Cardiac Rehabilitation in German Speaking Countries of Europe—Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH—Part 2
Abstract
:1. Introduction
2. Methods
3. Results and Evidence-Based Recommendations for Contents and Application of ebCR
- -
- Physical activity and exercise training in different patient cohorts;
- -
- Psychological interventions;
- -
- Patient education;
- -
- Special patient groups;
- -
- Telemedical- and home-based-rehabilitation;
3.1. Physical Activity and Exercise Training in General
3.1.1. Recommendations
- It is recommended (↑↑ 100%)
- -
- to perform a detailed risk-evaluation including stress test before the start of any exercise measures
- -
- -
3.1.2. Scientific Evidence
- -
- total exercise volume to be ≥1.000 min as calculated by the “number of weeks” times “exercise sessions per week” times “exercise duration per session in minutes”,
- -
- the number of rehabilitation sessions including exercise, information, education and psychosocial interventions to be ≥36.
3.1.3. Limitations
Low risk (all listed findings must apply) |
Findings/Results of the graded exercise testing:
|
Moderate risk (if diagnosed with one or more of the listed findings) |
Findings/Results of the graded exercise testing:
|
High risk (if diagnosed with one or more of the listed findings) |
Findings/Results of the graded exercise testing:
|
Parameter for Exercise Recommendations and Control | Recommendation Ranges | |
---|---|---|
Cycle Ergometer Test | Low to Moderate Intensity | Moderate to High Intensity |
Percentage of peak heart rate achieved (% HRpeak) | 65–75% HRpeak | 75–85% HRpeak |
Percentage pf peak heart rate reserve 1 achieved (% HRRpeak) | 40–60% HRRpeak | 60–70% HHRpeak |
Exercise work load based on percentage of peak work load achieved in cycle ergometer test (wattpeak) | 40–60% wattpeak | 60–80% wattpeak |
Cardiopulmonary exercise testing 2 | ||
Percentage of peak oxygen uptake achieved (% VO2peak) | 40–60% VO2peak | 60–80% VO2peak |
Ventilatory threshold (VT1), respiratory compensation point (VT2) | from VT1 (55–70% VO2peak) | up to below VT2 (70–80% VO2peak) |
Other parameters for exercise control 3 | ||
Borg scale (6–20) for rating perceived exertion (RPE) | 12–14 RPE | >15 RPE |
Respiratory rate “speech rule” 4 | the breathing during exercise should allow conversation | |
Recommended exercise duration | from >5 up to 60 min | |
Recommended exercise frequency | 3–5 (7) days a week/most day of the week |
Training Stage | Training Objective | Training Method | Training Intensity | Number of Repetitions per Muscle Group | Training Volume |
---|---|---|---|---|---|
Initial stage (pre-training, familiarization) | Implementation of exercise: Learning and practicing the correct execution Improvement of self-perception and coordination | Dynamic | >30% 1-RM RPE ≤ 11 | 5–10 | 2–3 units per week, 1–3 sets per unit, 1–2 min rest between sets |
Testing of muscular strength | Determination of the one-repetition maximum (1-RM) | ||||
Improvement stage I | Improvement of local aerobic endurance, improvement of coordination | Dynamic | 30–50% 1-RM, RPE 12–13 | 10–15 | 2–3 units per week, 1–3 sets per unit, 1–2 min rest between sets |
Improvement stage II | Increase in muscle cross-sectional area (hypertrophy), improvement of coordination | Dynamic | 40–60% 1-RM, RPE 14-1 | 8–15 | 2–3 units per week, 1–3 sets per unit, 1–2 min rest between sets |
Improvement stage III | Increase in muscle cross-sectional area (hypertrophy), improvement of coordination | Dynamic | 60–80% 1-RM, selected patients in good clinical condition | 8–10 | 2–3 units per week, 1–3 sets per unit, 1–2 min rest between sets |
3.2. Physical Activity and Exercise Training in Patients with Coronary Artery Disease (CAD)
3.2.1. Recommendations
- All patients with stable CAD are recommended to participate in supervised individually adapted exercise training as part of ebCR. This applies to patients after acute coronary syndrome (ACS), unstable angina, STEMI, NSTEMI with/without PCI, and/or post bypass surgery (CABG). Refs. [3,4,5,7,8] (↑↑ 100%)
- After uncomplicated PCI, it is recommended to start an individually adapted and monitor-supervised ET as early as possible (from day 4 after PCI). Ref. [41] (↑↑ 100%)
- Early mobilization is recommended after ACS (STEMI, NSTEMI, unstable angina pectoris) and after CABG. In the case of an uncomplicated course, this should begin as early as 24–48 h after the event or post-op in the acute care hospital. Ref. [7] (↑↑ 100%)
- In the first 6–8 weeks (individual and symptom-dependent up to several months) after CABG, it is recommended to consider intervention-related limitations (e.g., wound healing disorders, pain after thoracotomy, sternum stability) when implementing and performing ET. (↑↑ 100%)
- In case of wound healing disorders with systemic inflammatory activation, causal therapy for the wound healing disorder is recommended to be given first, before starting any exercise intervention. Ref. [7] (↑↑ 100%)
- It is recommended (↑↑ 100%)
- -
- -
- to start the MCT with low to moderate intensity:
- -
- In case of positive ischemia detection in the stress test, to establish the exercise intensity at a heart rate at least 10 beats below the ischemia threshold.
- -
- -
- to introduce stable patients with good exercise capacity to more intensive MCT during ebCR
- -
- In stable patients with good exercise capacity, high-intensity interval training (HIIT) may be considered in the long-term course. (↔ 100%)
3.2.2. Scientific Evidence ebCR
3.2.3. Limitations
3.3. Physical Activity and Exercise Training in Patients with Congestive Heart Failure (CHF)
3.3.1. Recommendations
- It is recommended (↑↑ 100%)
- -
- to perform a thorough risk evaluation and diagnostics, and check baseline conditions before starting the ET:
- -
- -
- -
- -
- -
- -
- to assess functional capacity with the 6-min walk test and use the results (6-min walking distance, % peak HR, RPE, breathing rate) to support the assessment of exercise tolerance and for individually adapted exercise prescription [6].
- After a long period of bedrest, in clearly deconditioned patients, in cachexia, or after clinical instability, an individualized stepwise mobilization (including light exercises to improve flexibility and muscular strength) is suggested to be performed as early as possible in preparation for exercise training. If necessary, this should be performed while the patient is still in the hospital. (↑ 100%)
- It is recommended (↑↑ 100%)
- -
- -
- to introduce stable CHF patients with good exercise tolerance to more intensive MCT during ebCR.
- -
- to increase exercise duration gradually up to 2060 min, 3–5 days per week starting with 5–10 min.
- -
- to start the MCT at a low intensity (i.e., 40–50% of peak VO2) and to keep the duration of MCT short (5–10 min, 2 times per week) in deconditioned CHF-patients with poor exercise capacity or patients with severely reduced LV function.
- -
- to prolong MCT duration and increase frequency if the deconditioned CHI patient tolerates the low intensity endurance exercise well.
- Alternatively, or complementarily MCT, aerobic interval training (IT) with 20–30 s of load at 85% to <100% peak watt alternating with 40–60 s of recovery, may be considered in all CHF-patients [7]. (↔ 100%)
- In the long-term course (phase III rehabilitation), high-intensity interval training (HIIT), with longer intensive exercise phases (e.g., 1–4 min at 85–95% of HRpeak) alternating with recovery of moderate intensity (1–3 min at 65% of HRpeak), may be considered in selected, stable CHF-patients [5,6]. (↔ 100%)
- Complementary to the aerobic exercise it is recommended: (↑↑ 100%)
- -
- -
- to include individually adapted exercises to improve coordination (especially sensorimotor training and balance training) and flexibility, as well as gait training, into the exercise program.
- -
- If necessary, functional electrical stimulation may be considered (e.g., in significantly deconditioned patients) [60]. (↔ 100%)
3.3.2. Scientific Evidence
3.3.3. Limitations
3.4. Physical Activity and Exercise Training in Patients with Surgical or Interventional Heart Valve Therapy
3.4.1. Recommendations
- In patients after surgical or interventional heart valve replacement (including corrective procedures) the participation in supervised structured and individualized aerobic endurance and moderate dynamic resistance training during ebCR is recommended. (↑↑ 100%)
- It is recommended (↑↑ 100%)
- -
- to perform the ET within the first postoperative week in a medically supervised setting.
- -
- to increase the exercise intensity and volume, adjusted individually and gradually.
- -
- to avoid inadequate shear, compression, and extension loads on the thoracic skeleton and sternum within the first 6–8 postoperative weeks after thoracotomy.
- -
- to include individually adapted exercises to improve coordination (especially sensorimotor training and balance training) and flexibility, as well as gait training, into the exercise program.
- -
- to avoid all contact sports or other injury-prone exercise in patients on oral anticoagulation
3.4.2. Scientific Evidence
3.4.3. Limitations
3.5. Physical Activity and Exercise Training in Patients in Patients after Implantation of Cardioverter-Defibrillator (ICD), Resynchronisation System (CRT), and Patients with a Wearable Cardioverter-Defibrillator (WCD)
3.5.1. Recommendations
- For patients after ICD and CRT implantation, it is recommended (↑↑ 100%)
- -
- to perform the ET initially ECG-monitored and under medical supervision in order to define appropriate exercise prescription.
- -
- to consider the underlying cardiac disease, the clinical condition of the patient and the ICD and CRT programming when developing individual training recommendations.
- -
- to determine the peak heart rate allowed to be achieved during ET clearly (at least 10–20 beats) below the programmed detection rate of the ICD.
- -
- to use heart rate monitor during independent/non supervised ET
- -
- to avoid sports/exercises with increased situational danger in case of shock delivery, where there is a particular danger when the person is alone (e.g., diving; swimming should only be practiced in shallow water and with the protection of a possible helper).
- -
- to strictly avoid sports with increased risk (e.g., climbing, motor sports, parachuting, paragliding, martial arts).
- -
- to avoid all sports/exercises with intensive shoulder-arm movements on the side where the ICD, CRT is implanted or with mechanical loads on the torso area where the ICD is implanted.
- -
- to additionally apply the disease-specific recommendations in patients after ICD, CRT implantation in HFrEF-patients
- -
- to define the individual exercise recommendations in patients with WCD primarily based on the underlying disease and, in addition, analogously to the recommendations for ICD-patients.
3.5.2. Scientific Evidence
3.5.3. Limitations
3.6. Physical Activity and Exercise Training in Patients with Ventricular Assist Device (VAD)
3.6.1. Recommendations
- In patients with newly implanted VAD-system it is suggested to start the training primarily depending on the individual clinical condition and disease progression. (↑ 100%)
- It is recommended (↑↑ 100%)
- -
- -
- It is recommended (↑↑ 100%)
- -
- -
- Pump flow reduction below 3 L/min
- -
- Increase in the energy demand of the pump in watt (CAVE: thrombus!!)
- -
- decrease in peripheral O2 saturation <90% (pulse oximeter)
- -
- Bleeding (e.g., nosebleed)
- -
- -
- control of rechargeable batteries
- -
- attention to the driveline length and position
- -
- positioning of the external equipment
- -
- It is recommended (↑↑ 100%)
- -
- -
- -
3.6.2. Scientific Evidence
3.6.3. Limitations
3.7. Physical Activity and Exercise Training in Patients after Heart Transplantation (HTX)
3.7.1. Recommendations
- It is recommended (↑↑ 100%)
- -
- -
- -
- to perform all exercise measures during ebCR with adequate sparing of the sternum.
- It is suggested (↑ 100%)
- -
- -
- to start the aerobic endurance training with the intensity set at <50% of the peak VO2 or 10% below the ventilatory threshold (VT1) [5].
- -
- to use the perceived rate of exertion (BORG scale 11–14/20 RPE) and/or the respiratory rate (“speaking rule”) to control and adapt exercise intensity.
- -
- to introduce stable patients with good exercise capacity to more intensive endurance training in the long-term course (possibly also as high intensity interval training) [136].
- It is recommended to reduce or (in the case of cortisone bolus therapy) completely discontinue all exercise activities during rejection episodes, depending on their severity [133]. (↑↑ 100%)
- Ischemia diagnosis is suggested before restarting ET in the late stage after HTX. (↑ 100%)
3.7.2. Scientific Evidence
3.7.3. Limitations
3.8. Physical Activity and Exercise Training in Patients Peripheral Artery Disease (PAD)
3.8.1. Recommendations
- After surgical or interventional revascularization, it is recommended. (↑↑ 100%)
- -
- to pay attention to procedure-related limitations (e.g., wound healing disorders, lymphedema, neuropathic pain) during the first weeks of ET.
- -
- to carry out suitable physiotherapeutic measures and provide appropriate auxiliary aids to support the implementation of the ET d
- -
- uring ebCR.
- In symptomatic and asymptomatic patients of any age group, conservatively treated or after interventional/surgical revascularization (PTA, TEA, bypass surgery) are recommended [158,159,160,161,162]. (↑↑ 100%)
- -
- to perform interval walking on a treadmill or on a firm flat surface.
- -
- to perform the interval walking at individual pace until patients reach mild to moderate claudication pain, and then rest (2–3 min) until the pain subsides completely in symptomatic patients.
- -
- to pay attention to new cardiac symptoms (e.g., angina pectoris, dyspnoea, pretibial oedema, hypertension, tachycardia) during the course of the disease, especially in the case of improved ambulation and walking distance in the case of cardiac comorbidity (e.g., CAD, CHF, arrythmias) [4].
- -
- to perform exercises to improve balance, gait quality and to increase flexibility as well as the local aerobic endurance capacity
- As a complement to the interval walking, it may be considered. (↔ 100%)
- -
- to perform interval training on a bicycle ergometer or arm ergometer training [163].
- -
- to perform low to moderate intensity dynamic resistance training (30–60% of 1-RM).
