Comprehensive Use of Routine Clinical Parameters to Identify Patients at Risk of New-Onset Atrial Fibrillation in Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics
3.2. Laboratory and Echocardiographic Parameters
3.3. Percutaneous Coronary Interventions
3.4. Predictors of NOAF
3.5. Outcomes
3.6. Pharmacological Treatment at Discharge
4. Discussion
4.1. Clinical, Laboratory, and Echocardiographic Parameters
4.2. Prognosis of NOAF Patients
4.3. Pharmacological Treatment
4.4. Novelties of the Study
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.; McManus, D.D.; Newton-Cheh, C.; A Lubitz, S.; Magnani, J.W.; Ellinor, P.; et al. Fifty-year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the community. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [Green Version]
- More, R.S.; Brack, M.J.; Gershlick, A.H. Lone atrial fibrillation and anticoagulant therapy. Clin. Cardiol. 1993, 16, 504–506. [Google Scholar] [CrossRef]
- Mazzone, A.; Scalese, M.; Paradossi, U.; Del Turco, S.; Botto, N.; De Caterina, A.; Trianni, G.; Ravani, M.; Rizza, A.; Molinaro, S.; et al. Development and validation of a risk stratification score for new-onset atrial fibrillation in STEMI patients undergoing primary percutaneous coronary intervention. Int. J. Clin. Pract. 2018, 72, e13087. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Duray, G.; Gersh, B.J.; Hohnloser, S.H. Atrial fibrillation in acute myocardial infarction: A systematic review of the incidence, clinical features and prognostic implications. Eur. Heart J. 2009, 30, 1038–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabre, P.; Jouven, X.; Adnet, F.; Thabut, G.; Bielinski, S.J.; Weston, S.A.; Roger, V.L. Atrial fibrillation and death after myocardial infarction: A community study. Circulation 2011, 123, 2094–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, S.S.; Gersh, B.J.; Berger, P.B.; Weinfurt, K.P.; Oetgen, W.J.; Schulman, K.A.; Solomon, A.J. Acute myocardial infarction complicated by heart block in the elderly: Prevalence and outcomes. Am. Heart J. 2001, 141, 47–54. [Google Scholar] [CrossRef]
- Jons, C.; Joergensen, R.M.; Hassager, C.; Gang, U.J.; Dixen, U.; Johannesen, A.; Olsen, N.T.; Hansen, T.F.; Messier, M.; Huikuri, H.V.; et al. Diastolic dysfunction predicts new-onset atrial fibrillation and cardiovascular events in patients with acute myocardial infarction and depressed left ventricular systolic function: A CARISMA substudy. Eur. J. Echocardiogr. 2010, 11, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Bahouth, F.; Mutlak, D.; Furman, M.; Musallam, A.; Hammerman, H.; Lessick, J.; Dabbah, S.; Reisner, S.; Agmon, Y.; Aronson, D. Relationship of functional mitral regurgitation to new-onset atrial fibrillation in acute myocardial infarction. Heart 2010, 96, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Asanin, M.; Stankovic, S.; Mrdovic, I.; Matic, D.; Savic, L.; Majkic-Singh, N.; Ostojic, M.; Vasiljevic, Z. B-type natriuretic peptide predicts new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention. Peptides 2012, 35, 74–77. [Google Scholar] [CrossRef]
- Distelmaier, K.; Maurer, G.; Goliasch, G. Blood count in new onset atrial fibrillation after acute myocardial infarction—A hypothesis generating study. Indian J. Med. Res. 2014, 139, 579–584. [Google Scholar]
