A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder
Abstract
:1. Introduction
2. The Digital Revolution in Mental Health
2.1. An Active Digital Collection of Behavioral Data
2.2. Digital Phenotyping
3. Toward Personalized Psychiatry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newson, J.J.; Hunter, D.; Thiagarajan, T.C. The Heterogeneity of Mental Health Assessment. Front. Psychiatry 2020, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Olbert, C.M.; Gala, G.J.; Tupler, L.A. Quantifying Heterogeneity Attributable to Polythetic Diagnostic Criteria: Theoretical Framework and Empirical Application. J. Abnorm. Psychol. 2014, 123, 452. [Google Scholar] [CrossRef]
- Polanczyk, G.V.; Salum, G.A.; Sugaya, L.S.; Caye, A.; Rohde, L.A. Annual Research Review: A Meta-Analysis of the Worldwide Prevalence of Mental Disorders in Children and Adolescents. J. Child Psychol. Psychiatry 2015, 56, 345–365. [Google Scholar] [CrossRef]
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; De Girolamo, G.; De Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N. Cross-National Epidemiology of DSM-IV Major Depressive Episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Suicide. Available online: https://www.who.int/health-topics/suicide (accessed on 15 March 2021).
- Whooley, M.A.; Wong, J.M. Depression and Cardiovascular Disorders. Annu. Rev. Clin. Psychol. 2013, 9, 327–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, E.I. Moving Forward: How Depression Heterogeneity Hinders Progress in Treatment and Research. Expert Rev. Neurother. 2017, 17, 423–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santor, D.A.; Gregus, M.; Welch, A. FOCUS ARTICLE: Eight Decades of Measurement in Depression. Meas. Interdiscip. Res. Perspect. 2006, 4, 135–155. [Google Scholar] [CrossRef]
- Zimmerman, M.; Ellison, W.; Young, D.; Chelminski, I.; Dalrymple, K. How Many Different Ways Do Patients Meet the Diagnostic Criteria for Major Depressive Disorder? Compr. Psychiatry 2015, 56, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Arlington, WV, USA, 2013; ISBN 978-0-89042-557-2. [Google Scholar]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR* D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Thase, M.E.; Friedman, E.S.; Biggs, M.M.; Wisniewski, S.R.; Trivedi, M.H.; Luther, J.F.; Fava, M.; Nierenberg, A.A.; McGrath, P.J.; Warden, D. Cognitive Therapy versus Medication in Augmentation and Switch Strategies as Second-Step Treatments: A STAR* D Report. Am. J. Psychiatry 2007, 164, 739–752. [Google Scholar] [CrossRef]
- Kendler, K.S.; First, M.B. Alternative Futures for the DSM Revision Process: Iteration v. Paradigm Shift. Br. J. Psychiatry 2010, 197, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Kupfer, D.J.; Regier, D.A. Neuroscience, Clinical Evidence, and the Future of Psychiatric Classification in DSM-5. Am. J. Psychiatry 2011, 168, 672–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regier, D.A.; Narrow, W.E.; Kuhl, E.A.; Kupfer, D.J. The Conceptual Development of DSM-V. Am. J. Psychiatry 2009, 166, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NIMH. About RDoC. Available online: https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc.shtml (accessed on 15 March 2021).
- Insel, T.R. The NIMH Research Domain Criteria (RDoC) Project: Precision Medicine for Psychiatry. Am. J. Psychiatry 2014, 171, 395–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbert, B.N.; Insel, T.R. Toward the Future of Psychiatric Diagnosis: The Seven Pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Perugi, G.; Barbuti, M. There Are No Patients without Comorbidity. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2021, 50, 104–106. [Google Scholar] [CrossRef]
- Haggerty, R.J.; Mrazek, P.J. Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Andreasen, N.C. Linking Mind and Brain in the Study of Mental Illnesses: A Project for a Scientific Psychopathology. Science 1997, 275, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Olmert, T.; Cooper, J.D.; Han, S.Y.S.; Barton-Owen, G.; Farrag, L.; Bell, E.; Friend, L.V.; Ozcan, S.; Rustogi, N.; Preece, R.L. A Combined Digital and Biomarker Diagnostic Aid for Mood Disorders (the Delta Trial): Protocol for an Observational Study. JMIR Res. Protoc. 2020, 9, e18453. [Google Scholar] [CrossRef]
- Cormack, F.; McCue, M.; Taptiklis, N.; Skirrow, C.; Glazer, E.; Panagopoulos, E.; van Schaik, T.A.; Fehnert, B.; King, J.; Barnett, J.H. Wearable Technology for High-Frequency Cognitive and Mood Assessment in Major Depressive Disorder: Longitudinal Observational Study. JMIR Ment. Health 2019, 6, e12814. [Google Scholar] [CrossRef] [Green Version]
