Topo-Pachimetric Accelerated Epi-On Cross-Linking Compared to the Dresden Protocol Using Riboflavin with Vitamin E TPGS: Results of a 2-Year Randomized Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Surgical Technique
2.3. Statistical Analysis
3. Results
3.1. Refractive Parameters
3.2. Topographic Parameters
3.3. Corneal Biomechanical Parameters
3.4. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorkin, N.; Varssano, D. Corneal collagen crosslinking: A systematic review. Ophthalmologica 2014, 232, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.; Pahuja, N.K.; Nuijts, R.M.; Ajani, A.; Jayadev, C.; Sharma, C.; Nagaraja, H. Current protocols of corneal collagen cross-linking: Visual, refractive, and tomographic outcomes. Am. J. Ophthalmol. 2015, 160, 243–249. [Google Scholar] [CrossRef]
- Meiri, Z.; Keren, S.; Rosenblatt, A.; Sarig, T.; Shenhav, L.; Varssano, D. Efficacy of corneal collagen cross-linking for the treatment of keratoconus: A systematic review and meta-analysis. Cornea 2016, 35, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, S.; Oeftiger, L.; Mrochen, M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Investig. Opthalmol. Vis. Sci. 2011, 52, 9048–9052. [Google Scholar] [CrossRef] [Green Version]
- Sandvik, G.F.; Thorsrud, A.; Råen, M.; Østern, A.E.; Sæthre, M.; Drolsum, L. Does corneal collagen cross-linking reduce the need for keratoplasties in patients with keratoconus? Cornea 2015, 34, 991–995. [Google Scholar] [CrossRef]
- Godefrooij, D.A.; Gans, R.; Imhof, S.M.; Wisse, R.P. Nationwide reduction in the number of corneal transplantations for keratoconus following the implementation of cross-linking. Acta Ophthalmol. 2016, 94, 675–678. [Google Scholar] [CrossRef]
- Beckman, K.A.; Gupta, P.K.; Farid, M.; Berdahl, J.P.; Yeu, E.; Ayres, B.; Chan, C.C.; Gomes, J.A.; Holland, E.J.; Kim, T.; et al. Corneal crosslinking: Current protocols and clinical approach. J. Cataract Refract. Surg. 2019, 45, 1670–1679. [Google Scholar] [CrossRef]
- Rubinfeld, R.S.; Caruso, C.; Ostacolo, C. Corneal cross-linking: The science beyond the myths and misconceptions. Cornea 2019, 38, 780–790. [Google Scholar] [CrossRef]
- Brindley, G.S. The Bunsen-Roscoe law for the human eye at very short durations. J. Physiol. 1952, 118, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Barbaro, G.; Epstein, R.L.; Tronino, D.; Ostacolo, C.; Sacchi, A.; Pacente, L.; Del Prete, A.; Sala, M.; Troisi, S.; et al. Corneal Cross-Linking: Evaluating the Potential for a Lower Power, Shorter Duration Treatment. Cornea 2016, 35, 659–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, C.; Epstein, R.L.; Ostacolo, C.; Pacente, L.; Troisi, S.; Barbaro, G. Customized corneal cross-linking-a mathematical model. Cornea 2017, 36, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Kling, S.; Hafezi, F. Biomechanical stiffening: Slow low-irradiance corneal crosslinking versus the standard Dresden protocol. J. Cataract Refract. Surg. 2017, 43, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Wollensak, G.; Spoerl, E.; Wilsch, M.; Seiler, T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J. Cataract Refract. Surg. 2003, 29, 1786–1790. [Google Scholar] [CrossRef]
- Wollensak, G.; Aurich, H.; Wirbelauer, C.; Sel, S. Significance of the riboflavin film in corneal collagen crosslinking. J. Cataract Refract. Surg. 2010, 36, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Lim, E.W.L. A review of corneal collagen cross-linking—Current trends in practice applications. Open Ophthalmol. J. 2018, 12, 181–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobashi, H.; Tsubota, K. Accelerated versus standard corneal cross-linking for progressive keratoconus: A meta-analysis of randomized controlled trials. Cornea 2020, 39, 172–180. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin. Ophthalmol. 2012, 6, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çinar, Y.; Cingü, A.K.; Türkcü, F.M.; Çınar, T.; Yuksel, H.; Özkurt, Z.G.; Çaça, I. Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus. Cutan. Ocul. Toxicol. 2014, 33, 218–222. [Google Scholar] [CrossRef]