- Perugini, M.; Lee, H.; Mcrae, S. Neutrophil/lymphocyte ratio as a predictor of in-hospital major adverse cardiac events, new-onset atrial fibrillation, and no-reflow phenomenon in patients with ST elevation myocardial infarction sherif. Clin. Med. 2014, 10, CMC-S35555. [Google Scholar] [CrossRef]
- Zehir, R.; Tekkesin, A.I.; Haykir, N.; Velibey, Y.; Borklu, E.B.; Gumusdag, A. Peak troponin I level predicts newonset atrial fibrillation in patients with myocardial infarction. Clin. Investig. Med. 2016, 39, E213–E219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabağ, Y.; Rencuzogullari, I.; Çağdaş, M.; Karakoyun, S.; Yesin, M.; Uluganyan, M.; Gürsoy, M.O.; Artaç, İ.; İliş, D.; Gökdeniz, T.; et al. Association between BNP levels and new-onset atrial fibrillation: A propensity score approach. Herz 2018, 43, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Guenancia, C.; Stamboul, K.; Garnier, F.; Beer, J.C.; Touzery, C.; Lorgis, L.; Cottin, Y.; Zeller, M. Obesity and new-onset atrial fibrillation in acute myocardial infarction: A gender specific risk factor. Int. J. Cardiol. 2014, 176, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, N.; Ballarotto, M.; Campodonico, J.; Milazzo, V.; Bonomi, A.; Genovesi, S.; Moltrasio, M.; De Metrio, M.; Rubino, M.; Veglia, F.; et al. Impact of glomerular filtration rate on the incidence and prognosis of new-onset atrial fibrillation in acute myocardial infarction. J. Clin. Med. 2020, 9, 1396. [Google Scholar] [CrossRef]
- Luo, J.; Dai, L.; Li, J.; Zhao, J.; Li, Z.; Qin, X.; Li, H.; Liu, B.; Wei, Y. Risk evaluation of new-onset atrial fibrillation complicating ST-segment elevation myocardial infarction: A comparison between GRACE and CHA2DS2-VASc scores. Clin. Interv. Aging 2018, 13, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Zhou, Q.; Shen, J.; Liu, G.; Zhou, W.; Wen, Y.; Luo, S. Lipid profile and new-onset atrial fibrillation in patients with acute ST-segment elevation myocardial infarction (an observational study in Southwest of China). Am. J. Cardiol. 2019, 124, 1512–1517. [Google Scholar] [CrossRef]
- Bas, H.A.; Aksoy, F.; Icli, A.; Varol, E.; Dogan, A.; Erdogan, D.; Ersoy, I.; Arslan, A.; Ari, H.; Bas, N.; et al. The association of plasma oxidative status and inflammation with the development of atrial fibrillation in patients presenting with ST elevation myocardial infarction. Scand. J. Clin. Lab. Investig. 2017, 77, 77–82. [Google Scholar] [CrossRef]
- Shin, S.Y.; Lip, G.Y.H. Novel biomarker-based risk prediction for new onset atrial fibrillation in patients with ST elevation myocardial infarction: Balancing simplicity and practicality. Int. J. Clin. Pract. 2018, 72, e13090. [Google Scholar] [CrossRef] [PubMed]
- Khalfallah, M.; Elsheikh, A. Incidence, predictors, and outcomes of new-onset atrial fibrillation in patients with ST-elevation myocardial infarction. Ann. Noninvasive Electrocardiol. 2020, 25, e12746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parashar, S.; Kella, D.; Reid, K.J.; Spertus, J.A.; Tang, F.; Langberg, J.; Vaccarino, V.; Kontos, M.C.; Lopes, R.D.; Lloyd, M.S. New-onset atrial fibrillation after acute myocardial infarction and its relation to admission biomarkers (from the TRIUMPH Registry). Am. J. Cardiol. 2013, 112, 1390–1395. [Google Scholar] [CrossRef] [Green Version]
