering ‘pressurised sealing’ outperforms currently available tubes in preventing cuff leakage: A benchtop study. Eur. J. Anaesthesiol. 2017, 34, 411–416. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 50) |
---|---|
Age, y | 35.2 ± 13.8 |
Sex (M/F) | 28 (56%)/22 (44%) |
Weight, kg | 69.7 ± 15.1 |
Height, cm | 168.4 ± 8.4 |
Body mass index, kg/m2 | 24.5 ± 4.3 |
Nasotracheal tube size (6/6.5/7), internal diameter (mm) | 22/21/7 |
American Society of Anesthesiologists class, 1/2/3 | 39 (78%)/9 (18%)/2 (4%) |
Parameter | Initial Neutral Position |
---|---|
Intracuff pressure (cm H2O) | 42.2 [29.6–73.1] |
Range of intracuff pressure (cm H2O) | 15.0–178.2 |
Number of cuffs with intracuff pressure <20 cm H2O | 7 (14%) |
Number of cuffs with intracuff pressures 20–30 cm H2O | 6 (12%) |
Number of cuffs with intracuff pressures >30 cm H2O | 37 (74%) |
Parameter | Flexion | Extension | Rotation |
---|---|---|---|
Intracuff pressure (cm H2O) | 27.2 [25.8–28.6] a | 24.5 [24.5–27.2] a | 25.8 [24.5–27.2] a |
Range of intracuff pressure (cm H2O) | 23.1–34.0 | 21.8–31.3 | 23.1–32.6 |
Change from neutral position (cm H2O) | 2.7 [1.4–4.1] c,d | 0 [0–2.7] b | 1.4 [0–2.7] b |
Number that decreased from neutral position | 3 (6%) | 10 (20%) | 4 (8%) |
Number with no change | 7 (14%) | 16 (32%) | 15 (30%) |
Number that increased from neutral position | 40 (80%) c,d | 24 (48%) b | 31 (62%) b |
Number of cuffs with intracuff pressure <20 cm H2O | 0 (0%) | 0 (0%) | 0 (0%) |
Number of cuffs with intracuff pressure 20–30 cm H2O | 44 (88%) | 48 (96%) | 47 (94%) |
Number of cuffs with intracuff pressure >30 cm H2O | 6 (12%) | 2 (4%) | 3 (6%) |
Parameter | Neutral | Flexion | Extension | Rotation |
---|---|---|---|---|
Peak inspiratory pressure (cm H2O) | 21.0 [19.0–22.0] | 21.0 [19.0–22.0] | 20.0 [19.0–22.0] a | 20.5 [19.0–22.0] a |
Change from neutral position (cm H2O) | 0.0 [0.0–0.0] c | 0.0 [−1.0–0.0] b | 0.0 [−1.0–0.0] |
Parameter | Correlation Coefficient (r) | p-Value |
---|---|---|
Change from neutral to extension | 0.198 | 0.169 |
Change from neutral to flexion | −0.107 | 0.461 |
Change from neutral to rotation | 0.125 | 0.387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Jang, J.; Kim, S.Y.; Park, W.K.; Kim, H.J. Effects of Head and Neck Position on Nasotracheal Tube Intracuff Pressure: A Prospective Observational Study. J. Clin. Med. 2021, 10, 3910. https://doi.org/10.3390/jcm10173910
Kim HJ, Jang J, Kim SY, Park WK, Kim HJ. Effects of Head and Neck Position on Nasotracheal Tube Intracuff Pressure: A Prospective Observational Study. Journal of Clinical Medicine. 2021; 10(17):3910. https://doi.org/10.3390/jcm10173910
Chicago/Turabian StyleKim, Hye Jin, Jaewon Jang, So Yeon Kim, Wyun Kon Park, and Hyun Joo Kim. 2021. "Effects of Head and Neck Position on Nasotracheal Tube Intracuff Pressure: A Prospective Observational Study" Journal of Clinical Medicine 10, no. 17: 3910. https://doi.org/10.3390/jcm10173910
APA StyleKim, H. J., Jang, J., Kim, S. Y., Park, W. K., & Kim, H. J. (2021). Effects of Head and Neck Position on Nasotracheal Tube Intracuff Pressure: A Prospective Observational Study. Journal of Clinical Medicine, 10(17), 3910. https://doi.org/10.3390/jcm10173910