- Hashemian, H.; Jabbarvand, M.; Khodaparast, M.; Ameli, K. Evaluation of corneal changes after conventional versus accelerated corneal cross-linking: A randomized controlled trial. J. Refract. Surg. 2014, 30, 837–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Jiang, W.; Qiu, S. Conventional vs. pulsed-light accelerated corneal collagen cross-linking for the treatment of progressive keratoconus: 12-month results from a prospective study. Exp. Ther. Med. 2017, 14, 4238–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brittingham, S.; Tappeiner, C.; Frueh, B.E. Corneal cross-linking in keratoconus using the standard and rapid treatment protocol: Differences in demarcation line and 12-month outcomes. Investig. Opthalmol. Vis. Sci. 2014, 55, 8371–8376. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.L.; Chan, T.C.; Cheng, A.C. Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clin. Exp. Ophthalmol. 2016, 44, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Chow, V.W.; Chan, T.C.Y.; Yu, M.; Wong, V.W.Y.; Jhanji, V. One-year outcomes of conventional and accelerated collagen crosslinking in progressive keratoconus. Sci. Rep. 2015, 5, 14425. [Google Scholar] [CrossRef] [PubMed]
- Ostacolo, C.; Caruso, C.; Tronino, D.; Troisi, S.; Laneri, S.; Pacente, L.; Del Prete, A.; Sacchi, A. Enhancement of corneal permeation of riboflavin-5’-phosphate through vitamin E TPGS: A promising approach in corneal trans-epithelial cross linking treatment. Int. J. Pharm. 2013, 440, 148–153. [Google Scholar] [CrossRef]
- Hariharan, S.; Janoria, K.G.; Gunda, S.; Zhu, X.; Pal, D.; Mitra, A.K. Identification and functional expression of a carrier-mediated riboflavin transport system on rabbit corneal epithelium. Curr. Eye Res. 2006, 31, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Kansara, V.; Pal, D.; Jain, R.; Mitra, A.K. Identification and functional characterization of riboflavin transporter in human-derived retinoblastoma cell line (Y-79): Mechanisms of cellular uptake and translocation. J. Ocul. Pharmacol. Ther. 2005, 21, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Saettone, M.; Chetoni, P.; Cerbai, R.; Mazzanti, G.; Braghiroli, L. Evaluation of ocular permeation enhancers: In vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int. J. Pharm. 1996, 142, 103–113. [Google Scholar] [CrossRef]
- Constantinides, P.P.; Han, J.; Davis, S.S. Advances in the use of tocols as drug delivery vehicles. Pharm. Res. 2006, 23, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Giannini, D.; Lombardo, G.; Serrao, S. Randomized controlled trial comparing transepithelial corneal cross-linking using iontophoresis with the dresden protocol in progressive keratoconus. Ophthalmology 2017, 124, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Hammer, A.; Richoz, O.; Mosquera, S.A.; Tabibian, D.; Hoogewoud, F.; Hafezi, F. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Investig. Opthalmol. Vis. Sci. 2014, 55, 2881–2884. [Google Scholar] [CrossRef]
- Richoz, O.; Hammer, A.; Tabibian, D.; Gatzioufas, Z.; Hafezi, F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl. Vis. Sci. Technol. 2013, 2, 6. [Google Scholar] [CrossRef]
- Kamaev, P.; Friedman, M.D.; Sherr, E.; Muller, D. Photochemical kinetics of corneal cross-linking with riboflavin. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2360–2367. [Google Scholar] [CrossRef] [Green Version]