3.8.2. Scientific Evidence
3.8.3. Limitations
3.9. Physical Activity and Exercise Training in Patients with Myocarditis
3.9.1. Recommendations
- Exercise training is not recommended in cases of biopsy-confirmed myocarditis or clinically high-grade suspicion of acute or chronically active myocarditis. (↓↓ 100%)
- In case of biopsy-confirmed myocarditis or clinically high-grade suspicion of acute or chronically active myocarditis, performance-oriented or competitive sports activities are not recommended for at least 3–6 months. (↓↓ 100%)
- Before starting any ET, it is recommended to perform a careful cardiac risk stratification, including Holter-ECG (see Part 1). (↑↑ 100%)
- In patients with heart failure as a possible or proven long-term consequence of myocarditis, the introduction to an individually adapted exercise training is recommended in case of a stable course of the disease and guideline-compliant drug therapy. (↑↑ 100%)
3.9.2. Scientific Evidence
3.9.3. Limitations
3.10. Physical Activity and Exercise Training in Patients with Congenital Heart Disease (ACHD)
3.10.1. Recommendations
- It is recommended (↑↑ 100%)
- -
- -
- -
- In patients with significant residual findings, with complex heart defects or after palliative corrected heart defects (e.g., Fontan patients, corrected transposition of the great arteries (cc-TGA), systemic right ventricle) it is suggested to introduce them to supervised, individually adapted exercise-based interventions with a low dynamic and static load, if their clinical condition permits. Refs. [187,192,193] (↑ 100%)
- If necessary, (i.g. in patients with respiratory muscle weakness) an inspiratory muscle training (IMT) is recommended. (↑↑ 100%)
- In patients who have recently undergone sternotomy, those on anticoagulation therapy, and/or have undergone pacemaker and ICD implantation, it is recommended to follow and take into account the relevant recommendations for these conditions in planning and implementation of exercise training. (↑↑ 100%)
3.10.2. Scientific Evidence
3.10.3. Limitations
3.11. Psychological Interventions
3.11.1. Recommendations
- Psychosocial factors (e.g., depressive symptoms, anxiety, stress, motivation, self-efficacy) are recommended to be detected at the beginning of cardiac rehabilitation and to be evaluated whether they need to be treated (“Screening”). (↑↑, 4, 100%)
- This screening is suggested to be supported by specific and validated tools such as questionnaires. (↑, 4, 100%)
- Based on this screening procedure it is recommended to deliver appropriate psychological interventions and support after a shared decision making. (↑↑, 4, 100%)
- Non-specific psychological interventions to all patients in CR without individual indication are not recommended. (↓↓, 4, 100%)
- Mental disorders, according to ICD-10, are recommended to be diagnosed and treated according to guidelines taking into account cardiovascular comorbidities. (↑↑, 1-, 100%)
- Mental disorders according to ICD-10 are not recommended to be treated only by psychological interventions to improve health behavior, coping with the disease and distress management. (↓↓, 1, 100%)
- Psychological interventions are suggested to be performed by qualified physicians or psychologists. (↑, 4, 100%)
3.11.2. Scientific Evidence
- psychologically supported lifestyle change
- distress management
- Combination of psychologically supported lifestyle change and distress management
3.11.3. Limitations
Patient Education
3.12. Education to Strengthen Motivation and Adherence in General
3.12.1. Recommendations
- Education is recommended to support motivation and personal responsibility to take part in therapeutic activities during CR and to promote coping with the disease. (↑↑, 100%)
- Education is recommended to use cognitive-behavioral techniques (such as goal setting, planning, self-monitoring, feedback, and motivational interviewing) to facilitate changes in behaviour. (↑↑, 100%)
- Education is suggested to implement a structured group approach including different patient-centered methods to actively involve the patient in order to deliver knowledge and skills tailored to the specific situation of the individual. (↑, 100%)
3.12.2. Scientific Evidence
- -
- reduction in total mortality (OR 1.34, 95% CI 1.10–1.64; p = 0.003) in 6 RCTs; n = 6.270 patients,
- -
- reduction in cardiac mortality (OR 1.48, 95% CI 1.17–1.88; p = 0.001) in 5 RCTs; n = 5.237 patients
- -
- reduction in myocardial reinfarction and rehospitalisation (OR 1.35, 95% CI 1.17–1.55; p < 0.001) in 8 RCTs; n = 6.479 patients.
3.12.3. Limitations
3.13. Education in Special Patient Groups
3.13.1. Recommendations
- Patients with coronary artery disease, congestive heart failure, peripheral arterial disease (PAD), hypertension, diabetes mellitus, and after implantation of a ventricular assist device
- Patients are recommended to receive disease-specific education during cardiac rehabilitation. (↑↑, 100%)
- Education is recommended to deliver knowledge about causes and therapy of the specific disease, to train self-management capabilities, and to promote a disease-specific healthy lifestyle as a substantial part of the risk factor management. (↑↑, 100%)
- It is suggested to include the patients’ relatives in education programs whenever possible. (↑, 100%)
- Every PAD patient is recommended to follow a special walking exercise training program including specific goals to reach the individual pain-free walking distance and to implement the vascular training program during daily life activities. (↑↑, 100%)
- It is recommended to motivate PAD patients to take part in a special vascular training group after discharge from CR. (↑↑, 100%)
- In patients who are still smoking, it is recommended to offer a cognitive behavioral group program or a behavioral oriented consultation on a face-to-face basis within a guideline-based program for smoking cessation. (↑↑, 100%)
- It may be considered to implement individual material for self-help of the patient. (↔, 100%)
- In obese patients with a BMI ≥30 kg/m2 or patients with a BMI of 25–25.9 kg/m2 exhibiting additional cardiovascular risk factors are recommended to take part in a structured and intensive lifestyle intervention. (↑↑, 100%)
- This lifestyle intervention in obese patients is recommended to include physical activity and nutritional counseling, as well as cognitive behavioral therapy. (↑↑, 100%)
- In obese patients, it is recommended to mutually define an individual target bodyweight that is about 5–10% below the initial weight and considering individual and disease-specific conditions to be reached within 6 to 12 months. (↑↑, 100%)
- The multimodal intervention towards normalization of body weight is recommended to be continued at least 6 to 12 months after CR discharge. (↑↑, 100%)
3.13.2. Scientific Evidence
Coronary Artery Disease (CAD)
Congestive Heart Failure (CHF)
Peripheral Arterial Disease (PAD)
Diabetes Mellitus (DM)
Smoking Cessation
Obesity
3.13.3. Limitations
Special Patient Groups
3.14. Aged and Frail Patients
3.14.1. Recommendations
- At admission to CR, it is suggested to check criteria of frailty in old and week patients. (↑, 100%)
- If frailty is diagnosed, it is suggested to implement dynamic strength training and physical exercise to reduce coordinative problems and consequently, to prevent falls. (↑, 100%)
- In old and frail patients, it is suggested to implement special nutrition advices. (↑, 100%)
- The individual and specific training during CR is suggested to be continued at home after discharge from CR. (↑, 100%)
3.14.2. Scientific Evidence
3.14.3. Limitations
3.15. Children, Adolescents and Young Patients
3.15.1. Recommendations
- In children, adolescents, and young adults, participation in CR is recommended if the disease or the intervention are likely to impair their physical or mental development or the return into social life. (↑↑, 100%)
- It is recommended to have special competence in pediatric cardiology on all levels (physicians, nurses, psychologists, physiotherapists). (↑↑, 100%)
- It is recommended to provide special groups with children, adolescents and young adults at similar age to facilitate the exchange of ideas, needs, and worries between patients. (↑↑, 100%)
- It is recommended to use a therapeutic concept that includes the specific problems of the young, especially in young patients with development delay. (↑↑, 100%)
3.15.2. Scientific Evidence
3.15.3. Limitations
3.16. Gender Issues
3.16.1. Recommendations
- At entry to CR, it is suggested to perform a gender-sensitive risk-evaluation, especially considering multi-morbidity, obesity, depression, and psychosocial problems. (↑, 100%)
- Secondary preventive medication is suggested to be optimised in a gender-specific way, especially considering hormone replacement therapy. (↑, 100%)
- Physical exercise and psychological groups are suggested to be offered separately for female and male patients in order to account for gender-specific preferences, thus increasing acceptance and motivation during therapy. (↑, 100%)
- During acute care in hospital, it is recommended to particularly motivate female patients to participate in cardiac rehabilitation to avoid gender specific underutilization. (↑↑, 100%)
3.16.2. Scientific Evidence
3.16.3. Limitations
3.17. Patients with Migration Background
3.17.1. Recommendations
- It is suggested that rehabilitation facilities provide information for patients in commonly spoken foreign languages and intercultural training for staff to gain intercultural competence. (↑, 100%)
- It is suggested that multidisciplinary teams work together with professional translators and professional mediators to moderate intercultural differences. (↑, 100%)
- In the long-term, it is suggested to establish diversity-sensitive structures in order to recognise and to interact with differing expectations and needs of patients, independently of a potential migration background. (↑, 91%)
3.17.2. Scientific Evidence
3.17.3. Limitations
3.18. Telemedicine in Cardiac Rehabilitation and Home-Based Rehabilitation
3.18.1. Recommendations
- Cardiac rehabilitation of phase II is recommended to be preferably offered under face-to-face supervision and responsibility of a multidisciplinary rehabilitation team (centre based CR). (↑↑, 100%)
- It is suggested to establish tele-rehabilitation facilities for low risk patients with sufficient time interval since a non-complicated index-event to support cardiac rehabilitation participation in general. (↑, 100%)
- It is suggested to establish home-based rehabilitation to intensify long-term secondary prevention of patients with cardiovascular disease. (↑, 100%)
3.18.2. Scientific Evidence
3.18.3. Limitations
4. Summary and Critical Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACHD | adults with congenital heart disease |
ACS | acute coronary syndrome |
AWMF | Association of the Scientific Medical Societies in Germany |
BMI | body mass index |
BORG/RPE | Borg Rating of Perceived Exertion Scale |
CABG | coronary artery bypass grafting |
CAD | coronary artery disease |
CCS | chronic coronary syndrome |
CCT | controlled cohort trial |
CHF | congestive heart failure |
CR | cardiac rehabilitation |
CRT | cardiac resynchronization therapy |
CV | cardiovascular |
CVD | cardiovascular disease |
cTGA | corrected transposition of great arteries |
DM | diabetes mellitus |
ebCR | exercise based cardiac rehabilitation |
ECG | electrocardiogram |
EF | ejection fraction |
ET | exercise training |
HADS | Hospital Anxiety and Depression Scale |
HFmrEF | heart failure with mid-range left ventricular ejection fraction |
HFpEF | heart failure with preserved left ventricular ejection fraction |
HFrEF | heart failure with reduced left ventricular ejection fraction |
HIIT | high intensity interval training |
HR | heart rate |
HRpeak | heart rate at peak exercise |
HRR | heart rate reserve |
HTX | heart transplantation |
ICD | implanted cardioverter defibrillator |
IMT | inspiratoric muscle training |
IT | interval training |
LDL | low density lipoprotein |
LV-EF | left ventricular ejection fraction |
MCT | moderate continuous training |
MET | metabolic equivalent |
NSTEMI | non ST-elevation myocardial infarction |
NYHA | New York Heart Association |
QoL | quality of life |
PA | physical activity |
PAD | peripheral artery disease |
PCI | percutaneous coronary intervention |
PE | patient education |
PI | psychological intervention |
PTA | peripheral transluminal angioplasty |
RCT | randomized controlled trial |
RM | one repition maximum |
STEMI | ST-elevation myocardial infarction |
TEA | thrombendatherectomy |
Tele | telemedical |
TIA | transitoric ischemic attack |
VAD | ventricular assist device |
VO2peak | oxygen consumption at peak exercise |
VT1 | ventilatory threshold 1 |
VT2 | respiratory compensation point |
WIQ | walking impairment questionnaire score |
WCD | Wearable Cardioverter-Defibrillator |
References
- Rauch, B.; Salzwedel, A.; Bjarnason-Wehrens, B.; Albus, C.; Meng, K.; Schmid, J.P.; Benzer, W.; Hackbusch, M.; Jensen, K.; Schwaab, B. Cardiac Rehabilitation in German Speaking Countries of Europe—Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH—Part 1. J. Clin. Med. 2021, 10, 2192. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Fleg, J.L.; Forman, D.E.; Berra, K.; Bittner, V.; Blumenthal, J.A.; Chen, M.A.; Cheng, S.; Kitzman, D.W.; Maurer, M.S.; Rich, M.W.; et al. Secondary prevention of atherosclerotic cardiovascular disease in older adults: A scientific statement from the American Heart Association. Circulation 2013, 128, 2422–2446. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Corra, U.; Benzer, W.; Bjarnason-Wehrens, B.; Dendale, P.; Gaita, D.; McGee, H.; Mendes, M.; Niebauer, J.; Zwisler, A.D.; et al. Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 1–17. [Google Scholar] [CrossRef]