- Congo, K.H.; Belo, A.; Carvalho, J.; Neves, D.; Guerreiro, R.; Pais, J.A.; Brás, D.; Carrington, M.; Piçarra, B.; Santos, A.R.; et al. New-onset atrial fibrillation in St-segment elevation myocardial infarction: Predictors and impact on therapy and mortality. Arq. Bras. Cardiol. 2019, 113, 948–957. [Google Scholar] [CrossRef]
- Biasco, L.; Radovanovic, D.; Moccetti, M.; Rickli, H.; Roffi, M.; Eberli, F.; Jeger, R.; Moccetti, T.; Erne, P.; Pedrazzini, G. New-onset or Pre-existing atrial fibrillation in acute coronary syndromes: Two distinct phenomena with a similar prognosis. Rev. Esp. Cardiol. 2019, 72, 383–391. [Google Scholar] [CrossRef]
- Batra, G.; Svennblad, B.; Held, C.; Jernberg, T.; Johanson, P.; Wallentin, L.; Oldgren, J. All types of atrial fibrillation in the setting of myocardial infarction are associated with impaired outcome. Heart 2016, 102, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Mengal, M.N.; Badini, A.; Karim, M. New-onset atrial fibrillation in patients presenting with acute myocardial infarction. Cureus 2019, 11, e4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roffi, M.; Patrono, C.; Collet, J.-P.; Mueller, C.; Valgimigli, M.; Andreotti, F.; Bax, J.J.; Borger, M.A.; Brotons, C.; Chew, D.P.; et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2016, 37, 267–315. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2020, 2020, 1–126. [Google Scholar] [CrossRef]
- Axelrod, M.; Gilutz, H.; Plakht, Y.; Greenberg, D.; Novack, L. Early atrial fibrillation during acute myocardial infarction may not be an indication for long-term anticoagulation. Angiology 2020, 71, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, B.S.; Ward, S.R.; Granger, C.B.; Stebbins, A.L.; Topol, E.J.; Califf, R.M. Atrial fibrillation in the setting of acute myocardial infarction: The GUSTO-I experience. J. Am. Coll. Cardiol. 1997, 30, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Topaz, G.; Flint, N.; Steinvil, A.; Finkelstein, A.; Banai, S.; Keren, G.; Shacham, Y.; Yankelson, L. Long term prognosis of atrial fibrillation in ST-elevation myocardial infarction patients undergoing percutaneous coronary intervention. Int. J. Cardiol. 2017, 240, 228–233. [Google Scholar] [CrossRef]
- Rhyou, H.I.; Park, T.H.; Cho, Y.R.; Park, K.; Park, J.S.; Kim, M.H.; Kim, Y.D. Clinical factors associated with the development of atrial fibrillation in the year following STEMI treated by primary PCI. J. Cardiol. 2018, 71, 125–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karatas, M.B.; Çanga, Y.; Ipek, G.; Özcan, K.S.; Güngör, Ý.; Durmu, G.; Onuk, T.; Öz, A.; Simek, B.; Bolca, O. Association of admission serum laboratory parameters with new-onset atrial fibrillation after a primary percutaneous coronary intervention. Coron. Artery Dis. 2016, 27, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.J.; Seeley, D.; Becker, R.C.; Brady, P.; Chen, Z.; Osganian, V.; Gore, J.M.; Alpert, J.S.; Dalen, J.E. Impact of atrial fibrillation on the in-hospital and long-term survival of patients with acute myocardial infarction: A community-wide perspective. Am. Heart J. 1990, 119, 996–1001. [Google Scholar] [CrossRef]