- Suhara, Y.; Xu, Y.; Pentland, A. Deepmood: Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent Neural Networks. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3 July 2017; pp. 715–724. [Google Scholar]
- Torous, J.; Staples, P.; Shanahan, M.; Lin, C.; Peck, P.; Keshavan, M.; Onnela, J.-P. Utilizing a Personal Smartphone Custom App to Assess the Patient Health Questionnaire-9 (PHQ-9) Depressive Symptoms in Patients with Major Depressive Disorder. JMIR Ment. Health 2015, 2, e3889. [Google Scholar] [CrossRef] [Green Version]
- Onnela, J.-P.; Rauch, S.L. Harnessing Smartphone-Based Digital Phenotyping to Enhance Behavioral and Mental Health. Neuropsychopharmacology 2016, 41, 1691–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vettoretti, M.; Cappon, G.; Acciaroli, G.; Facchinetti, A.; Sparacino, G. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. J. Diabetes Sci. Technol. 2018, 12, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and Design of a Large-Scale, App-Based Study to Identify Cardiac Arrhythmias Using a Smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Torous, J.; Onnela, J.-P.; Keshavan, M. New Dimensions and New Tools to Realize the Potential of RDoC: Digital Phenotyping via Smartphones and Connected Devices. Transl. Psychiatry 2017, 7, e1053. [Google Scholar] [CrossRef]
- Brietzke, E.; Hawken, E.R.; Idzikowski, M.; Pong, J.; Kennedy, S.H.; Soares, C.N. Integrating Digital Phenotyping in Clinical Characterization of Individuals with Mood Disorders. Neurosci. Biobehav. Rev. 2019, 104, 223–230. [Google Scholar] [CrossRef]
- Insel, T.R. Digital Phenotyping: A Global Tool for Psychiatry. World Psychiatry 2018, 17, 276. [Google Scholar] [CrossRef] [Green Version]
- Mundt, J.C.; Vogel, A.P.; Feltner, D.E.; Lenderking, W.R. Vocal Acoustic Biomarkers of Depression Severity and Treatment Response. Biol. Psychiatry 2012, 72, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Mundt, J.C.; Snyder, P.J.; Cannizzaro, M.S.; Chappie, K.; Geralts, D.S. Voice Acoustic Measures of Depression Severity and Treatment Response Collected via Interactive Voice Response (IVR) Technology. J. Neurolinguistics 2007, 20, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Duvvuri, R.; Chandra, K.K.L.; Nguyen, T.; Ghomi, R.H. Automated Voice Biomarkers for Depression Symptoms Using an Online Cross-Sectional Data Collection Initiative. Depress. Anxiety 2020, 37, 657–669. [Google Scholar] [CrossRef]
- Jacobson, N.C.; Weingarden, H.; Wilhelm, S. Digital Biomarkers of Mood Disorders and Symptom Change. NPJ Digit. Med. 2019, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, N.C.; Weingarden, H.; Wilhelm, S. Using Digital Phenotyping to Accurately Detect Depression Severity. J. Nerv. Ment. Dis. 2019, 207, 893–896. [Google Scholar] [CrossRef]
- Tonon, A.C.; Fuchs, D.F.P.; Gomes, W.B.; Levandovski, R.; de Almeida Fleck, M.P.; Hidalgo, M.P.L.; da Silva Alencastro, L. Nocturnal Motor Activity and Light Exposure: Objective Actigraphy-Based Marks of Melancholic and Non-Melancholic Depressive Disorder. Brief Report. Psychiatry Res. 2017, 258, 587–590. [Google Scholar] [CrossRef]
- Saeb, S.; Zhang, M.; Karr, C.J.; Schueller, S.M.; Corden, M.E.; Kording, K.P.; Mohr, D.C. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. J. Med. Internet Res. 2015, 17, e175. [Google Scholar] [CrossRef]
- Dagum, P. Digital Biomarkers of Cognitive Function. NPJ Digit. Med. 2018, 1, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Mandryk, R.L.; Birk, M.V. The Potential of Game-Based Digital Biomarkers for Modeling Mental Health. JMIR Ment. Health 2019, 6, e13485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.J.; Jazaieri, H. Emotion, Emotion Regulation, and Psychopathology: An Affective Science Perspective. Clin. Psychol. Sci. 2014, 2, 387–401. [Google Scholar] [CrossRef]
- Marzano, L.; Bardill, A.; Fields, B.; Herd, K.; Veale, D.; Grey, N.; Moran, P. The Application of MHealth to Mental Health: Opportunities and Challenges. Lancet Psychiatry 2015, 2, 942–948. [Google Scholar] [CrossRef] [Green Version]
- Pratap, A.; Atkins, D.C.; Renn, B.N.; Tanana, M.J.; Mooney, S.D.; Anguera, J.A.; Areán, P.A. The Accuracy of Passive Phone Sensors in Predicting Daily Mood. Depress. Anxiety 2019, 36, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Lydon-Staley, D.M.; Barnett, I.; Satterthwaite, T.D.; Bassett, D.S. Digital Phenotyping for Psychiatry: Accommodating Data and Theory with Network Science Methodologies. Curr. Opin. Biomed. Eng. 2019, 9, 8–13. [Google Scholar] [CrossRef]