- Vanhees, L.; Rauch, B.; Piepoli, M.; van Buuren, F.; Takken, T.; Borjesson, M.; Bjarnason-Wehrens, B.; Doherty, P.; Dugmore, D.; Halle, M.; et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III). Eur. J. Prev. Cardiol. 2012, 19, 1333–1356. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Conraads, V.; Corra, U.; Dickstein, K.; Francis, D.P.; Jaarsma, T.; McMurray, J.; Pieske, B.; Piotrowicz, E.; Schmid, J.P.; et al. Exercise training in heart failure: From theory to practice. A consensus document of the Heart Failure Association and the European Association for cardiovascular Prevention and Rehabilitation. Eur. J. Heart Fail. 2011, 13, 347–357. [Google Scholar] [CrossRef]
- Bjarnason-Wehrens, B.; Schulz, O.; Gielen, S.; Halle, M.; Dürsch, M.; Hambrecht, R.; Lowis, H.; Kindermann, W.; Schulze, R.; Rauch, B. Leitlinie körperliche Aktivität zur Sekundärprävention und Therapie kardiovaskulärer Erkrankungen; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ambrosetti, M.; Abreu, A.; Corra, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.; Schmid, J.P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.; Cosyns, B.; Deaton, C.; et al. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.; Oldridge, N.; Thompson, D.R.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J. Am. Coll Cardiol. 2016, 67, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rauch, B.; Davos, C.H.; Doherty, P.; Saure, D.; Metzendorf, M.I.; Salzwedel, A.; Völler, H.; Jensen, K.; Schmid, J.P.; on behalf of the “Cardiac Rehabilitation Section”, European Association of Preventive Cardiology (EAPC). The prognostic effect of cardiac rehabilitation in the era of acute revascularization and statin therapy: A systematic review and meta-analysis of randomized and non-randomized studies—The Cardiac Rehabilitation Outcome Study (CROS). Eur. J. Prev. Cardiol. 2016, 23, 1914–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzwedel, A.; Jensen, K.; Rauch, B.; Doherty, P.; Metzendorf, M.I.; Hackbusch, M.; Voller, H.; Schmid, J.P.; Davos, C.H. Effectiveness of comprehensive cardiac rehabilitation in coronary artery disease patients treated according to contemporary evidence based medicine: Update of the Cardiac Rehabilitation Outcome Study (CROS-II). Eur. J. Prev. Cardiol. 2020, 27, 1756–1774. [Google Scholar] [CrossRef]
- Ismail, H.; McFarlane, J.R.; Nojoumian, A.H.; Dieberg, G.; Smart, N.A. Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: A systematic review and meta-analysis. JACC Heart Fail. 2013, 1, 514–522. [Google Scholar] [CrossRef]
- Rognmo, O.; Moholdt, T.; Bakken, H.; Hole, T.; Molstad, P.; Myhr, N.E.; Grimsmo, J.; Wisloff, U. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 2012, 126, 1436–1440. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.A. Exercise testing in cardiac rehabilitation. Exercise prescription and beyond. Cardiol. Clin. 2001, 19, 415–431. [Google Scholar] [CrossRef]
- American Association of Cardiovascular and Pulmonary Rehabilitation. Guidelines for Cardiac Rehabilitation and Secondary Prevention Programs, 5th ed.; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Hambrecht, R.; Wolf, A.; Gielen, S.; Linke, A.; Hofer, J.; Erbs, S.; Schoene, N.; Schuler, G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N. Engl. J. Med. 2000, 342, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Gielen, S.; Schuler, G.; Adams, V. Cardiovascular effects of exercise training: Molecular mechanisms. Circulation 2010, 122, 1221–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haykowsky, M.; Scott, J.; Esch, B.; Schopflocher, D.; Myers, J.; Paterson, I.; Warburton, D.; Jones, L.; Clark, A.M. A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: Start early and go longer for greatest exercise benefits on remodeling. Trials 2011, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.Y.; Hsieh, P.L.; Hsiao, S.F.; Chien, M.Y. Effects of Exercise Training on Autonomic Function in Chronic Heart Failure: Systematic Review. Biomed. Res. Int. 2015, 2015, 591708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, M.J.; Mungovan, S.F.; Smart, N.A. Effect of exercise on diastolic function in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2017, 22, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.J.; Smart, N.A. Effect of exercise training on endothelial function in heart failure patients: A systematic review meta-analysis. Int. J. Cardiol. 2017, 231, 234–243. [Google Scholar] [CrossRef]
- Pearson, M.J.; Smart, N.A. Exercise therapy and autonomic function in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2018, 23, 91–108. [Google Scholar] [CrossRef]
- Bjarnason-Wehrens, B.; Nebel, R.; Jensen, K.; Hackbusch, M.; Grilli, M.; Gielen, S.; Schwaab, B.; Rauch, B.; German Society of Cardiovascular Prevention and Rehabilitation (DGPR). Exercise based cardiac rehabilitation in patients with reduced left ventricular ejection fraction—The Cardiac Rehabil-itation Outcome Study in Heart Failure (CROS-HF). A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2019, in press. [Google Scholar]
- Pascoalino, L.N.; Ciolac, E.G.; Tavares, A.C.; Castro, R.E.; Ayub-Ferreira, S.M.; Bacal, F.; Issa, V.S.; Bocchi, E.A.; Guimaraes, G.V. Exercise training improves ambulatory blood pressure but not arterial stiffness in heart transplant recipients. J. Heart Lung Transplant. 2015, 34, 693–700. [Google Scholar] [CrossRef]
- Schmidt, A.; Pleiner, J.; Bayerle-Eder, M.; Wiesinger, G.F.; Rodler, S.; Quittan, M.; Mayer, G.; Wolzt, M. Regular physical exercise improves endothelial function in heart transplant recipients. Clin. Transplant. 2002, 16, 137–143. [Google Scholar] [CrossRef]
- Braith, R.W.; Schofield, R.S.; Hill, J.A.; Casey, D.P.; Pierce, G.L. Exercise training attenuates progressive decline in brachial artery reactivity in heart transplant recipients. J. Heart Lung Transplant. 2008, 27, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Freyssin, C.; Verkindt, C.; Prieur, F.; Benaich, P.; Maunier, S.; Blanc, P. Cardiac rehabilitation in chronic heart failure: Effect of an 8-week, high-intensity interval training versus continuous training. Arch. Phys. Med. Rehabil. 2012, 93, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Marzolini, S.; Candelaria, H.; Oh, P. Prevalence and impact of musculoskeletal comorbidities in cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2010, 30, 391–400. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hotta, K.; Ota, E.; Mori, R.; Matsunaga, A. Effects of resistance training on muscle strength, exercise capacity, and mobility in middle-aged and elderly patients with coronary artery disease: A meta-analysis. J. Cardiol. 2016, 68, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braith, R.W.; Magyari, P.M.; Pierce, G.L.; Edwards, D.G.; Hill, J.A.; White, L.J.; Aranda, J.M., Jr. Effect of resistance exercise on skeletal muscle myopathy in heart transplant recipients. Am. J. Cardiol. 2005, 95, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.V.; Chiappa, G.R.; Ramalho, S.H.R.; de Lima, A.; de Souza, F.S.J.; Cahalin, L.P.; Durigan, J.L.Q.; de Castro, I.; Cipriano, G.J. Resistance exercise enhances oxygen uptake without worsening cardiac function in patients with systolic heart failure: A systematic review and meta-analysis. Heart Fail. Rev. 2018, 23, 73–89. [Google Scholar] [CrossRef]
- Xie, B.; Yan, X.; Cai, X.; Li, J. Effects of High-Intensity Interval Training on Aerobic Capacity in Cardiac Patients: A Systematic Review with Meta-Analysis. Biomed. Res. Int. 2017, 2017, 5420840. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D.; Rajopadhyaya, K.; Bentley, D.J.; Beltrame, J.F.; Aromataris, E.C. Interval training versus continuous exercise in patients with coronary artery disease: A meta-analysis. Heart Lung Circ. 2015, 24, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Conraads, V.M.; Pattyn, N.; De Maeyer, C.; Beckers, P.J.; Coeckelberghs, E.; Cornelissen, V.A.; Denollet, J.; Frederix, G.; Goetschalckx, K.; Hoymans, V.Y.; et al. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. Int. J. Cardiol. 2015, 179, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellingsen, O.; Halle, M.; Conraads, V.; Stoylen, A.; Dalen, H.; Delagardelle, C.; Larsen, A.I.; Hole, T.; Mezzani, A.; Van Craenenbroeck, E.M.; et al. High-Intensity Interval Training in Patients with Heart Failure with Reduced Ejection Fraction. Circulation 2017, 135, 839–849. [Google Scholar] [CrossRef]
- Gielen, S. Chronischer Herzinsuffizienz mit Reduzierter Pumpfunktion. Körperliche Aktivität und Krankheit; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; p. XV, 331 Seiten. [Google Scholar]
- Mezzani, A.; Hamm, L.F.; Jones, A.M.; McBride, P.E.; Moholdt, T.; Stone, J.A.; Urhausen, A.; Williams, M.A. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: A joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur. J. Prev. Cardiol. 2013, 20, 442–467. [Google Scholar] [CrossRef]
- Bjarnason-Wehrens, B.; Mayer-Berger, W.; Meister, E.R.; Baum, K.; Hambrecht, R.; Gielen, S. Recommendations for resistance exercise in cardiac rehabilitation. Recommendations of the German Federation for Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 352–361. [Google Scholar] [CrossRef]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Iliou, M.C.; Pavy, B.; Martinez, J.; Corone, S.; Meurin, P.; Tuppin, P.; on behalf of CRS Investigators and GERS (Groupe Exercice Réadaptation, Sport) from the French Society of Cardiology. Exercise training is safe after coronary stenting: A prospective multicentre study. Eur. J. Prev. Cardiol. 2015, 22, 27–34. [Google Scholar] [CrossRef]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar]
- Uddin, J.; Zwisler, A.D.; Lewinter, C.; Moniruzzaman, M.; Lund, K.; Tang, L.H.; Taylor, R.S. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis. Eur. J. Prev. Cardiol. 2016, 23, 683–693. [Google Scholar] [CrossRef]
- Sandercock, G.; Hurtado, V.; Cardoso, F. Changes in cardiorespiratory fitness in cardiac rehabilitation patients: A meta-analysis. Int. J. Cardiol. 2013, 167, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.J.; Arena, R.; Haykowsky, M.; Hauer, T.; Austford, L.D.; Knudtson, M.; Aggarwal, S.; Stone, J.A.; APPROACH Investigators. Cardiovascular fitness and mortality after contemporary cardiac rehabilitation. Mayo Clin. Proc. 2013, 88, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.M.; Hartling, L.; Vandermeer, B.; McAlister, F.A. Meta-analysis: Secondary prevention programs for patients with coronary artery disease. Ann. Intern. Med. 2005, 143, 659–672. [Google Scholar] [CrossRef]
- Taylor, R.S.; Unal, B.; Critchley, J.A.; Capewell, S. Mortality reductions in patients receiving exercise-based cardiac rehabilitation: How much can be attributed to cardiovascular risk factor improvements? Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 369–374. [Google Scholar] [CrossRef]
- Izawa, K.P.; Yamada, S.; Oka, K.; Watanabe, S.; Omiya, K.; Iijima, S.; Hirano, Y.; Kobayashi, T.; Kasahara, Y.; Samejima, H.; et al. Long-term exercise maintenance, physical activity, and health-related quality of life after cardiac rehabilitation. Am. J. Phys. Med. Rehabil. 2004, 83, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Bruning, R.S.; Sturek, M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog. Cardiovasc. Dis. 2015, 57, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Pattyn, N.; Coeckelberghs, E.; Buys, R.; Cornelissen, V.A.; Vanhees, L. Aerobic interval training vs. moderate continuous training in coronary artery disease patients: A systematic review and meta-analysis. Sports Med. 2014, 44, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, J.A.; Rees, K.; Taylor, R.S.; Thompson, D.; Oldridge, N.; Ebrahim, S. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2001. [Google Scholar] [CrossRef] [Green Version]
- Marzolini, S.; Oh, P.I.; Brooks, D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: A meta-analysis. Eur. J. Prev. Cardiol. 2012, 19, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Gerber, Y.; Myers, V.; Goldbourt, U.; Benyamini, Y.; Scheinowitz, M.; Drory, Y. Long-term trajectory of leisure time physical activity and survival after first myocardial infarction: A population-based cohort study. Eur. J. Epidemiol. 2011, 26, 109–116. [Google Scholar] [CrossRef]
- Stewart, R.A.H.; Held, C.; Hadziosmanovic, N.; Armstrong, P.W.; Cannon, C.P.; Granger, C.B.; Hagstrom, E.; Hochman, J.S.; Koenig, W.; Lonn, E.; et al. Physical Activity and Mortality in Patients with Stable Coronary Heart Disease. J. Am. Coll Cardiol. 2017, 70, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef] [PubMed]
- Bundesärztekammer (BÄK); Kassenärztliche Bundesvereinigung (KBV); Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz. Langfassung 2. Auflage, 2017—Version 3:[AWMF-Register-Nr.: Nvl-006]. Available online: https://www.awmf.org/uploads/tx_szleitlinien/nvl-006l_S3_Chronische_Herzinsuffizienz_2018-04.pdf (accessed on 22 April 2021).