- Krijthe, B.P.; Heeringa, J.; Kors, J.A.; Hofman, A.; Franco, O.H.; Witteman, J.C.M.; Stricker, B.H. Serum potassium levels and the risk of atrial fibrillation: The Rotterdam study. Int. J. Cardiol. 2013, 168, 5411–5415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjay, O.P. Pre-operative serum potassium levels and peri-operative outcomes in patients undergoing cardiac surgery. Indian J. Clin. Biochem. 2004, 19, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, N.G.; Allen, E.; Sanders, J.; Swinson, R.; Birch, S.; Sturgess, J.; Al-Subaie, N.; Elbourne, D.; Montgomery, H.; O’Brien, B. The impact of maintaining serum potassium ≥3.6 mEq/L vs. ≥4.5 mEq/L on the incidence of new-onset atrial fibrillation in the first 120 hours after isolated elective coronary artery bypass grafting-study protocol for a randomised feasibility trial for the. Trials 2017, 18, 618. [Google Scholar] [CrossRef] [PubMed]
- Schulman, M.; Narins, R.G. Hypokalemia and cardiovascular disease. Am. J. Cardiol. 1990, 65, E4. [Google Scholar] [CrossRef]
- Rencuzogullari, I.; Çağdaş, M.; Karakoyun, S.; Yesin, M.; Gürsoy, M.O.; Artaç, İ.; İliş, D.; Efe, S.C.; Tanboga, I.H. Propensity score matching analysis of the impact of Syntax score and Syntax score II on new onset atrial fibrillation development in patients with ST segment elevation myocardial infarction. Ann. Noninvasive Electrocardiol. 2018, 23, e12504. [Google Scholar] [CrossRef]
- Xu, D.; Murakoshi, N.; Sairenchi, T.; Irie, F.; Igarashi, M.; Nogami, A.; Tomizawa, T.; Yamaguchi, I.; Yamagishi, K.; Iso, H.; et al. Anemia and reduced kidney function as risk factors for new onset of atrial fibrillation (from the Ibaraki prefectural health study). Am. J. Cardiol. 2015, 115, 328–333. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Gallotta, M.; Iovine, F.; Nuti, R.; Silverberg, D.S. Anaemia in heart failure: A common interaction with renal insufficiency called the cardio-renal anaemia syndrome. Int. J. Clin. Pract. 2008, 62, 281–286. [Google Scholar] [CrossRef]
- Rienstra, M.; Yin, X.; Larson, M.G.; Fontes, J.D.; Magnani, J.W.; McManus, D.D.; McCabe, E.L.; Coglianese, E.E.; Amponsah, M.; Ho, J.E.; et al. Relation between soluble ST2, growth differentiation factor-15, and high-sensitivity troponin i and incident atrial fibrillation. Am. Heart J. 2014, 167, 109–115.e2. [Google Scholar] [CrossRef] [Green Version]
- Filion, K.B.; Agarwal, S.K.; Ballantyne, C.M.; Eberg, M.; Hoogeveen, R.C.; Huxley, R.R.; Loehr, L.R.; Nambi, V.; Soliman, E.Z.; Alonso, A. High-sensitivity cardiac troponin T and the risk of incident atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 2015, 169, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Hung, J.; Divitini, M.; Murray, K.; Lim, E.M.; St John, A.; Walsh, J.P.; Knuiman, M. High-sensitivity cardiac troponin I and risk of incident atrial fibrillation hospitalisation in an Australian community-based cohort: The Busselton health study. Clin. Biochem. 2018, 58, 20–25. [Google Scholar] [CrossRef]
- Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; Packard, C.J.; et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA J. Am. Med. Assoc. 2009, 302, 1993–2000. [Google Scholar] [CrossRef] [Green Version]