- Caruso, C.; Epstein, R.L.; Troiano, P.; Ostacolo, C.; Barbaro, G.; Pacente, L.; Bartollino, S.; Costagliola, C. Topography and pachymetry guided, rapid Epi-on corneal cross-linking for keratoconus: 7-year study results. Cornea 2020, 39, 56–62. [Google Scholar] [CrossRef]
- Caruso, C.; Ostacolo, C.; Epstein, R.L.; Barbaro, G.; Troisi, S.; Capobianco, D. Transepithelial corneal cross-linking with vitamin E-enhanced riboflavin solution and abbreviated, low-dose UV-A: 24-month clinical outcomes. Cornea 2016, 35, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldich, Y.; Barkana, Y.; Morad, Y.; Hartstein, M.; Avni, I.; Zadok, D. Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?—A pilot study. Cornea 2009, 28, 498–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 2005, 31, 156–162. [Google Scholar] [CrossRef]
- Sedaghat, M.; Naderi, M.; Zarei-Ghanavati, M. Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis. J. Cataract Refract. Surg. 2010, 36, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Spoerl, E.; Terai, N.; Scholz, F.; Raiskup, F.; Pillunat, L.E. Detection of biomechanical changes after corneal cross-linking using Ocular Response Analyzer software. J. Refract. Surg. 2011, 27, 452–457. [Google Scholar] [CrossRef]
- Lanchares, E.; Del Buey, M.A.; Cristóbal, J.A.; Lavilla, L.; Calvo, B. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 1223–1227. [Google Scholar] [CrossRef]
- Wollensak, G.; Iomdina, E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol. 2009, 87, 48–51. [Google Scholar] [CrossRef]
- Hafezi, F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: Failure in an extremely thin cornea. Cornea 2011, 30, 917–919. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Gobbe, M.; Archer, T.J.; Silverman, R.H.; Coleman, D.J. Epithelial thickness in the normal cornea: Three-dimensional display with Artemis very high-frequency digital ultrasound. J. Refract. Surg. 2008, 24, 571–581. [Google Scholar] [CrossRef]
- Hafezi, F.; Kling, S.; Gilardoni, F.; Hafezi, N.; Hillen, M.; Abrishamchi, R.; Gomes, J.A.P.; Mazzotta, C.; Randleman, J.B.; Toress-Netto, E.A. Individualized corneal cross-linking with riboflavin and UV-A in ultrathin corneas: The Sub400 protocol. Am. J. Ophthalmol. 2021, 224, 133–142. [Google Scholar] [CrossRef]
- Cagini, C.; Riccitelli, F.; Messina, M.; Piccinelli, F.; Torroni, G.; Said, D.; Al Maazmi, A.; Dua, H.S. Epi-off-lenticule-on corneal collagen cross-linking in thin keratoconic corneas. Int. Ophthalmol. 2020, 40, 3403–3412. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Srivatsa, S.; Agarwal, A. Contact lens assisted corneal cross linking in thin ectatic corneas—A review. Indian J. Ophthalmol. 2020, 68, 2773–2778. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Czanner, G.; Vinciguerra, R.; Romano, V.; Ahmad, S.; Batterbury, M.; Britten, C.; Willoughby, C.; Kaye, S.B. Improving precision for detecting change in the shape of the cornea in patients with keratoconus. Sci. Rep. 2018, 8, 12345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Differences among sCXL, aCXL, and aCFXL | |||
---|---|---|---|
sCXL | aCFXL | aCXL | |
Epithelium removal | Yes | No | Yes/No |
Soaking time | 30 min | 10 min | Variable |
Pre-soak eye drop frequency | Every 2 min | Every 15 s | Every 2 min |
UVA fluence | 3 mW/cm2 | 1.8 ± 0.9 mW/cm2 | 9 to 45 mW/cm2 |
UVA fluence variation | Unchanging | Pachymetry and time dependent algorithm; fluence declining during treatment | Unchanging |
Riboflavin during UVA | Yes; every 2 min | No; epithelial lavage before UVA | Yes; every 2 min |
UVA irradiation time | 30 min | 10 ± 1.5 min | 2 to 15 min |
UVA irradiation method | Non-pulsed | Pulsed | Pulsed |
sCXL (n = 29) | aCFXL (n = 25) | p-Value | |
---|---|---|---|
Age years | 28 ± 7.5 | 26.3 ± 8.3 | 0.432 |