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H., Jr.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef] [Green Version]
- Plentz, R.D.; Sbruzzi, G.; Ribeiro, R.A.; Ferreira, J.B.; Dal Lago, P. Inspiratory muscle training in patients with heart failure: Meta-analysis of randomized trials. Arq. Bras. Cardiol. 2012, 99, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Kuang, L.; Fu, L. Effects of inspiratory muscle training in chronic heart failure patients: A systematic review and meta-analysis. Congenit. Heart Dis. 2018, 13, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Sbruzzi, G.; Ribeiro, R.A.; Schaan, B.D.; Signori, L.U.; Silva, A.M.; Irigoyen, M.C.; Plentz, R.D. Functional electrical stimulation in the treatment of patients with chronic heart failure: A meta-analysis of randomized controlled trials. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 254–260. [Google Scholar] [CrossRef]
- Taylor, R.S.; Walker, S.; Smart, N.A.; Piepoli, M.F.; Warren, F.C.; Ciani, O.; Whellan, D.; O’Connor, C.; Keteyian, S.J.; Coats, A.; et al. Impact of Exercise Rehabilitation on Exercise Capacity and Quality-of-Life in Heart Failure: Individual Participant Meta-Analysis. J. Am. Coll. Cardiol. 2019, 73, 1430–1443. [Google Scholar] [CrossRef]
- Ciani, O.; Piepoli, M.; Smart, N.; Uddin, J.; Walker, S.; Warren, F.C.; Zwisler, A.D.; Davos, C.H.; Taylor, R.S. Validation of Exercise Capacity as a Surrogate Endpoint in Exercise-Based Rehabilitation for Heart Failure: A Meta-Analysis of Randomized Controlled Trials. JACC Heart Fail. 2018, 6, 596–604. [Google Scholar] [CrossRef]
- Long, L.; Mordi, I.R.; Bridges, C.; Sagar, V.A.; Davies, E.J.; Coats, A.J.; Dalal, H.; Rees, K.; Singh, S.J.; Taylor, R.S. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Database Syst. Rev. 2019, 1, CD003331. [Google Scholar] [CrossRef] [Green Version]
- Sabbag, A.; Mazin, I.; Rott, D.; Hay, I.; Gang, N.; Tzur, B.; Goldkorn, R.; Goldenberg, I.; Klempfner, R.; Israel, A. The prognostic significance of improvement in exercise capacity in heart failure patients who participate in cardiac rehabilitation programme. Eur. J. Prev. Cardiol. 2018, 25, 354–361. [Google Scholar] [CrossRef]
- Vromen, T.; Kraal, J.J.; Kuiper, J.; Spee, R.F.; Peek, N.; Kemps, H.M. The influence of training characteristics on the effect of aerobic exercise training in patients with chronic heart failure: A meta-regression analysis. Int. J. Cardiol. 2016, 208, 120–127. [Google Scholar] [CrossRef]
- Cipriano, G.; Cipriano, V.T., Jr.; da Silva, V.Z.; Cipriano, G.F.; Chiappa, G.R.; de Lima, A.C.; Cahalin, L.P.; Arena, R. Aerobic exercise effect on prognostic markers for systolic heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2014, 19, 655–667. [Google Scholar] [CrossRef]
- Adams, V.; Reich, B.; Uhlemann, M.; Niebauer, J. Molecular effects of exercise training in patients with cardiovascular disease: Focus on skeletal muscle, endothelium, and myocardium. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H72–H88. [Google Scholar] [CrossRef] [Green Version]
- Tu, R.H.; Zeng, Z.Y.; Zhong, G.Q.; Wu, W.F.; Lu, Y.J.; Bo, Z.D.; He, Y.; Huang, W.Q.; Yao, L.M. Effects of exercise training on depression in patients with heart failure: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Heart Fail. 2014, 16, 749–757. [Google Scholar] [CrossRef]
- Tasoulis, A.; Papazachou, O.; Dimopoulos, S.; Gerovasili, V.; Karatzanos, E.; Kyprianou, T.; Drakos, S.; Anastasiou-Nana, M.; Roussos, C.; Nanas, S. Effects of interval exercise training on respiratory drive in patients with chronic heart failure. Respir. Med. 2010, 104, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Anagnostakou, V.; Chatzimichail, K.; Dimopoulos, S.; Karatzanos, E.; Papazachou, O.; Tasoulis, A.; Anastasiou-Nana, M.; Roussos, C.; Nanas, S. Effects of interval cycle training with or without strength training on vascular reactivity in heart failure patients. J. Card Fail. 2011, 17, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, C.; Karahalios, A.; Neil, C.; Allen, J.; Levinger, I. The effects of resistance training on muscle strength, quality of life and aerobic capacity in patients with chronic heart failure—A meta-analysis. Int. J. Cardiol. 2017, 227, 413–423. [Google Scholar] [CrossRef]
- Hwang, C.L.; Chien, C.L.; Wu, Y.T. Resistance training increases 6-minute walk distance in people with chronic heart failure: A systematic review. J. Physiother 2010, 56, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Haykowsky, M.J.; Brubaker, P.H.; Stewart, K.P.; Morgan, T.M.; Eggebeen, J.; Kitzman, D.W. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 2012, 60, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, F.; Gelbrich, G.; Dungen, H.D.; Frohling, S.; Wachter, R.; Stahrenberg, R.; Binder, L.; Topper, A.; Lashki, D.J.; Schwarz, S.; et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: Results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J. Am. Coll. Cardiol. 2011, 58, 1780–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolte, K.; Schwarz, S.; Gelbrich, G.; Mensching, S.; Siegmund, F.; Wachter, R.; Hasenfuss, G.; Dungen, H.D.; Herrmann-Lingen, C.; Halle, M.; et al. Effects of long-term endurance and resistance training on diastolic function, exercise capacity, and quality of life in asymptomatic diastolic dysfunction vs. heart failure with preserved ejection fraction. ESC Heart Fail. 2014, 1, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Angadi, S.S.; Mookadam, F.; Lee, C.D.; Tucker, W.J.; Haykowsky, M.J.; Gaesser, G.A. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: A pilot study. J. Appl. Physiol. 2015, 119, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.C.; Yang, N.I.; Wang, C.H.; Cherng, W.J.; Chou, S.L.; Pan, T.L.; Wang, J.S. Aerobic Interval Training Elicits Different Hemodynamic Adaptations Between Heart Failure Patients with Preserved and Reduced Ejection Fraction. Am. J. Phys. Med. Rehabil. 2016, 95, 15–27. [Google Scholar] [CrossRef]
- Pandey, A.; Parashar, A.; Kumbhani, D.; Agarwal, S.; Garg, J.; Kitzman, D.; Levine, B.; Drazner, M.; Berry, J. Exercise training in patients with heart failure and preserved ejection fraction: Meta-analysis of randomized control trials. Circ. Heart Fail. 2015, 8, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.; Kitzman, D.W.; Brubaker, P.; Haykowsky, M.J.; Morgan, T.; Becton, J.T.; Berry, J.D. Response to Endurance Exercise Training in Older Adults with Heart Failure with Preserved or Reduced Ejection Fraction. J. Am. Geriatr. Soc. 2017, 65, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Nolte, K.; Herrmann-Lingen, C.; Wachter, R.; Gelbrich, G.; Dungen, H.D.; Duvinage, A.; Hoischen, N.; von Oehsen, K.; Schwarz, S.; Hasenfuss, G.; et al. Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: The Ex-DHF-P trial. Eur. J. Prev. Cardiol. 2015, 22, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.M.; Claggett, B.; Shah, A.M.; Lewis, E.F.; Anand, I.; Shah, S.J.; Sweitzer, N.K.; Fang, J.C.; Pitt, B.; Pfeffer, M.A.; et al. Physical Activity and Prognosis in the TOPCAT Trial (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist). Circulation 2017, 136, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Grünig, E.; Eichstaedt, C.; Barberà, J.A.; Benjamin, N.; Blanco, I.; Bossone, E.; Cittadini, A.; Coghlan, G.; Corris, P.; D’Alto, M.; et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur. Respir. J. 2019, 53, 1800332. [Google Scholar] [CrossRef] [Green Version]
- La Rovere, M.T.; Pinna, G.D.; Pin, M.; Bruschi, C.; Callegari, G.; Zanotti, E.; D’Armini, A.; Ambrosino, N. Exercise training after pulmonary endarter-ectomy for patients with chronic thromboembolic pulmonary hypertension. Respiration 2019, 97, 234–241. [Google Scholar] [CrossRef]
- Fukui, S.; Ogo, T.; Takaki, H.; Ueda, J.; Tsuji, A.; Morita, Y.; Kumasaka, R.; Arakawa, T.; Nakanishi, M.; Fukuda, T.; et al. Efficacy of cardiac rehabilitation after balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Heart 2016, 102, 1403–1409. [Google Scholar] [CrossRef]
- Delcroix, M.; Torbicki, A.; Gopalan, D.; Sitbon, O.; Klok, F.A.; Lang, I.; Jenkins, D.; Kim, N.H.; Humbert, M.; Jais, X.; et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2021, 57, 2002828. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Timmons, M.P.; Kruger, C.; McNeely, M.; Taylor, D.A.; Clark, A.M. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am. J. Cardiol. 2013, 111, 1466–1469. [Google Scholar] [CrossRef]
- Smart, N.A.; Dieberg, G.; Giallauria, F. Intermittent versus continuous exercise training in chronic heart failure: A meta-analysis. Int. J. Cardiol. 2013, 166, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, J.; Beckers, P.; Taeymans, J.; Vrints, C.; Vissers, D. Comparing exercise training modalities in heart failure: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 221, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.K.; Duncan, M.S.; Shah, A.S.; Lindman, B.R.; Greevy, R.A.; Savage, P.D., Jr.; Whooley, M.A.; Matheny, M.E.; Freiberg, M.S.; Bachmann, J.M. Association of Cardiac Rehabilitation with Decreased Hospitalization and Mortality Risk After Cardiac Valve Surgery. JAMA Cardiol. 2019, 4, 1250–1259. [Google Scholar] [CrossRef]
- Eichler, S.; Salzwedel, A.; Reibis, R.; Nothroff, J.; Harnath, A.; Schikora, M.; Butter, C.; Wegscheider, K.; Voller, H. Multicomponent cardiac rehabilitation in patients after transcatheter aortic valve implantation: Predictors of functional and psychocognitive recovery. Eur. J. Prev. Cardiol. 2017, 24, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Pressler, A.; Christle, J.W.; Lechner, B.; Grabs, V.; Haller, B.; Hettich, I.; Jochheim, D.; Mehilli, J.; Lange, R.; Bleiziffer, S.; et al. Exercise training improves exercise capacity and quality of life after transcatheter aortic valve implantation: A randomized pilot trial. Am. Heart J. 2016, 182, 44–53. [Google Scholar] [CrossRef]
- Russo, N.; Compostella, L.; Tarantini, G.; Setzu, T.; Napodano, M.; Bottio, T.; D’Onofrio, A.; Isabella, G.; Gerosa, G.; Iliceto, S.; et al. Cardiac rehabilitation after transcatheter versus surgical prosthetic valve implantation for aortic stenosis in the elderly. Eur. J. Prev. Cardiol. 2014, 21, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.S.; Melo, R.D.; Deresz, L.F.; Dal Lago, P.; Pontes, M.R.; Karsten, M. Cardiac rehabilitation programme after transcatheter aortic valve implantation versus surgical aortic valve replacement: Systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Sibilitz, K.L.; Berg, S.K.; Tang, L.H.; Risom, S.S.; Gluud, C.; Lindschou, J.; Kober, L.; Hassager, C.; Taylor, R.S.; Zwisler, A.D. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst. Rev. 2016, 3, CD010876. [Google Scholar] [CrossRef] [Green Version]
- Tamuleviciute-Prasciene, E.; Beigiene, A.; Thompson, M.J.; Balne, K.; Kubilius, R.; Bjarnason-Wehrens, B. The impact of additional resistance and balance training in exercise-based cardiac rehabilitation in older patients after valve surgery or intervention: Randomized control trial. BMC Geriatr. 2021, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Tarro Genta, F. Cardiac Rehabilitation for Transcatheter Aortic Valve Replacement. Clin. Geriatr. Med. 2019, 35, 539–548. [Google Scholar] [CrossRef]
- Isaksen, K.; Munk, P.S.; Valborgland, T.; Larsen, A.I. Aerobic interval training in patients with heart failure and an implantable cardioverter defibrillator: A controlled study evaluating feasibility and effect. Eur. J. Prev. Cardiol. 2015, 22, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, C.M.; Glenny, R.W.; Burr, R.L.; Flo, G.L.; Kudenchuk, P.J. Prospective randomized trial of moderately strenuous aerobic exercise after an implantable cardioverter defibrillator. Circulation 2015, 131, 1835–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamke, W.; Dovifat, C.; Schranz, M.; Behrens, S.; Moesenthin, J.; Voller, H. Cardiac rehabilitation in patients with implantable defibrillators. Feasibility and complications. Z. Kardiol. 2003, 92, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Piccini, J.P.; Hellkamp, A.S.; Whellan, D.J.; Ellis, S.J.; Keteyian, S.J.; Kraus, W.E.; Hernandez, A.F.; Daubert, J.P.; Pinal, L.; O’Connor, C.M.; et al. Exercise training and implantable cardioverter-defibrillator shocks in patients with heart failure: Results from HF-ACTION (Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing). JACC Heart Fail. 2013, 1, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Isaksen, K.; Morken, I.M.; Munk, P.S.; Larsen, A.I. Exercise training and cardiac rehabilitation in patients with implantable cardioverter defibrillators: A review of current literature focusing on safety, effects of exercise training, and the psychological impact of programme participation. Eur. J. Prev. Cardiol. 2012, 19, 804–812. [Google Scholar]
- Davids, J.S.; McPherson, C.A.; Earley, C.; Batsford, W.P.; Lampert, R. Benefits of cardiac rehabilitation in patients with implantable cardioverter-defibrillators: A patient survey. Arch. Phys. Med. Rehabil. 2005, 86, 1924–1928. [Google Scholar] [CrossRef] [PubMed]
- Smolis-Bak, E.; Rymuza, H.; Kazimierska, B.; Kowalik, I.; Chwyczko, T.; Borowiec, A.; Rongies, W.; Jankowska, A.; Szwed, H.; Dabrowski, R. Improvement of exercise tolerance in cardiopulmonary testing with sustained safety after regular training in outpatients with systolic heart failure (NYHA III) and an implantable cardioverter-defibrillator. Prospective 18-month randomized study. Arch. Med. Sci. 2017, 13, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Steinhaus, D.A.; Lubitz, S.A.; Noseworthy, P.A.; Kramer, D.B. Exercise Interventions in Patients with Implantable Cardioverter-Defibrillators and Cardiac Resynchronization Therapy: A SYSTEMATIC REVIEW AND META-ANALYSIS. J. Cardiopulm. Rehabil. Prev. 2019, 39, 308–317. [Google Scholar] [CrossRef]
- Lampert, R.; Olshansky, B.; Heidbuchel, H.; Lawless, C.; Saarel, E.; Ackerman, M.; Calkins, H.; Estes, N.A.M.; Link, M.S.; Maron, B.J.; et al. Safety of Sports for Athletes with Implantable Cardioverter-Defibrillators: Long-Term Results of a Prospective Multinational Registry. Circulation 2017, 135, 2310–2312. [Google Scholar] [CrossRef]
- Potapov, E.V.; Antonides, C.; Crespo-Leiro, M.G.; Combes, A.; Farber, G.; Hannan, M.M.; Kukucka, M.; de Jonge, N.; Loforte, A.; Lund, L.H.; et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur. J. Cardiothorac. Surg. 2019, 56, 230–270. [Google Scholar] [CrossRef]