- Annoura, M.; Ogawa, M.; Kumagai, K.; Zhang, B.; Saku, K.; Arakawa, K. Cholesterol paradox in patients with paroxysmal atrial fibrillation. Cardiology 1999, 92, 21–27. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanabe, N.; Yagihara, N.; Watanabe, T.; Aizawa, Y.; Kodama, M. Association between lipid profile and risk of atrial fibrillation: Niigata preventive medicine study. Circ. J. 2011, 75, 2767–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.Z.; Du, X.; Guo, X.Y.; Tang, R.B.; Jiang, C.; Liu, N.; Chang, S.S.; Yu, R.H.; Long, D.Y.; Bai, R.; et al. Association between blood lipid profiles and atrial fibrillation: A case-control study. Med. Sci. Monit. 2018, 24, 3903–3908. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Boulos, M.; Suleiman, A.; Bidoosi, S.; Agmon, Y.; Kapeliovich, M.; Beyar, R.; Markiewicz, W.; Hammerman, H.; Suleiman, M. Relation of C-reactive protein and new-onset atrial fibrillation in patients with acute myocardial infarction. Am. J. Cardiol. 2007, 100, 753–757. [Google Scholar] [CrossRef]
- Hoffman, M.; Blum, A.; Baruch, R.; Kaplan, E.; Benjamin, M. Leukocytes and coronary heart disease. Atherosclerosis 2004, 172, 1–6. [Google Scholar] [CrossRef]
- Van Der Wal, A.C.; Becker, A.E.; Van Der Loos, C.M.; Das, P.K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994, 89, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Lip, G.Y.H.; Apostolakis, S. Inflammation in atrial fibrillation. J. Am. Coll. Cardiol. 2012, 60, 2263–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukoyama, M.; Nakao, K.; Hosoda, K.; Suga, S.I.; Saito, Y.; Ogawa, Y.; Shirakami, G.; Jougasaki, M.; Obata, K.; Yasue, H.; et al. Brain natriuretic peptide as a novel cardiac hormone in humans: Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Investig. 1991, 87, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Morita, E.; Yasue, H.; Yoshimura, M.; Ogawa, H.; Jougasaki, M.; Matsumura, T.; Mukoyama, M.; Nakao, K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 1993, 88, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Tsang, T.S.M.; Gersh, B.J.; Appleton, C.P.; Tajik, A.J.; Barnes, M.E.; Bailey, K.R.; Oh, J.K.; Leibson, C.; Montgomery, S.C.; Seward, J.B. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J. Am. Coll. Cardiol. 2002, 40, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, S.M.; Larson, M.G.; Benjamin, E.J.; Levy, D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The framingham heart study. Circulation 1994, 89, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, O.D.; Bagger, H.; Køber, L.; Torp-Pedersen, C. The occurrence and prognostic significance of atrial fibrillation/-flutter following acute myocardial infarction. TRACE study group. TRAndolapril cardiac evalution. Eur. Heart J. 1999, 20, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Psaty, B.M.; Manolio, T.A.; Kuller, L.H.; Kronmal, R.A.; Cushman, M.; Fried, L.P.; White, R.; Furberg, C.D.; Rautaharju, P.M. Incidence of and risk factors for atrial fibrillation in older adults. Circulation 1997, 96, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.X.; Chen, M.S.; Lian, B.T.; Liao, P.D.; Zhang, M.Z. Left ventricular ejection fraction and left atrium diameter related to new-onset atrial fibrillation following acute myocardial infarction: A systematic review and meta-analysis. Oncotarget 2017, 8, 81137–81144. [Google Scholar] [CrossRef] [Green Version]
- Aronson, D.; Mutlak, D.; Bahouth, F.; Bishara, R.; Hammerman, H.; Lessick, J.; Carasso, S.; Dabbah, S.; Reisner, S.; Agmon, Y. Restrictive left ventricular filling pattern and risk of new-onset atrial fibrillation after acute myocardial infarction. Am. J. Cardiol. 2011, 107, 1738–1743. [Google Scholar] [CrossRef]