- Sultana, M.; Al-Jefri, M.; Lee, J. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study. JMIR MHealth UHealth 2020, 8, e17818. [Google Scholar] [CrossRef]
- Burns, M.N.; Begale, M.; Duffecy, J.; Gergle, D.; Karr, C.J.; Giangrande, E.; Mohr, D.C. Harnessing Context Sensing to Develop a Mobile Intervention for Depression. J. Med. Internet Res. 2011, 13, e55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torous, J.; Kiang, M.V.; Lorme, J.; Onnela, J.-P. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Ment. Health 2016, 3, e5165. [Google Scholar] [CrossRef]
- Ellsworth, R.E.; Decewicz, D.J.; Shriver, C.D.; Ellsworth, D.L. Breast Cancer in the Personal Genomics Era. Curr. Genomics 2010, 11, 146–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priyadharshini, V.S.; Teran, L.M. Personalized Medicine in Respiratory Disease: Role of Proteomics. Adv. Protein Chem. Struct. Biol. 2016, 102, 115–146. [Google Scholar]
- Xu, J.; Yang, P.; Xue, S.; Sharma, B.; Sanchez-Martin, M.; Wang, F.; Beaty, K.A.; Dehan, E.; Parikh, B. Translating Cancer Genomics into Precision Medicine with Artificial Intelligence: Applications, Challenges and Future Perspectives. Hum. Genet. 2019, 138, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Winner, J.G.; Carhart, J.M. A Prospective, Randomized, Double-Blind Study Assessing the Clinical Impact of Integrated Pharmacogenomic Testing for Major Depressive Disorder. Discov. Med. 2013, 16, 219–227. [Google Scholar]
- Kim, K.; Magness, J.W.; Nelson, R.; Baron, V.; Brixner, D.I. Clinical Utility of Pharmacogenetic Testing and a Clinical Decision Support Tool to Enhance the Identification of Drug Therapy Problems Through Medication Therapy Management in Polypharmacy Patients. J. Manag. Care Spec. Pharm. 2018, 24, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Pérez, V.; Salavert, A.; Espadaler, J.; Tuson, M.; Saiz-Ruiz, J.; Sáez-Navarro, C.; Bobes, J.; Baca-García, E.; Vieta, E.; Olivares, J.M. Efficacy of Prospective Pharmacogenetic Testing in the Treatment of Major Depressive Disorder: Results of a Randomized, Double-Blind Clinical Trial. BMC Psychiatry 2017, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- PREDICTIX Genetics. Available online: https://www.predictix.ai/predictix-genetics (accessed on 4 July 2021).
- Taliaz, D.; Spinrad, A.; Barzilay, R.; Barnett-Itzhaki, Z.; Averbuch, D.; Teltsh, O.; Schurr, R.; Darki-Morag, S.; Lerer, B. Optimizing Prediction of Response to Antidepressant Medications Using Machine Learning and Integrated Genetic, Clinical, and Demographic Data. Transl. Psychiatry 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Mendelson, W. Human Sleep and Its Disorders; Springer Science & Business Media: Boston, MA, USA, 2012. [Google Scholar]
- Conte, F.; Arzilli, C.; Errico, B.M.; Giganti, F.; Iovino, D.; Ficca, G. Sleep Measures Expressing ‘Functional Uncertainty’in Elderlies’ Sleep. Gerontology 2014, 60, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, I.; Carlson, V.R. Sleep Variables as a Function of Age in Man. Arch. Gen. Psychiatry 1968, 18, 239–250. [Google Scholar] [CrossRef]
- Klerman, E.B.; Dijk, D.-J. Age-Related Reduction in the Maximal Capacity for Sleep—Implications for Insomnia. Curr. Biol. 2008, 18, 1118–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, W.B.; Campbell, S.S. The First Night Effect Revisited with Age as a Variable. Waking Sleep. 1979, 3, 319–324. [Google Scholar]
- Slavich, G.M.; Taylor, S.; Picard, R.W. Stress Measurement Using Speech: Recent Advancements, Validation Issues, and Ethical and Privacy Considerations. Stress 2019, 22, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taliaz, D.; Souery, D. A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder. J. Clin. Med. 2021, 10, 3109. https://doi.org/10.3390/jcm10143109
Taliaz D, Souery D. A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder. Journal of Clinical Medicine. 2021; 10(14):3109. https://doi.org/10.3390/jcm10143109
Chicago/Turabian StyleTaliaz, Dekel, and Daniel Souery. 2021. "A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder" Journal of Clinical Medicine 10, no. 14: 3109. https://doi.org/10.3390/jcm10143109
APA StyleTaliaz, D., & Souery, D. (2021). A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder. Journal of Clinical Medicine, 10(14), 3109. https://doi.org/10.3390/jcm10143109