- Reiss, N.; Schmidt, T.; Langheim, E.; Bjarnason-Wehrens, B.; Marx, R.; Sindermann, J.R.; Knoglinger, E. Inpatient Cardiac Rehabilitation of LVAD Patients-Updated Recommendations from the Working Group of the German Society for Prevention and Rehabilitation of Cardiovascular Diseases. Thorac. Cardiovasc. Surg. 2021, 69, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulos, S.; Corra, U.; Laoutaris, I.D.; Pistono, M.; Agostoni, P.G.; Coats, A.J.S.; Crespo Leiro, M.G.; Cornelis, J.; Davos, C.H.; Filippatos, G.; et al. Exercise training in patients with ventricular assist devices: A review of the evidence and practical advice. A position paper from the Committee on Exercise Physiology and Training and the Committee of Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, D.; Cordes, C.; Bjarnason-Wehrens, B.; Knoglinger, E.; Langheim, E.; Marx, R.; Reiss, N.; Schmidt, T.; Workowski, A.; Bartsch, P.; et al. Rehabilitation standards for follow-up treatment and rehabilitation of patients with ventricular assist device (VAD). Clin. Res. Cardiol. Suppl. 2016, 11 (Suppl. 1), 2–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Hotta, K.; Ota, E.; Matsunaga, A.; Mori, R. Exercise-based cardiac rehabilitation for people with implantable ventricular assist devices. Cochrane Database Syst. Rev. 2018, 9, CD012222. [Google Scholar] [CrossRef]
- Grosman-Rimon, L.; Lalonde, S.D.; Sieh, N.; Pakosh, M.; Rao, V.; Oh, P.; Grace, S.L. Exercise rehabilitation in ventricular assist device recipients: A meta-analysis of effects on physiological and clinical outcomes. Heart Fail. Rev. 2019, 24, 55–67. [Google Scholar] [CrossRef]
- Mahfood Haddad, T.; Saurav, A.; Smer, A.; Azzouz, M.S.; Akinapelli, A.; Williams, M.A.; Alla, V.M. Cardiac Rehabilitation in Patients with Left Ventricular Assist Device: A Systematic Review and Meta-Analysis. J. Cardiopulm. Rehabil. Prev. 2017, 37, 390–396. [Google Scholar] [CrossRef]
- Ganga, H.V.; Leung, A.; Jantz, J.; Choudhary, G.; Stabile, L.; Levine, D.J.; Sharma, S.C.; Wu, W.C. Supervised exercise training versus usual care in ambulatory patients with left ventricular assist devices: A systematic review. PLoS ONE 2017, 12, e0174323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, K.; Leet, A.S.; Bradley, S.J.; Holland, A.E. Effects of exercise training on exercise capacity and quality of life in patients with a left ventricular assist device: A preliminary randomized controlled trial. J. Heart Lung Transplant. 2012, 31, 729–734. [Google Scholar] [CrossRef]
- Kerrigan, D.J.; Williams, C.T.; Ehrman, J.K.; Saval, M.A.; Bronsteen, K.; Schairer, J.R.; Swaffer, M.; Brawner, C.A.; Lanfear, D.E.; Selektor, Y.; et al. Cardiac rehabilitation improves functional capacity and patient-reported health status in patients with continuous-flow left ventricular assist devices: The Rehab-VAD randomized controlled trial. JACC Heart Fail. 2014, 2, 653–659. [Google Scholar] [CrossRef]
- Kugler, C.; Malehsa, D.; Schrader, E.; Tegtbur, U.; Guetzlaff, E.; Haverich, A.; Strueber, M. A multi-modal intervention in management of left ventricular assist device outpatients: Dietary counselling, controlled exercise and psychosocial support. Eur. J. Cardiothorac. Surg. 2012, 42, 1026–1032. [Google Scholar] [CrossRef]
- Marko, C.; Danzinger, G.; Kaferback, M.; Lackner, T.; Muller, R.; Zimpfer, D.; Schima, H.; Moscato, F. Safety and efficacy of cardiac rehabilitation for patients with continuous flow left ventricular assist devices. Eur. J. Prev. Cardiol. 2015, 22, 1378–1384. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Willemsen, D.; Reiss, N.; Bartsch, P.; Schmidt, T.; Bjarnason-Wehrens, B. Characteristics, Therapeutic Needs, and Scope of Patients with a Continuous-Flow Left Ventricular Device Entering Cardiac Rehabilitation: A Retrospective Analysis. J. Cardiopulm. Rehabil. Prev. 2018. [Google Scholar] [CrossRef]
- Karapolat, H.; Engin, C.; Eroglu, M.; Yagdi, T.; Zoghi, M.; Nalbantgil, S.; Durmaz, B.; Kirazli, Y.; Ozbaran, M. Efficacy of the cardiac rehabilitation program in patients with end-stage heart failure, heart transplant patients, and left ventricular assist device recipients. Transplant. Proc. 2013, 45, 3381–3385. [Google Scholar] [CrossRef] [PubMed]
- Laoutaris, I.D.; Dritsas, A.; Adamopoulos, S.; Manginas, A.; Gouziouta, A.; Kallistratos, M.S.; Koulopoulou, M.; Voudris, V.; Cokkinos, D.V.; Sfirakis, P. Benefits of physical training on exercise capacity, inspiratory muscle function, and quality of life in patients with ventricular assist devices long-term postimplantation. Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, D.J.; Williams, C.T.; Ehrman, J.K.; Bronsteen, K.; Saval, M.A.; Schairer, J.R.; Swaffer, M.; Keteyian, S.J. Muscular strength and cardiorespiratory fitness are associated with health status in patients with recently implanted continuous-flow LVADs. J. Cardiopulm. Rehabil. Prev. 2013, 33, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Scheiderer, R.; Belden, C.; Schwab, D.; Haney, C.; Paz, J. Exercise guidelines for inpatients following ventricular assist device placement: A systematic review of the literature. Cardiopulm. Phys. Ther. J. 2013, 24, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.H.; Gustafsson, F. Exercise in heart failure patients supported with a left ventricular assist device. J. Heart Lung Transplant. 2015, 34, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Compostella, L.; Russo, N.; Setzu, T.; Bottio, T.; Compostella, C.; Tarzia, V.; Livi, U.; Gerosa, G.; Iliceto, S.; Bellotto, F. A practical review for cardiac rehabilitation professionals of continuous-flow left ventricular assist devices: Historical and current perspectives. J. Cardiopulm. Rehabil. Prev. 2015, 35, 301–311. [Google Scholar] [CrossRef]
- Bachmann, J.M.; Duncan, M.S.; Shah, A.S.; Greevy, R.A.; Lindenfeld, J., Jr.; Keteyian, S.J.; Thomas, R.J.; Whooley, M.A.; Wang, T.J.; Freiberg, M.S. Association of Cardiac Rehabilitation with Decreased Hospitalizations and Mortality After Ventricular Assist Device Implantation. JACC Heart Fail. 2018, 6, 130–139. [Google Scholar] [CrossRef]
- Feldman, D.; Pamboukian, S.V.; Teuteberg, J.J.; Birks, E.; Lietz, K.; Moore, S.A.; Morgan, J.A.; Arabia, F.; Bauman, M.E.; Buchholz, H.W.; et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. J. Heart Lung Transplant. 2013, 32, 157–187. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.L. Physical therapist management of patients with ventricular assist devices: Key considerations for the acute care physical therapist. Phys. Ther. 2013, 93, 266–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsara, O.; Reeves, R.K.; Pyfferoen, M.D.; Trenary, T.L.; Engen, D.J.; Vitse, M.L.; Kessler, S.M.; Kushwaha, S.S.; Clavell, A.L.; Thomas, R.J.; et al. Inpatient rehabilitation outcomes for patients receiving left ventricular assist device. Am. J. Phys. Med. Rehabil. 2014, 93, 860–868. [Google Scholar] [CrossRef]
- Loyaga-Rendon, R.Y.; Plaisance, E.P.; Arena, R.; Shah, K. Exercise physiology, testing, and training in patients supported by a left ventricular assist device. J. Heart Lung Transplant. 2015, 34, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- English, M.L.; Speed, J. Effectiveness of acute inpatient rehabilitation after left ventricular assist device placement. Am. J. Phys. Med. Rehabil. 2013, 92, 621–626. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L.; et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar] [CrossRef] [PubMed]
- Squires, R.W. Exercise therapy for cardiac transplant recipients. Prog. Cardiovasc. Dis. 2011, 53, 429–436. [Google Scholar] [CrossRef]
- Kavanagh, T.; Mertens, D.J.; Shephard, R.J.; Beyene, J.; Kennedy, J.; Campbell, R.; Sawyer, P.; Yacoub, M. Long-term cardiorespiratory results of exercise training following cardiac transplantation. Am. J. Cardiol. 2003, 91, 190–194. [Google Scholar] [CrossRef]
- Awad, M.; Czer, L.S.; Hou, M.; Golshani, S.S.; Goltche, M.; De Robertis, M.; Kittleson, M.; Patel, J.; Azarbal, B.; Kransdorf, E.; et al. Early Denervation and Later Reinnervation of the Heart Following Cardiac Transplantation: A Review. J. Am. Heart Assoc. 2016, 5, e004070. [Google Scholar] [CrossRef]
- Nytroen, K.; Gullestad, L. Exercise after heart transplantation: An overview. World J. Transplant. 2013, 3, 78–90. [Google Scholar] [CrossRef]
- Anderson, L.; Nguyen, T.T.; Dall, C.H.; Burgess, L.; Bridges, C.; Taylor, R.S. Exercise-based cardiac rehabilitation in heart transplant recipients. Cochrane Database Syst. Rev. 2017, 4, CD012264. [Google Scholar] [CrossRef]
- Hsieh, P.L.; Wu, Y.T.; Chao, W.J. Effects of exercise training in heart transplant recipients: A meta-analysis. Cardiology 2011, 120, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Didsbury, M.; McGee, R.G.; Tong, A.; Craig, J.C.; Chapman, J.R.; Chadban, S.; Wong, G. Exercise training in solid organ transplant recipients: A systematic review and meta-analysis. Transplantation 2013, 95, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Tegtbur, U.; Busse, M.W.; Jung, K.; Pethig, K.; Haverich, A. Time course of physical reconditioning during exercise rehabilitation late after heart transplantation. J. Heart Lung Transplant. 2005, 24, 270–274. [Google Scholar] [CrossRef]
- Dall, C.H.; Snoer, M.; Christensen, S.; Monk-Hansen, T.; Frederiksen, M.; Gustafsson, F.; Langberg, H.; Prescott, E. Effect of high-intensity training versus moderate training on peak oxygen uptake and chronotropic response in heart transplant recipients: A randomized crossover trial. Am. J. Transplant. 2014, 14, 2391–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, G.L.; Schofield, R.S.; Casey, D.P.; Hamlin, S.A.; Hill, J.A.; Braith, R.W. Effects of exercise training on forearm and calf vasodilation and proinflammatory markers in recent heart transplant recipients: A pilot study. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.; Chien, C.L.; Chou, N.K.; Wang, S.S.; Lai, J.S.; Wu, Y.W. Efficacy of a home-based exercise program for orthotopic heart transplant recipients. Cardiology 2008, 111, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kugler, C.; Malehsa, D.; Tegtbur, U.; Guetzlaff, E.; Meyer, A.L.; Bara, C.; Haverich, A.; Strueber, M. Health-related quality of life and exercise tolerance in recipients of heart transplants and left ventricular assist devices: A prospective, comparative study. J. Heart Lung Transplant. 2011, 30, 204–210. [Google Scholar] [CrossRef]
- Rolid, K.; Andreassen, A.K.; Yardley, M.; Gude, E.; Bjorkelund, E.; Authen, A.R.; Grov, I.; Pettersen, K.I.; Dall, C.H.; Karason, K.; et al. High-intensity interval training and health-related quality of life in de novo heart transplant recipients—Results from a randomized controlled trial. Health Qual. Life Outcomes 2020, 18, 283. [Google Scholar] [CrossRef]
- Rustad, L.A.; Nytroen, K.; Amundsen, B.H.; Gullestad, L.; Aakhus, S. One year of high-intensity interval training improves exercise capacity, but not left ventricular function in stable heart transplant recipients: A andomized controlled trial. Eur. J. Prev. Cardiol. 2014, 21, 181–191. [Google Scholar] [CrossRef]
- Nytroen, K.; Rustad, L.A.; Aukrust, P.; Ueland, T.; Hallen, J.; Holm, I.; Rolid, K.; Lekva, T.; Fiane, A.E.; Amlie, J.P.; et al. High-intensity interval training improves peak oxygen uptake and muscular exercise capacity in heart transplant recipients. Am. J. Transplant. 2012, 12, 3134–3142. [Google Scholar] [CrossRef]
- Monk-Hansen, T.; Dall, C.H.; Christensen, S.B.; Snoer, M.; Gustafsson, F.; Rasmusen, H.; Prescott, E. Interval training does not modulate diastolic function in heart transplant recipients. Scand. Cardiovasc. J. 2014, 48, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Nytroen, K.; Rolid, K.; Yardley, M.; Gullestad, L. Effect of high-intensity interval training in young heart transplant recipients: Results from two randomized controlled trials. BMC Sports Sci. Med. Rehabil. 2020, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Dall, C.H.; Gustafsson, F.; Christensen, S.B.; Dela, F.; Langberg, H.; Prescott, E. Effect of moderate- versus high-intensity exercise on vascular function, biomarkers and quality of life in heart transplant recipients: A randomized, crossover trial. J. Heart Lung Transplant. 2015, 34, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Hermann, T.S.; Dall, C.H.; Christensen, S.B.; Goetze, J.P.; Prescott, E.; Gustafsson, F. Effect of high intensity exercise on peak oxygen uptake and endothelial function in long-term heart transplant recipients. Am. J. Transplant. 2011, 11, 536–541. [Google Scholar] [CrossRef]
- Christensen, S.B.; Dall, C.H.; Prescott, E.; Pedersen, S.S.; Gustafsson, F. A high-intensity exercise program improves exercise capacity, self-perceived health, anxiety and depression in heart transplant recipients: A randomized, controlled trial. J. Heart Lung Transplant. 2012, 31, 106–107. [Google Scholar] [CrossRef]
- Braith, R.W.; Magyari, P.M.; Fulton, M.N.; Aranda, J.; Walker, T.; Hill, J.A. Resistance exercise training and alendronate reverse glucocorticoid-induced osteoporosis in heart transplant recipients. J. Heart Lung Transplant. 2003, 22, 1082–1090. [Google Scholar] [CrossRef]
- Rosenbaum, A.N.; Kremers, W.K.; Schirger, J.A.; Thomas, R.J.; Squires, R.W.; Allison, T.G.; Daly, R.C.; Kushwaha, S.S.; Edwards, B.S. Association Between Early Cardiac Rehabilitation and Long-term Survival in Cardiac Transplant Recipients. Mayo Clin. Proc. 2016, 91, 149–156. [Google Scholar] [CrossRef]
- Yardley, M.; Gullestad, L.; Bendz, B.; Bjorkelund, E.; Rolid, K.; Arora, S.; Nytroen, K. Long-term effects of high-intensity interval training in heart transplant recipients: A 5-year follow-up study of a randomized controlled trial. Clin. Transplant. 2017, 31, e12868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nytroen, K.; Rustad, L.A.; Erikstad, I.; Aukrust, P.; Ueland, T.; Lekva, T.; Gude, E.; Wilhelmsen, N.; Hervold, A.; Aakhus, S.; et al. Effect of high-intensity interval training on progression of cardiac allograft vasculopathy. J. Heart Lung Transplant. 2013, 32, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- DeCampli, W.M. Of mice and men…Does exercise decrease progression of transplant coronary vasculopathy? J. Thorac Cardiovasc. Surg 2015, 149, 337–339. [Google Scholar] [CrossRef] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [CrossRef] [PubMed]
- Endorsed by: the European Stroke Organisation (ESO); Tendera, M.; Aboyans, V.; Bartelink, M.L.; Baumgartner, I.; Clement, D.; Collet, J.P.; Cremonesi, A.; De Carlo, M.; Erbel, R.; et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: The Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2011, 32, 2851–2906. [Google Scholar] [CrossRef] [PubMed]
- Askew, C.D.; Parmenter, B.; Leicht, A.S.; Walker, P.J.; Golledge, J. Exercise & Sports Science Australia (ESSA) position statement on exercise prescription for patients with peripheral arterial disease and intermittent claudication. J. Sci. Med. Sport 2014, 17, 623–629. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M. Exercise training for intermittent claudication. J. Vasc. Surg. 2017, 66, 1612–1620. [Google Scholar] [CrossRef] [Green Version]
- Lawall, H.; Huppert, P.; Rümenapf, G.; Deutsche Gesellaschaft für Angiologie; Gesellschaft für Gefäßmedizin; Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). S3-Leitlininie zur Diagnostik, Therapie und Nachsorge der peripheren arteriellen Verschlusskrankheit 2015 [AWMF-Register Nr. 065/03 Entwicklungsstufe 3]. Available online: https://www.awmf.org/uploads/tx_szleitlinien/065-003l_S3_PAVK_periphere_arterielle_Verschlusskrankheitfinal-2016-04.pdf (accessed on 22 April 2021).