- Jabre, P.; Roger, V.L.; Murad, M.H.; Chamberlain, A.M.; Prokop, L.; Adnet, F.; Jouven, X. Mortality associated with atrial fibrillation in patients with myocardial infarction: A systematic review and meta-analysis. Circulation 2011, 123, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.J.; Yarzebski, J.; Lessard, D.; Wu, J.; Gore, J.M. Recent trends in the incidence rates of and death rates from atrial fibrillation complicating initial acute myocardial infarction: A community-wide perspective. Am. Heart J. 2002, 143, 519–527. [Google Scholar] [CrossRef]
- Wong, C.K.; White, H.D.; Wilcox, R.G.; Criger, D.A.; Califf, R.M.; Topol, E.J.; Ohman, E.M. New atrial fibrillation after acute myocardial infarction independently predicts death: The GUSTO-III experience. Am. Heart J. 2000, 140, 878–885. [Google Scholar] [CrossRef]
- Stenestrand, U.; Lindbäck, J.; Wallentin, L. Anticoagulation therapy in atrial fibrillation in combination with acute myocardial infarction influences long-term outcome: A prospective cohort study from the Register of Information and Knowledge about Swedish Heart Intensive Care Admissions (RIKS-HIA). Circulation 2005, 112, 3225–3231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkey, A.J.; Hogarth, D.K.; Lip, G.Y.H. Optimizing Atrial fibrillation management from ICU and beyond. Chest 2015, 148, 859–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, C.; Katholing, A.; Freedman, S.B. Adverse prognosis of incidentally detected ambulatory atrial fibrillation. Thromb. Haemost. 2014, 112, 276–286. [Google Scholar] [CrossRef]
- Lopes, R.D.; Elliott, L.E.; White, H.D.; Hochman, J.S.; Van De Werf, F.; Ardissino, D.; Nielsen, T.T.; Weaver, W.D.; Widimsky, P.; Armstrong, P.W.; et al. Antithrombotic therapy and outcomes of patients with atrial fibrillation following primary percutaneous coronary intervention: Results from the APEX-AMI trial. Eur. Heart J. 2009, 30, 2019–2028. [Google Scholar] [CrossRef] [Green Version]
- Shiyovich, A.; Axelrod, M.; Gilutz, H.; Plakht, Y. Early versus late new-onset atrial fibrillation in acute myocardial infarction: Differences in clinical characteristics and predictors. Angiology 2019, 70, 921–928. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2020, 1–79. [Google Scholar] [CrossRef]
All Patients n = 954 | NOAF n = 106 | Non-NOAF n = 848 | p | |
---|---|---|---|---|
Age (years old) | 69 (61–78) | 74 (66–84) | 67 (60–76) | <0.001 |
Male sex, n (%) | 637 (67%) | 67 (63%) | 571 (67%) | 0.444 |
BMI (kg/m2) | 28 (25–31) | 27 (24–30) | 28 (25–31) | 0.027 |
Prior MI, n (%) | 276 (29%) | 31 (29%) | 245 (29%) | 0.999 |
Prior revascularization (PCI/CABG), n (%) | 270 (28%) | 26 (25%) | 244 (29%) | 0.424 |
Hypertension, n (%) | 719 (75%) | 79 (75%) | 640 (76%) | 0.812 |
Diabetes mellitus, n (%) | 314 (33%) | 31 (29%) | 283 (33%) | 0.812 |
Previous stroke, n (%) | 70 (7%) | 10 (9%) | 60 (7%) | 0.427 |
Pacemaker, n (%) | 29 (3%) | 5 (5%) | 24 (3%) | 0.360 |
ICD, n (%) | 35 (4%) | 3 (3%) | 32 (4%) | 0.789 |
On-admission treatment | ||||
Aspirin, n (%) | 357 (38%) | 43 (41%) | 314 (37%) | 0.524 |
Angiotensin converting enzyme inhibitors, angiotensin receptor blockers, n (%) | 511 (54%) | 53 (50%) | 458 (54%) | 0.470 |
Statins, n (%) | 376 (40%) | 41 (39%) | 335 (40%) | 0.916 |
All Patients (n = 954) | NOAF (n = 106) | Non-NOAF (n = 848) | p | |