Male/female eyes | 18:11 | 15:10 | 0.194 |
Refractive parameters | |||
Corrected distance acuity (logMAR) (BCVA) | 0.12 ± 0.12 | 0.10 ± 0.13 | 0.504 |
Spherical equivalent (D) | −4.11 ± 3.07 | −4.70 ± 3.38 | 0.172 |
Refractive cylinder (D) | 3.47 ± 1.35 | 3.25 ± 1.58 | 0.323 |
Topographical parameters | |||
Maximum keratometry (D) (6 months preoperative) | 47.92 ± 5.22 | 47.65 ± 5.22 | 0.902 |
Maximum keratometry (D) (1 week preoperative) | 49.93 ± 5.20 | 49.64 ± 5.20 | 0.326 |
Mean K (D) (6 months preoperative) | 48.52 ± 4.17 | 46.82 ± 4.67 | 0.336 |
Mean K(D) (1 week preoperative) | 49.48 ± 4.02 | 47.83 ± 4.66 | 0.184 |
Minimum corneal thickness (µm) (6 months preoperative) | 435.0 ±54.8 | 461.0 ±56.3 | 1.000 |
Minimum corneal thickness (µm) (1 week preoperative) | 449.0 ± 51.9 | 456.0 ± 56.6 | 0.582 |
Biomechanical parameters | |||
Corneal hysteresis (mmHg) (1 week preoperative) | 7.91 ± 1.1 | 8.32 ± 1.7 | 0.676 |
Corneal resistance factor (mmHg) (1 week preoperative) | 6.42 ± 1.3 | 6.58 ± 1.5 | 0.595 |
Endothelial cell density (cells/mm2) (1 week preoperative) | 2586 ± 246 | 2549 ± 263 | 0.184 |
Follow-up (months) | 24.10 ± 3.30 | 25.20 ± 2.60 | 0.432 |
sCXL (n = 29) | aCFXL (n = 25) | |||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | p-Value vs. Baseline | Mean ± SD | p-Value vs. Baseline | |||||
Follow-up (months) | 12 months | 24 months | 12 months | 24 months | 12 months | 24 months | 12 months | 24 months |
Refractive parameters | ||||||||
Corrected distance acuity (logMAR) | −0.03 ± 0.013 | −0.04 ± 0.015 | 0.04 | 0.02 | −0.009 ± 0.004 | −0.015 ± 0.005 | 0.05 | 0.012 |
Spherical equivalent (D) | 0.38 ± 0.20 | 1.36 ± 0.53 | 0.12 | 0.02 | 0.6 ± 0.2 | 1.21 ± 0.37 | 0.012 | 0.006 |
Refractive cylinder magnitude (D) | 0.36 ± 0.24 | 1.39 ± 0.53 | 0.28 | 0.02 | 0.95 ± 0.38 | 1.35 ± 0.46 | 0.02 | 0.014 |
Topographical parameters | ||||||||
Maximum keratometry (D) | −0.78 ± 0.31 | −0.97 ± 0.35 | 0.034 | 0.018 | −0.99 ± 0.34 | −1.1 ± 0.38 | 0.014 | 0.014 |
Mean K (D) | 0.49 ± 0.2 | 0.49 ± 0.23 | 0.04 | 0.08 | −0.58 ± 0.25 | −0.59 ± 0.23 | 0.04 | 0.02 |
Minimum corneal thickness (μm) | −5.8 ± 4.1 | −1.0 ± 3.5 | 0.2 | 1.0 | −6.0 ± 5.5 | −1.6 ± 2.9 | 0.4 | 1.0 |
Biomechanical parameters | ||||||||
Corneal hysteresis (mmHg) | 1.63 ± 0.5 | 1.09 ± 0.3 | 0.004 | 0.002 | 2.03 ± 0.78 | 1.94 ± 0.61 | 0.002 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, C.; Epstein, R.L.; Troiano, P.; Napolitano, F.; Scarinci, F.; Costagliola, C. Topo-Pachimetric Accelerated Epi-On Cross-Linking Compared to the Dresden Protocol Using Riboflavin with Vitamin E TPGS: Results of a 2-Year Randomized Study. J. Clin. Med. 2021, 10, 3799. https://doi.org/10.3390/jcm10173799
Caruso C, Epstein RL, Troiano P, Napolitano F, Scarinci F, Costagliola C. Topo-Pachimetric Accelerated Epi-On Cross-Linking Compared to the Dresden Protocol Using Riboflavin with Vitamin E TPGS: Results of a 2-Year Randomized Study. Journal of Clinical Medicine. 2021; 10(17):3799. https://doi.org/10.3390/jcm10173799
Chicago/Turabian StyleCaruso, Ciro, Robert Leonard Epstein, Pasquale Troiano, Francesco Napolitano, Fabio Scarinci, and Ciro Costagliola. 2021. "Topo-Pachimetric Accelerated Epi-On Cross-Linking Compared to the Dresden Protocol Using Riboflavin with Vitamin E TPGS: Results of a 2-Year Randomized Study" Journal of Clinical Medicine 10, no. 17: 3799. https://doi.org/10.3390/jcm10173799
APA StyleCaruso, C., Epstein, R. L., Troiano, P., Napolitano, F., Scarinci, F., & Costagliola, C. (2021). Topo-Pachimetric Accelerated Epi-On Cross-Linking Compared to the Dresden Protocol Using Riboflavin with Vitamin E TPGS: Results of a 2-Year Randomized Study. Journal of Clinical Medicine, 10(17), 3799. https://doi.org/10.3390/jcm10173799