- Parmenter, B.J.; Raymond, J.; Dinnen, P.; Singh, M.A. A systematic review of randomized controlled trials: Walking versus alternative exercise prescription as treatment for intermittent claudication. Atherosclerosis 2011, 218, 1–12. [Google Scholar] [CrossRef]
- Fokkenrood, H.J.; Bendermacher, B.L.; Lauret, G.J.; Willigendael, E.M.; Prins, M.H.; Teijink, J.A. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst. Rev. 2013, Cd005263. [Google Scholar] [CrossRef]
- Lyu, X.; Li, S.; Peng, S.; Cai, H.; Liu, G.; Ran, X. Intensive walking exercise for lower extremity peripheral arterial disease: A systematic review and meta-analysis. J. Diabetes 2016, 8, 363–377. [Google Scholar] [CrossRef]
- Parmenter, B.J.; Dieberg, G.; Phipps, G.; Smart, N.A. Exercise training for health-related quality of life in peripheral artery disease: A systematic review and meta-analysis. Vasc. Med. 2015, 20, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Z.; Chang, G.; Wang, M.; Wu, R.; Wang, S.; Yao, C. Effect of structured home-based exercise on walking ability in patients with peripheral arterial disease: A meta-analysis. Ann. Vas.c Surg. 2015, 29, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Gommans, L.N.; Saarloos, R.; Scheltinga, M.R.; Houterman, S.; de Bie, R.A.; Fokkenrood, H.J.; Teijink, J.A. Editor’s choice--The effect of supervision on walking distance in patients with intermittent claudication: A meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 169–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, R.; Harwood, A.; Watson, L.; Leng, G.C. Exercise for intermittent claudication. Cochrane Database Syst. Rev. 2017, 12, CD000990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treat-Jacobson, D.; Bronas, U.G.; Leon, A.S. Efficacy of arm-ergometry versus treadmill exercise training to improve walking distance in patients with claudication. Vasc. Med. 2009, 14, 203–213. [Google Scholar] [CrossRef]
- Bronas, U.G.; Treat-Jacobson, D.; Leon, A.S. Comparison of the effect of upper body-ergometry aerobic training vs treadmill training on central cardiorespiratory improvement and walking distance in patients with claudication. J. Vasc. Surg. 2011, 53, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Banerjee, S.; Ngo, C.; Mody, P.; Marso, S.P.; Brilakis, E.S.; Armstrong, E.J.; Giri, J.; Bonaca, M.P.; Pradhan, A.; et al. Comparative Efficacy of Endovascular Revascularization Versus Supervised Exercise Training in Patients with Intermittent Claudication: Meta-Analysis of Randomized Controlled Trials. JACC Cardiovasc. Interv 2017, 10, 712–724. [Google Scholar] [CrossRef]
- Meneses, A.L.; Ritti-Dias, R.M.; Parmenter, B.; Golledge, J.; Askew, C.D. Combined Lower Limb Revascularisation and Supervised Exercise Training for Patients with Peripheral Arterial Disease: A Systematic Review of Randomised Controlled Trials. Sports Med. 2017, 47, 987–1002. [Google Scholar] [CrossRef]
- Saratzis, A.; Paraskevopoulos, I.; Patel, S.; Donati, T.; Biasi, L.; Diamantopoulos, A.; Zayed, H.; Katsanos, K. Supervised Exercise Therapy and Revascularization for Intermittent Claudication: Network Meta-Analysis of Randomized Controlled Trials. JACC Cardiovasc. Interv. 2019, 12, 1125–1136. [Google Scholar] [CrossRef]
- Parmenter, B.J.; Raymond, J.; Dinnen, P.; Lusby, R.J.; Fiatarone Singh, M.A. High-intensity progressive resistance training improves flat-ground walking in older adults with symptomatic peripheral arterial disease. J. Am. Geriatr. Soc. 2013, 61, 1964–1970. [Google Scholar] [CrossRef]
- Wang, E.; Helgerud, J.; Loe, H.; Indseth, K.; Kaehler, N.; Hoff, J. Maximal strength training improves walking performance in peripheral arterial disease patients. Scand. J. Med. Sci. Sports 2010, 20, 764–770. [Google Scholar] [CrossRef]
- Parmenter, B.J.; Mavros, Y.; Ritti Dias, R.; King, S.; Fiatarone Singh, M. Resistance training as a treatment for older persons with peripheral artery disease: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 452–461. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yokoyama, N.; Tamori, Y.; Akutsu, K.; Hashimoto, H.; Takeshita, S. Patients with peripheral artery disease who complete 12-week supervised exercise training program show reduced cardiovascular mortality and morbidity. Circ. J. 2009, 73, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Bohm, P.; Scharhag, J.; Meyer, T. Data from a nationwide registry on sports-related sudden cardiac deaths in Germany. Eur. J. Prev. Cardiol. 2016, 23, 649–656. [Google Scholar] [CrossRef]
- Harmon, K.G.; Asif, I.M.; Maleszewski, J.J.; Owens, D.S.; Prutkin, J.M.; Salerno, J.C.; Zigman, M.L.; Ellenbogen, R.; Rao, A.L.; Ackerman, M.J.; et al. Incidence, Cause, and Comparative Frequency of Sudden Cardiac Death in National Collegiate Athletic Association Athletes: A Decade in Review. Circulation 2015, 132, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Helio, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Udelson, J.E.; Bonow, R.O.; Nishimura, R.A.; Ackerman, M.J.; Estes, N.A.; Cooper, L.T., 3rd; Link, M.S., Jr.; Maron, M.S.; American Heart Association, E.; et al. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 3: Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation 2015, 132, e273–e280. [Google Scholar] [CrossRef] [PubMed]
- Schnell, F.; Claessen, G.; La Gerche, A.; Bogaert, J.; Lentz, P.A.; Claus, P.; Mabo, P.; Carre, F.; Heidbuchel, H. Subepicardial delayed gadolinium enhancement in asymptomatic athletes: Let sleeping dogs lie? Br. J. Sports Med. 2016, 50, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, G.; Papadakis, M.; Robertus, J.L.; Dhutia, H.; Steriotis, A.K.; Tome, M.; Mellor, G.; Merghani, A.; Malhotra, A.; Behr, E.; et al. Etiology of Sudden Death in Sports: Insights From a United Kingdom Regional Registry. J. Am. Coll. Cardiol. 2016, 67, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, B.; Kindermann, B.; Bjarnason-Wehrens, B.; Preßler, A.; Nibauer, J.; Rauch, B.; Völler, H.; Reibis, R. Viral myocarditis: A forbidden indication for cardiac rehabilitation? Eur. J. Prev. Cardiol. 2021. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Back, M.; Borjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Chaix, M.A.; Marcotte, F.; Dore, A.; Mongeon, F.P.; Mondesert, B.; Mercier, L.A.; Khairy, P. Risks and Benefits of Exercise Training in Adults with Congenital Heart Disease. Can. J. Cardiol. 2016, 32, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Tutarel, O.; Gabriel, H.; Diller, G.P. Exercise: Friend or foe in adult congenital heart disease? Curr. Cardiol. Rep. 2013, 15, 416. [Google Scholar] [CrossRef]
- Budts, W.; Borjesson, M.; Chessa, M.; van Buuren, F.; Trigo Trindade, P.; Corrado, D.; Heidbuchel, H.; Webb, G.; Holm, J.; Papadakis, M. Physical activity in adolescents and adults with congenital heart defects: Individualized exercise prescription. Eur. Heart J. 2013, 34, 3669–3674. [Google Scholar] [CrossRef]
- Longmuir, P.E.; Brothers, J.A.; de Ferranti, S.D.; Hayman, L.L.; Van Hare, G.F.; Matherne, G.P.; Davis, C.K.; Joy, E.A.; McCrindle, B.W.; American Heart Association Atherosclerosis, H.; et al. Promotion of physical activity for children and adults with congenital heart disease: A scientific statement from the American Heart Association. Circulation 2013, 127, 2147–2159. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, T.M.; Leung, S.T.; Ahmad, R.; Young, T.; Lavie, C.J.; Moodie, D.S.; Shah, S. Lifestyle Modification for the Prevention of Morbidity and Mortality in Adult Congenital Heart Disease. Congenit. Heart Dis. 2016, 11, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, N.; Jones, B.; d’Udekem, Y. Should We Recommend Exercise after the Fontan Procedure? Heart Lung Circ. 2015, 24, 753–768. [Google Scholar] [CrossRef] [Green Version]
- Bassareo, P.P.; Saba, L.; Solla, P.; Barbanti, C.; Marras, A.R.; Mercuro, G. Factors influencing adaptation and performance at physical exercise in complex congenital heart diseases after surgical repair. Biomed. Res. Int. 2014, 2014, 862372. [Google Scholar] [CrossRef]
- Thaulow, E.; Fredriksen, P.M. Exercise and training in adults with congenital heart disease. Int. J. Cardiol. 2004, 97 (Suppl. 1), 35–38. [Google Scholar] [CrossRef]
- Hirth, A.; Reybrouck, T.; Bjarnason-Wehrens, B.; Lawrenz, W.; Hoffmann, A. Recommendations for participation in competitive and leisure sports in patients with congenital heart disease: A consensus document. Eur. J. Prev. Cardiol. 2006, 13, 293–299. [Google Scholar]
- Graham, T.P.; Driscoll, D.J., Jr.; Gersony, W.M.; Newburger, J.W.; Rocchini, A.; Towbin, J.A. Task Force 2: Congenital heart disease. J. Am. Coll. Cardiol. 2005, 45, 1326–1333. [Google Scholar] [CrossRef] [Green Version]
- Budts, W.; Pieles, G.E.; Roos-Hesselink, J.W.; Sanz de la Garza, M.; D’Ascenzi, F.; Giannakoulas, G.; Muller, J.; Oberhoffer, R.; Ehringer-Schetitska, D.; Herceg-Cavrak, V.; et al. Recommendations for participation in competitive sport in adolescent and adult athletes with Congenital Heart Disease (CHD): Position statement of the Sports Cardiology & Exercise Section of the European Association of Preventive Cardiology (EAPC), the European Society of Cardiology (ESC) Working Group on Adult Congenital Heart Disease and the Sports Cardiology, Physical Activity and Prevention Working Group of the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2020, 41, 4191–4199. [Google Scholar] [CrossRef]
- Warnes, C.A.; Williams, R.G.; Bashore, T.M.; Child, J.S.; Connolly, H.M.; Dearani, J.A.; Del Nido, P.; Fasules, J.W.; Graham, T.P.; Hijazi, Z.M., Jr.; et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults with Congenital Heart Disease). Developed in Collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2008, 52, e143–e263. [Google Scholar] [CrossRef] [Green Version]
- Cordina, R.L.; O’Meagher, S.; Karmali, A.; Rae, C.L.; Liess, C.; Kemp, G.J.; Puranik, R.; Singh, N.; Celermajer, D.S. Resistance training improves cardiac output, exercise capacity and tolerance to positive airway pressure in Fontan physiology. Int. J. Cardiol. 2013, 168, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Gierat-Haponiuk, K.; Haponiuk, I.; Szalewska, D.; Chojnicki, M.; Jaworski, R.; Niedoszytko, P.; Leszczynska, K.; Bakula, S. Effect of complex cardiac rehabilitation on physical activity and quality of life during long-term follow-up after surgical correction of congenital heart disease. Kardiol. Pol. 2015, 73, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Duppen, N.; Etnel, J.R.; Spaans, L.; Takken, T.; van den Berg-Emons, R.J.; Boersma, E.; Schokking, M.; Dulfer, K.; Utens, E.M.; Helbing, W.; et al. Does exercise training improve cardiopulmonary fitness and daily physical activity in children and young adults with corrected tetralogy of Fallot or Fontan circulation? A randomized controlled trial. Am. Heart J. 2015, 170, 606–614. [Google Scholar] [CrossRef]
- Becker-Grunig, T.; Klose, H.; Ehlken, N.; Lichtblau, M.; Nagel, C.; Fischer, C.; Gorenflo, M.; Tiede, H.; Schranz, D.; Hager, A.; et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int. J. Cardiol. 2013, 168, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Quintana, E.; Miranda-Calderin, G.; Ugarte-Lopetegui, A.; Rodriguez-Gonzalez, F. Rehabilitation program in adult congenital heart disease patients with pulmonary hypertension. Congenit. Heart Dis. 2010, 5, 44–50. [Google Scholar] [CrossRef]
- Sunamura, M.; Ter Hoeve, N.; van den Berg-Emons, R.J.G.; Boersma, E.; van Domburg, R.T.; Geleijnse, M.L. Cardiac rehabilitation in patients with acute coronary syndrome with primary percutaneous coronary intervention is associated with improved 10-year survival. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Minamisawa, S.; Nakazawa, M.; Momma, K.; Imai, Y.; Satomi, G. Effect of aerobic training on exercise performance in patients after the Fontan operation. Am. J. Cardiol. 2001, 88, 695–698. [Google Scholar] [CrossRef]
- Dua, J.S.; Cooper, A.R.; Fox, K.R.; Graham Stuart, A. Exercise training in adults with congenital heart disease: Feasibility and benefits. Int. J. Cardiol. 2010, 138, 196–205. [Google Scholar] [CrossRef]
- Winter, M.M.; van der Bom, T.; de Vries, L.C.; Balducci, A.; Bouma, B.J.; Pieper, P.G.; van Dijk, A.P.; van der Plas, M.N.; Picchio, F.M.; Mulder, B.J. Exercise training improves exercise capacity in adult patients with a systemic right ventricle: A randomized clinical trial. Eur. Heart J. 2012, 33, 1378–1385. [Google Scholar] [CrossRef] [Green Version]
- Westhoff-Bleck, M.; Schieffer, B.; Tegtbur, U.; Meyer, G.P.; Hoy, L.; Schaefer, A.; Tallone, E.M.; Tutarel, O.; Mertins, R.; Wilmink, L.M.; et al. Aerobic training in adults after atrial switch procedure for transposition of the great arteries improves exercise capacity without impairing systemic right ventricular function. Int. J. Cardiol. 2013, 170, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.L.; Sands, A.J.; McCusker, C.G.; McKeown, P.P.; McMahon, M.; Gordon, J.; Grant, B.; Craig, B.G.; Casey, F.A. Exercise training improves activity in adolescents with congenital heart disease. Heart 2013, 99, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Duppen, N.; Kapusta, L.; de Rijke, Y.B.; Snoeren, M.; Kuipers, I.M.; Koopman, L.P.; Blank, A.C.; Blom, N.A.; Dulfer, K.; Utens, E.M.; et al. The effect of exercise training on cardiac remodelling in children and young adults with corrected tetralogy of Fallot or Fontan circulation: A randomized controlled trial. Int. J. Cardiol. 2015, 179, 97–104. [Google Scholar] [CrossRef]
- Duppen, N.; Geerdink, L.M.; Kuipers, I.M.; Bossers, S.S.; Koopman, L.P.; van Dijk, A.P.; Roos-Hesselink, J.W.; De Korte, C.L.; Helbing, W.A.; Kapusta, L. Regional ventricular performance and exercise training in children and young adults after repair of tetralogy of Fallot: Randomized controlled pilot study. Circ. Cardiovasc. Imaging 2015, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albus, C.; Herrmann-Lingen, C.; Jensen, K.; Hackbusch, M.; Munch, N.; Kuncewicz, C.; Grilli, M.; Schwaab, B.; Rauch, B.; German Society of Cardiovascular Prevention and Rehabilitation. Additional effects of psychological interventions on subjective and objective outcomes compared with exercise-based cardiac rehabilitation alone in patients with cardiovascular disease: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2019, 26, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Deutsche Gesellschaft für Prävention und Rehabilitationvon Herz-und Kreislauferkrankungen eVD; Österreichische Kardiologische Gesellschaft (ÖKG); Arbeitsgruppe Prävention, Rehabilitation und Sportkardiologie; Swiss Working Group for Cardiovascular Prevention; Rehabilitationand Sports Cardiology (SCPRS); Schwaab, B.; Rauch, B. S3-Leitlinie zur kardiologischen Rehabilitation (LL-KardReha) im deutschsprachigen Raum Europas Deutschland, Österreich, Schweiz (D-A-CH). Gesamtversion 2020 [AWMF-Registernummer: 133-001. Version 1.1 (10.12.2020)]. Available online: https://www.awmf.org/uploads/tx_szleitlinien/133-001l_S3-Kardiologische-Rehabilitation-in-D-A-CH_2020-12.pdf (accessed on 22 April 2021).