---|---|---|---|---|
Laboratory parameters | ||||
BNP, pg/mL | 512 (59–541) | 791 (193–1087) | 471 (54–429) | <0.001 |
hsTnI, ng/mL | 4.89 (0.05–1.42) | 6.41 (0.06–4.84) | 4.70 (0.04–1.20) | 0.020 |
CK-MB, ng/mL | 19.2 (2.1–10.3) | 18.42 (2.2–14) | 19.30 (2.1–10) | 0.167 |
CRP, mg/L | 18.9 (1.6–14.2) | 36.1 (3.3–36.2) | 16.6 (1.5–11.3) | <0.001 |
Sodium, mmol/L | 138 (136–140) | 137 (135–140) | 138 (136–140) | 0.033 |
Potassium, mmol/L | 4.3 (4–4.6) | 4.2 (3.8–4.6) | 4.35 (4–4.6) | 0.008 |
Hemoglobin, g/dL | 13.5 (12.4–15) | 13.3 (12–14.9) | 13.6 (12.4–15) | 0.042 |
Leucocytes, 109/L | 10.61 (7.82–12.48) | 11.91 (8.07–13.91) | 10.45 (7.80–12.34) | 0.015 |
Neutrophil to lymphocyte ratio | 5.3 (2.1–5.6) | 6.0 (2.2–6.9) | 5.3 (2.1–5.4) | 0.051 |
Total cholesterol, mg/dL | 180 (143–214) | 165 (129–192) | 182 (144–217) | 0.005 |
LDL-C, mg/dL | 110 (77–141) | 98 (64–125) | 112 (79–144) | 0.011 |
Creatinine, ml/dL | 1.17 (0.78–1.19) | 1.14 (0.77–1.25) | 1.17 (0.78–1.18) | 0.225 |
TSH, uU/L | 1.494 (0.577–1.721) | 1.29 (0.66–1.86) | 1.53 (0.52–1.70) | 0.233 |
FT3, pmol/L | 3.52 (2.63–3.70) | 3.14 (2.74–3.41) | 3.58 (2.60–3.70) | 0.334 |
FT4, pmol/L | 13.50 (11.68–14.84) | 14.67 (13.26–16.20) | 13.34 (11.55–14.74) | 0.005 |
Glucose, mg/dL | 159 (104–178) | 184 (120–219) | 156 (103–173) | <0.001 |
Echocardiographic parameters | ||||
LA size, mm | 40 (36–44) | 43 (38–46) | 40 (36–44) | <0.001 |
LVIDd, mm | 50 (45–54) | 51 (44–55) | 50 (45–54) | 0.208 |
LVIDs, mm | 35 (30–39) | 38 (31–44) | 35 (29–39) | <0.001 |
LVEF, % | 47 (40–56) | 42 (32–51) | 48 (40–57) | <0.001 |
RVID, mm | 37 (32–41) | 40 (34–44) | 37 (32–40) | 0.006 |
TAPSE, mm | 20 (17–23) | 18 (14–22) | 20 (17–24) | 0.003 |
RVSP, mmHg | 41 (34–47) | 42 (35–48) | 40 (32–47) | 0.277 |
Mitral regurgitation | ||||
Moderate, n (%) | 176 (25%) | 29 (28%) | 147 (24%) | 0.082 |
Severe, n (%) | 43 (6%) | 7 (7%) | 36 (6%) |
All Patients (n = 954) | NOAF (n = 106) | Non-NOAF (n = 848) | p | |
---|---|---|---|---|
Types of myocardial infarction | ||||
ST-elevation MI, n (%) | 327 (34%) | 42 (40%) | 285 (34%) | 0.233 |
Non-ST-elevation MI, n (%) | 627 (66%) | 64 (60%) | 563 (66%) | 0.233 |
Results of coronary angiography with the number of stenotic vessels | ||||
In-hospital coronary angiography, n (%) | 921 (97%) | 99 (93%) | 822 (97%) | 0.083 |
Patients with PCI | 779 (82%) | 81 (76%) | 698 (82%) | 0.522 |
Results of coronary angiography—significant stenosis | ||||
One vessel, n (%) | 313 (34%) | 33 (33%) | 280 (35%) | 0.317 |
Two vessels, n (%) | 264 (29%) | 25 (25%) | 239 (29%) | |
Multivessel disease, n (%) | 286 (31%) | 33 (33%) | 253 (31%) | |
None, n (%) | 49 (5%) | 9 (9%) | 40 (5%) | |
PCI effects | ||||
TIMI flow 1 | 2 (0.3%) | 0 (0%) | 2 (0.2%) | 0.522 |
TIMI flow 2 | 13 (1.7%) | 0 (0%) | 13 (1.8%) | |
TIMI flow 3 | 764 (98%) | 81 (100%) | 683 (98%) |
Cut-Off Values | AUC | |
---|---|---|
Age | ≥66 years old | 65.4% (60.1–70.8%) |
Length of hospitalization | ≥6.5 days | 67.8% (62.0–73.6%) |
BNP | ≥340 pg/mL | 70.5% (64.6–76.5%) |
hsTnI | ≥1.85 ng/mL | 57.0% (50.9–63.1%) |
CRP | ≥7.7 mg/L | 66.1% (60.2–71.9%) |
Potassium | ≤4.2 mmol/L | 57.9% (51.5–64.3%) |
Hemoglobin | ≤14 g/dL | 55.2% (49.2–61.1%) |
Leucocytes | ≥10.2 × 109/L | 57.3% (51.1–63.4%) |
Neutrophil to lymphocyte ratio | ≥4.6 | 57.9% (48.4–67.5%) |
Total cholesterol | ≤195 mg/dL | 58.6% (52.7–64.6%) |