- Linden, W.; Phillips, M.J.; Leclerc, J. Psychological treatment of cardiac patients: A meta-analysis. Eur. Heart J. 2007, 28, 2972–2984. [Google Scholar] [CrossRef] [Green Version]
- Reavell, J.; Hopkinson, M.; Clarkesmith, D.; Lane, D.A. Effectiveness of Cognitive Behavioral Therapy for Depression and Anxiety in Patients with Cardiovascular Disease: A Systematic Review and Meta-Analysis. Psychosom. Med. 2018, 80, 742–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.H.; Anderson, L.; Jenkinson, C.E.; Whalley, B.; Rees, K.; Davies, P.; Bennett, P.; Liu, Z.; West, R.; Thompson, D.R.; et al. Psychological interventions for coronary heart disease. Cochrane Database Syst. Rev. 2017, 4, CD002902. [Google Scholar] [CrossRef]
- Rutledge, T.; Redwine, L.S.; Linke, S.E.; Mills, P.J. A meta-analysis of mental health treatments and cardiac rehabilitation for improving clinical outcomes and depression among patients with coronary heart disease. Psychosom. Med. 2013, 75, 335–349. [Google Scholar] [CrossRef]
- Welton, N.J.; Caldwell, D.M.; Adamopoulos, E.; Vedhara, K. Mixed treatment comparison meta-analysis of complex interventions: Psychological interventions in coronary heart disease. Am. J. Epidemiol. 2009, 169, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016, CD001800. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zheng, Y.; Ma, J.; Zhang, M.; Zhang, Y.; Liu, X.; Chen, L.; Yang, Q.; Sun, Y.; Wu, J.; et al. Effect of exercise-based cardiac rehabilitation on anxiety and depression in patients with myocardial infarction: A systematic review and meta-analysis. Heart Lung 2019, 48, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candelaria, D.; Randall, S.; Ladak, L.; Gallagher, R. Health-related quality of life and exercise-based cardiac rehabilitation in contemporary acute coronary syndrome patients: A systematic review and meta-analysis. Qual. Life Res. 2020, 29, 579–592. [Google Scholar] [CrossRef]
- McGregor, G.; Powell, R.; Kimani, P.; Underwood, M. Does contemporary exercise-based cardiac rehabilitation improve quality of life for people with coronary artery disease? A systematic review and meta-analysis. BMJ Open 2020, 10, e036089. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Albus, C.; Waller, C.; Fritzsche, K.; Gunold, H.; Haass, M.; Hamann, B.; Kindermann, I.; Kollner, V.; Leithauser, B.; Marx, N.; et al. Significance of psychosocial factors in cardiology: Update 2018: Position paper of the German Cardiac Society. Clin. Res. Cardiol. 2019. [Google Scholar] [CrossRef]
- Balady, G.J.; Williams, M.A.; Ades, P.A.; Bittner, V.; Comoss, P.; Foody, J.M.; Franklin, B.; Sanderson, B.; Southard, D. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2007, 115, 2675–2682. [Google Scholar] [CrossRef]
- BÄK, B.; Kassenärztliche Bundesvereinigung (KBV); Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Chronische KHK; Programm für Nationale VersorgungsLeitlinien. 3. Aufl.—Version 1 ed.; Ärztliches Zentrum für Qualität in der Medizin: Berlin, Germany, 2014. [Google Scholar]
- Chowdhury, R.; Khan, H.; Heydon, E.; Shroufi, A.; Fahimi, S.; Moore, C.; Stricker, B.; Mendis, S.; Hofman, A.; Mant, J.; et al. Adherence to cardiovascular therapy: A meta-analysis of prevalence and clinical consequences. Eur. Heart J. 2013, 34, 2940–2948. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Cheng, Z.; Zhang, Y.; Li, Y.; Mei, D. The impact of medication adherence on clinical outcomes of coronary artery disease: A meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 962–970. [Google Scholar] [CrossRef]
- Janssen, V.; De Gucht, V.; Dusseldorp, E.; Maes, S. Lifestyle modification programmes for patients with coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 2013, 20, 620–640. [Google Scholar] [CrossRef]
- Conn, V.S.; Hafdahl, A.R.; Brown, S.A.; Brown, L.M. Meta-analysis of patient education interventions to increase physical activity among chronically ill adults. Patient Educ. Couns. 2008, 70, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Kripalani, S.; Yao, X.; Haynes, R.B. Interventions to enhance medication adherence in chronic medical conditions: A systematic review. Arch. Intern. Med. 2007, 167, 540–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santo, K.; Kirkendall, S.; Laba, T.L.; Thakkar, J.; Webster, R.; Chalmers, J.; Chow, C.K.; Redfern, J. Interventions to improve medication adherence in coronary disease patients: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Prev. Cardiol. 2016, 23, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, M.; Golin, C.E.; Jones, C.D.; Ashok, M.; Blalock, S.J.; Wines, R.C.; Coker-Schwimmer, E.J.; Rosen, D.L.; Sista, P.; Lohr, K.N. Interventions to improve adherence to self-administered medications for chronic diseases in the United States: A systematic review. Ann. Intern. Med. 2012, 157, 785–795. [Google Scholar] [CrossRef]
- Zhu, L.X.; Ho, S.C.; Wong, T.K. Effectiveness of health education programs on exercise behavior among patients with heart disease: A systematic review and meta-analysis. J. Evid. Based Med. 2013, 6, 265–301. [Google Scholar] [CrossRef]
- Cole, J.A.; Smith, S.M.; Hart, N.; Cupples, M.E. Systematic review of the effect of diet and exercise lifestyle interventions in the secondary prevention of coronary heart disease. Cardiol. Res. Pr. 2010, 2011, 232351. [Google Scholar] [CrossRef] [Green Version]
- de Waure, C.; Lauret, G.J.; Ricciardi, W.; Ferket, B.; Teijink, J.; Spronk, S.; Myriam Hunink, M.G. Lifestyle interventions in patients with coronary heart disease: A systematic review. Am. J. Prev. Med. 2013, 45, 207–216. [Google Scholar] [CrossRef]
- Goodwin, L.; Ostuzzi, G.; Khan, N.; Hotopf, M.H.; Moss-Morris, R. Can We Identify the Active Ingredients of Behaviour Change Interventions for Coronary Heart Disease Patients? A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0153271. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Brown, J.P.; Clark, A.M.; Dalal, H.; Rossau, H.K.; Bridges, C.; Taylor, R.S. Patient education in the management of coronary heart disease. Cochrane Database Syst. Rev. 2017, 6, CD008895. [Google Scholar] [CrossRef]
- Jonkman, N.H.; Westland, H.; Groenwold, R.H.; Agren, S.; Atienza, F.; Blue, L.; Bruggink-Andre de la Porte, P.W.; DeWalt, D.A.; Hebert, P.L.; Heisler, M.; et al. Do Self-Management Interventions Work in Patients with Heart Failure? An Individual Patient Data Meta-Analysis. Circulation 2016, 133, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Abaraogu, U.O.; Dall, P.M.; Seenan, C.A. The Effect of Structured Patient Education on Physical Activity in Patients with Peripheral Arterial Disease and Intermittent Claudication: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Odgers-Jewell, K.; Ball, L.E.; Kelly, J.T.; Isenring, E.A.; Reidlinger, D.P.; Thomas, R. Effectiveness of group-based self-management education for individuals with Type 2 diabetes: A systematic review with meta-analyses and meta-regression. Diabet. Med. 2017, 34, 1027–1039. [Google Scholar] [CrossRef]
- Zhao, F.F.; Suhonen, R.; Koskinen, S.; Leino-Kilpi, H. Theory-based self-management educational interventions on patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. J. Adv. Nurs. 2017, 73, 812–833. [Google Scholar] [CrossRef] [PubMed]
- Tshiananga, J.K.; Kocher, S.; Weber, C.; Erny-Albrecht, K.; Berndt, K.; Neeser, K. The effect of nurse-led diabetes self-management education on glycosylated hemoglobin and cardiovascular risk factors: A meta-analysis. Diabetes Educ. 2012, 38, 108–123. [Google Scholar] [CrossRef]
- Steinsbekk, A.; Rygg, L.O.; Lisulo, M.; Rise, M.B.; Fretheim, A. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv. Res. 2012, 12, 213. [Google Scholar] [CrossRef] [Green Version]
- Sherifali, D.; Bai, J.W.; Kenny, M.; Warren, R.; Ali, M.U. Diabetes self-management programmes in older adults: A systematic review and meta-analysis. Diabet. Med. 2015, 32, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Pillay, J.; Armstrong, M.J.; Butalia, S.; Donovan, L.E.; Sigal, R.J.; Vandermeer, B.; Chordiya, P.; Dhakal, S.; Hartling, L.; Nuspl, M.; et al. Behavioral Programs for Type 2 Diabetes Mellitus: A Systematic Review and Network Meta-analysis. Ann. Intern. Med. 2015, 163, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minet, L.; Moller, S.; Vach, W.; Wagner, L.; Henriksen, J.E. Mediating the effect of self-care management intervention in type 2 diabetes: A meta-analysis of 47 randomised controlled trials. Patient Educ. Couns. 2010, 80, 29–41. [Google Scholar] [CrossRef]
- Heinrich, E.; Schaper, N.C.; de Vries, N.K. Self-management interventions for type 2 diabetes: A systematic review. Eur. Diabetes Nurs. 2010, 7, 71–76. [Google Scholar] [CrossRef]
- Steinsbekk, A.; Rygg, L.; Lisulo, M.; By Rise, M.; Fretheim, A. Group based diabetes self-management education compared to routine treatment, waiting list control or no intervention for people with type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Chrvala, C.A.; Sherr, D.; Lipman, R.D. Diabetes self-management education for adults with type 2 diabetes mellitus: A systematic review of the effect on glycemic control. Patient Educ. Coun.s 2016, 99, 926–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Pei, J.H.; Kuang, J.; Chen, H.M.; Chen, Z.; Li, Z.W.; Yang, H.Z. Effect of lifestyle intervention in patients with type 2 diabetes: A meta-analysis. Metabolism 2015, 64, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Attridge, M.; Creamer, J.; Ramsden, M.; Cannings-John, R.; Hawthorne, K. Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2014, CD006424. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sit, J.W.; Choi, K.C.; Chair, S.Y.; Li, X.; He, X.L. Effectiveness of Interactive Self-Management Interventions in Individuals with Poorly Controlled Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Worldviews Evid. Based Nurs. 2017, 14, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldcroft, S.A.; Taylor, N.F.; Blackstock, F.C.; O’Halloran, P.D. Psychoeducational rehabilitation for health behavior change in coronary artery disease: A systematic review of controlled trials. J. Cardiopulm. Rehabil. Prev. 2011, 31, 273–281. [Google Scholar] [CrossRef]
- Ghisi, G.L.; Abdallah, F.; Grace, S.L.; Thomas, S.; Oh, P. A systematic review of patient education in cardiac patients: Do they increase knowledge and promote health behavior change? Patient Educ. Coun.s 2014, 95, 160–174. [Google Scholar] [CrossRef]
- Huttunen-Lenz, M.; Song, F.; Poland, F. Are psychoeducational smoking cessation interventions for coronary heart disease patients effective? Meta-analysis of interventions. Br. J. Health Psychol. 2010, 15, 749–777. [Google Scholar] [CrossRef] [Green Version]
- Hartmann-Boyce, J.; Johns, D.J.; Jebb, S.A.; Aveyard, P.; Behavioural Weight Management Review, G. Effect of behavioural techniques and delivery mode on effectiveness of weight management: Systematic review, meta-analysis and meta-regression. Obes. Rev. 2014, 15, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baillot, A.; Romain, A.J.; Boisvert-Vigneault, K.; Audet, M.; Baillargeon, J.P.; Dionne, I.J.; Valiquette, L.; Chakra, C.N.; Avignon, A.; Langlois, M.F. Effects of lifestyle interventions that include a physical activity component in class II and III obese individuals: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0119017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galani, C.; Schneider, H. Prevention and treatment of obesity with lifestyle interventions: Review and meta-analysis. Int. J. Public Health 2007, 52, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.; Head, V.; Jacob, D.; Bachmann, M.O.; Diu, S.; Ford, J. Lifestyle interventions for weight loss in adults with severe obesity: A systematic review. Clin. Obes 2016, 6, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, E.S.; O’Connor, E.; Whitlock, E.P.; Patnode, C.D.; Kapka, T. Effectiveness of primary care-relevant treatments for obesity in adults: A systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2011, 155, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Giallauria, F.; Vigorito, C.; Tramarin, R.; Fattirolli, F.; Ambrosetti, M.; De Feo, S.; Griffo, R.; Riccio, C.; Piepoli, M.; Isyde- Investigators of the Italian Association for Cardiovascular Prevention, R.; et al. Cardiac rehabilitation in very old patients: Data from the Italian Survey on Cardiac Rehabilitation-2008 (ISYDE-2008)—Official report of the Italian Association for Cardiovascular Prevention, Rehabilitation, and Epidemiology. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1353–1361. [Google Scholar] [CrossRef]