LDL-C | ≤128.5 mg/dL | 56.8% (50.7–62.9%) |
Creatinine | ≥1.63 mL/dL | 52.3% (46.3–58.2%) |
LA size | ≥41 mm | 62.0% (56.0–68.0%) |
LVEF | ≤44 % | 64.3% (58.6–70.1%) |
Cut-Off Value | OR (95% CI) | p |
---|---|---|
Age ≥ 66 years old | 2.37 (1.23–4.58) | 0.009 |
BNP ≥ 340 pg/mL | 4.60 (2.27–9.32) | 0.004 |
CRP ≥ 7.7 mg/L | 2.02 (1.14–3.56) | 0.010 |
LVEF ≤ 44% | 1.93 (1.12–3.12) | 0.020 |
All Patients (n = 954) | NOAF (n = 106) | Non-NOAF (n = 848) | p | |
---|---|---|---|---|
Length of hospitalization (days) | 10 (5–11) | 14 (7–17) | 9 (5–9) | <0.001 |
VF during hospitalization, n (%) | 65 (7%) | 14 (13%) | 51 (6%) | 0.012 |
VT during hospitalization, n (%) | 26 (3%) | 6 (6%) | 20 (2%) | 0.059 |
AVB III during hospitalization, n (%) | 15 (2%) | 6 (6%) | 9 (1%) | 0.004 |
Stroke during hospitalization, n (%) | 9 (1%) | 3 (3%) | 6 (1%) | 0.068 |
In-hospital mortality, n (%) | 58 (6%) | 19 (18%) | 39 (5%) | <0.001 |
All Patients (n = 892) | NOAF (n = 86) | Non-NOAF (n = 806) | p | |
---|---|---|---|---|
Beta-blockers, n (%) | 776 (87%) | 76 (88%) | 700 (87%) | 0.866 |
ACE inhibitors/ARBs, n (%) | 802 (90%) | 73 (85%) | 729 (91%) | 0.127 |
Statins, n (%) | 842 (94%) | 81 (94%) | 761 (94%) | 0.809 |
Antithrombotic therapy | ||||
Aspirin, n (%) | 843 (94%) | 76 (88%) | 767 (95%) | 0.020 |
Clopidogrel, n (%) | 691 (77%) | 72 (84%) | 619 (77%) | 0.174 |
Ticagrelor, n (%) | 148 (17%) | 3 (3%) | 145 (18%) | <0.001 |
Vitamin K antagonists, n (%) | 55 (6%) | 8 (9%) | 47 (6%) | 0.233 |
NOACs, n (%) | 141 (16%) | 54 (63%) | 87 (11%) | <0.001 |
Low-molecular-weight heparins, n (%) | 42 (5%) | 7 (8%) | 35 (4%) | 0.173 |
Triple antithrombotic therapy | ||||
Aspirin + Clopidogrel + Vitamin K antagonists | 46 (5.1%) | 8 (9%) | 38 (4.7%) | <0.001 |
Aspirin + Clopidogrel + NOACs | 108 (12.1%) | 40 (47%) | 68 (8.4%) | |
Aspirin + Clopidogrel + LMWH | 3 (0.3%) | 1 (1%) | 2 (0.2%) | |
Double antithrombotic therapy | ||||
Aspirin + Clopidogrel | 491 (55%) | 14 (16%) | 477 (59%) | <0.001 |
Aspirin + Ticagrelor | 139 (16%) | 2 (2%) | 137 (17%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczkowska-Golanko, M.; Raczak, G.; Gruchała, M.; Daniłowicz-Szymanowicz, L. Comprehensive Use of Routine Clinical Parameters to Identify Patients at Risk of New-Onset Atrial Fibrillation in Acute Myocardial Infarction. J. Clin. Med. 2021, 10, 3622. https://doi.org/10.3390/jcm10163622
Raczkowska-Golanko M, Raczak G, Gruchała M, Daniłowicz-Szymanowicz L. Comprehensive Use of Routine Clinical Parameters to Identify Patients at Risk of New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Journal of Clinical Medicine. 2021; 10(16):3622. https://doi.org/10.3390/jcm10163622
Chicago/Turabian StyleRaczkowska-Golanko, Monika, Grzegorz Raczak, Marcin Gruchała, and Ludmiła Daniłowicz-Szymanowicz. 2021. "Comprehensive Use of Routine Clinical Parameters to Identify Patients at Risk of New-Onset Atrial Fibrillation in Acute Myocardial Infarction" Journal of Clinical Medicine 10, no. 16: 3622. https://doi.org/10.3390/jcm10163622
APA StyleRaczkowska-Golanko, M., Raczak, G., Gruchała, M., & Daniłowicz-Szymanowicz, L. (2021). Comprehensive Use of Routine Clinical Parameters to Identify Patients at Risk of New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Journal of Clinical Medicine, 10(16), 3622. https://doi.org/10.3390/jcm10163622