- Benzer, W.; Rauch, B.; Schmid, J.P.; Zwisler, A.D.; Dendale, P.; Davos, C.H.; Kouidi, E.; Simon, A.; Abreu, A.; Pogosova, N.; et al. Exercise-based cardiac rehabilitation in twelve European countries results of the European cardiac rehabilitation registry. Int. J. Cardiol. 2017, 228, 58–67. [Google Scholar] [CrossRef]
- Li, Z.; Dawson, E.; Moodie, J.; Martin, J.; Bagur, R.; Cheng, D.; Kiaii, B.; Hashi, A.; Bi, R.; Yeschin, M.; et al. Measurement and prognosis of frail patients undergoing transcatheter aortic valve implantation: A systematic review and meta-analysis. BMJ Open 2021, 11, e040459. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Sathananthan, J.; Lauck, S.; Piazza, N.; Martucci, G.; Kim, D.H.; Popma, J.J.; Asgar, A.W.; Perrault, L.P.; Lefevre, T.; Labinaz, M.; et al. Habitual Physical Activity in Older Adults Undergoing TAVR: Insights From the FRAILTY-AVR Study. JACC Cardiovasc. Interv 2019, 12, 781–789. [Google Scholar] [CrossRef]
- Shi, S.; Afilalo, J.; Lipsitz, L.A.; Popma, J.J.; Khabbaz, K.R.; Laham, R.J.; Guibone, K.; Grodstein, F.; Lux, E.; Kim, D.H. Frailty Phenotype and Deficit Accumulation Frailty Index in Predicting Recovery After Transcatheter and Surgical Aortic Valve Replacement. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1249–1256. [Google Scholar] [CrossRef]
- Aggarwal, A.; Ades, P.A. Exercise rehabilitation of older patients with cardiovascular disease. Cardiol. Clin. 2001, 19, 525–536. [Google Scholar] [CrossRef]
- Eder, B.; Hofmann, P.; von Duvillard, S.P.; Brandt, D.; Schmid, J.P.; Pokan, R.; Wonisch, M. Early 4-week cardiac rehabilitation exercise training in elderly patients after heart surgery. J. Cardiopulm. Rehabil. Prev. 2010, 30, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Langlois, F.; Vu, T.T.; Chasse, K.; Dupuis, G.; Kergoat, M.J.; Bherer, L. Benefits of physical exercise training on cognition and quality of life in frail older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2013, 68, 400–404. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V. Benefits of cardiac rehabilitation and exercise training programs in elderly coronary patients. Am. J. Geriatr. Cardiol. 2001, 10, 323–327. [Google Scholar] [CrossRef]
- Macchi, C.; Fattirolli, F.; Lova, R.M.; Conti, A.A.; Luisi, M.L.; Intini, R.; Zipoli, R.; Burgisser, C.; Guarducci, L.; Masotti, G.; et al. Early and late rehabilitation and physical training in elderly patients after cardiac surgery. Am. J. Phys. Med. Rehabil. 2007, 86, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Marchionni, N.; Fattirolli, F.; Fumagalli, S.; Oldridge, N.; Del Lungo, F.; Morosi, L.; Burgisser, C.; Masotti, G. Improved exercise tolerance and quality of life with cardiac rehabilitation of older patients after myocardial infarction: Results of a randomized, controlled trial. Circulation 2003, 107, 2201–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, J.C.; Lillou, D.; Wittig, G.; Bartsch, P.; Willemsen, D.; Oldridge, N.; Bjarnason-Wehrens, B. Resistance and balance training improves functional capacity in very old participants attending cardiac rehabilitation after coronary bypass surgery. J. Am. Geriatr. Soc. 2012, 60, 2270–2276. [Google Scholar] [CrossRef]
- Stenlund, T.; Lindstrom, B.; Granlund, M.; Burell, G. Cardiac rehabilitation for the elderly: Qi Gong and group discussions. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 5–11. [Google Scholar] [CrossRef]
- Quittan, M. Frailty from the rehabilitation medicine point of view. Z. Gerontol. Geriatr. 2014, 47, 385–388. [Google Scholar] [CrossRef]
- Strasser, E.M.; Wessner, B.; Roth, E. Cellular regulation of anabolism and catabolism in skeletal muscle during immobilisation, aging and critical illness. Wien. Klin. Wochenschr. 2007, 119, 337–348. [Google Scholar] [CrossRef]
- Zech, A.; Steib, S.; Sportwiss, D.; Freiberger, E.; Pfeifer, K. Functional muscle power testing in young, middle-aged, and community-dwelling nonfrail and prefrail older adults. Arch. Phys. Med. Rehabil. 2011, 92, 967–971. [Google Scholar] [CrossRef]
- Honda, Y.; Yamawaki, M.; Shigemitsu, S.; Kenji, M.; Tokuda, T.; Tsutumi, M.; Mori, S.; Sakamoto, Y.; Kobayashi, N.; Araki, M.; et al. Prognostic value of objective nutritional status after transcatheter aortic valve replacement. J. Cardiol. 2019, 73, 401–407. [Google Scholar] [CrossRef]
- Seki, E.; Watanabe, Y.; Sunayama, S.; Iwama, Y.; Shimada, K.; Kawakami, K.; Sato, M.; Sato, H.; Mokuno, H.; Daida, H. Effects of phase III cardiac rehabilitation programs on health-related quality of life in elderly patients with coronary artery disease: Juntendo Cardiac Rehabilitation Program (J-CARP). Circ. J. 2003, 67, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino-Lova, R.; Pasquini, G.; Vannetti, F.; Paperini, A.; Forconi, T.; Polcaro, P.; Zipoli, R.; Cecchi, F.; Macchi, C. Effects of a structured physical activity intervention on measures of physical performance in frail elderly patients after cardiac rehabilitation: A pilot study with 1-year follow-up. Intern. Emerg. Med. 2013, 8, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.A.; Fleg, J.L.; Ades, P.A.; Chaitman, B.R.; Miller, N.H.; Mohiuddin, S.M.; Ockene, I.S.; Taylor, C.B.; Wenger, N.K.; American Heart Association; et al. Secondary prevention of coronary heart disease in the elderly (with emphasis on patients > or =75 years of age): An American Heart Association scientific statement from the Council on Clinical Cardiology Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation 2002, 105, 1735–1743. [Google Scholar]
- Schoenenberger, A.W.; Stortecky, S.; Neumann, S.; Moser, A.; Juni, P.; Carrel, T.; Huber, C.; Gandon, M.; Bischoff, S.; Schoenenberger, C.M.; et al. Predictors of functional decline in elderly patients undergoing transcatheter aortic valve implantation (TAVI). Eur. Heart J. 2013, 34, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J.; Curran, T.J.; Camil, L.; Rabideau, N.; Fulton, D.R.; Gauthier, N.S.; Gauvreau, K.; Jenkins, K.J. Sustained effects of cardiac rehabilitation in children with serious congenital heart disease. Pediatrics 2006, 118, e586–e593. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Curran, T.J.; Camil, L.; Rabideau, N.; Fulton, D.R.; Gauthier, N.S.; Gauvreau, K.; Jenkins, K.J. Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease. Pediatrics 2005, 116, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Somarriba, G.; Extein, J.; Miller, T.L. Exercise Rehabilitation in Pediatric Cardiomyopathy. Prog. Pediatr. Cardiol. 2008, 25, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Duppen, N.; Takken, T.; Hopman, M.T.; ten Harkel, A.D.; Dulfer, K.; Utens, E.M.; Helbing, W.A. Systematic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease. Int. J. Cardiol. 2013, 168, 1779–1787. [Google Scholar] [CrossRef]
- Tikkanen, A.U.; Oyaga, A.R.; Riano, O.A.; Alvaro, E.M.; Rhodes, J. Paediatric cardiac rehabilitation in congenital heart disease: A systematic review. Cardiol. Young 2012, 22, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Journiac, J.; Vioulac, C.; Jacob, A.; Escarnot, C.; Untas, A. What Do We Know About Young Adult Cardiac Patients’ Experience? A Systematic Review. Front. Psychol. 2020, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Deutsche Gesellschaft für Pädiatrische Kardiologie e.V; Weil, J. Familienorientierte Rehabilitation (FOR) bei Herz- und Kreislauferkrankungen im Kindes- und Jugendalter und spezielle Rehabilitation im Jugend- und jungen Erwachsenenalter (JEMAH-Patienten) 2017 [AWMF-Register Nr.023/31 Klasse: S2k]. Available online: https://www.awmf.org/uploads/tx_szleitlinien/023-031l_S2k_Familienorientierte-Rehabilitation_FOR-Herz_und_Kreislauferkrankungen_2018-07.pdf (accessed on 22 April 2021).
- Bjarnason-Wehrens, B.; Dordel, S.; Sreeram, N.; Brockmeier, K. Cardiac Rehabilitation in Congenital Heart Disease. In Cardiovascular Prevention and Rehabilitation; Perk, J., Mathes, P., Gohlke, H., Monpère, C., Hellemans, I., McGee, H., Sellier, P., Saner, H., Eds.; Springer: London, UK, 2007; pp. 361–375. [Google Scholar]
- Bjarnason-Wehrens, B.; Dordel, S.; Schickendantz, S.; Sreeram, N.; Brockmeier, K. Exercise Training in Congenital Heart Diseases. In Cardiac Rehabilitation Manual; Niebauer, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 257–291. [Google Scholar]
- Hager, A.; Bjarnason-Wehrens, B.; Oberhoffer, R.; Hövels-Gürich, H.; Lawrenz, W.; Dubowy, K.-O.; Paul, T. Leitlinie Pädiatrische Kardiologie: Sport bei angeborenen Herzerkrankungen 2015 [updated 24.9.2016]. Available online: http://www.kinderkardiologie.org/fileadmin/user_upload/Leitlinien/LL%20Sport_20150504.pdf (accessed on 21 April 2021).
- Tran, D.; Maiorana, A.; Ayer, J.; Lubans, D.R.; Davis, G.M.; Celermajer, D.S.; d’Udekem, Y.; Cordina, R. Recommendations for exercise in adolescents and adults with congenital heart disease. Prog. Cardiovasc. Dis. 2020, 63, 350–366. [Google Scholar] [CrossRef] [PubMed]
- Mehta, L.S.; Beckie, T.M.; DeVon, H.A.; Grines, C.L.; Krumholz, H.M.; Johnson, M.N.; Lindley, K.J.; Vaccarino, V.; Wang, T.Y.; Watson, K.E.; et al. Acute Myocardial Infarction in Women: A Scientific Statement from the American Heart Association. Circulation 2016, 133, 916–947. [Google Scholar] [CrossRef] [PubMed]
- Titterington, J.S.; Hung, O.Y.; Saraf, A.P.; Wenger, N.K. Gender differences in acute coronary syndromes: Focus on the women with ACS without an obstructing culprit lesion. Expert Rev. Cardiovasc. Ther. 2018, 16, 297–304. [Google Scholar] [CrossRef]
- McSweeney, J.C.; Rosenfeld, A.G.; Abel, W.M.; Braun, L.T.; Burke, L.E.; Daugherty, S.L.; Fletcher, G.F.; Gulati, M.; Mehta, L.S.; Pettey, C.; et al. Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science: A Scientific Statement From the American Heart Association. Circulation 2016, 133, 1302–1331. [Google Scholar] [CrossRef] [Green Version]
- Samayoa, L.; Grace, S.L.; Gravely, S.; Scott, L.B.; Marzolini, S.; Colella, T.J. Sex differences in cardiac rehabilitation enrollment: A meta-analysis. Can. J. Cardiol. 2014, 30, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Oosenbrug, E.; Marinho, R.P.; Zhang, J.; Marzolini, S.; Colella, T.J.; Pakosh, M.; Grace, S.L. Sex Differences in Cardiac Rehabilitation Adherence: A Meta-analysis. Can. J. Cardiol. 2016, 32, 1316–1324. [Google Scholar] [CrossRef]
- Supervia, M.; Medina-Inojosa, J.R.; Yeung, C.; Lopez-Jimenez, F.; Squires, R.W.; Perez-Terzic, C.M.; Brewer, L.C.; Leth, S.E.; Thomas, R.J. Cardiac Rehabilitation for Women: A Systematic Review of Barriers and Solutions. Mayo Clin. Proc. 2017. [Google Scholar] [CrossRef] [Green Version]
- Statistisches Bundesamt. Krankenhausstatistik. Gesundheitsberichterstattung des Bundes; Statistisches Bundesamt: Wiesbaden, Germany, 2019; Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Methoden/krankenhausstatistik.html (accessed on 8 April 2021).
- Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.C.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharm. 2017, 3, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Härtel, U. Untersuchung Geschlechtsspezifischer, Biomedizinischer und Psychosozialer Einflüsse auf den Langfristigen Erfolg von Reha-Maßnahmen bei Patienten mit Koronarer Herzkrankheit Schlussbericht Zweite Förderphase; Rehabilitationswissenschaftlicher Forschungsverbund Bayern: Würzbrug, Germany, 2006. [Google Scholar]
- Härtel, U.; Gehring, J.; Schraudolph, M. Geschlechtsspezifische Unterschiede in der Rehabilitation nach erstem Myokardinfarkt—Ergebnisse der Höhenrieder Studie. Gender-specific Differences in Rehabilitation after First Myocard Infarction—Results of the “Höhenried” Study. Herzmedizin 2005, 22, 140–150. [Google Scholar]
- Deutsche Rentenversicherung Bayern Süd. Männer und Frauen in der Kardiologischen Rehabilitation. Erkenntnisse der Höhenrieder Studien; Klinik Höhenried gGmbH: Bernried, Germany, 2016. [Google Scholar]
- Beckie, T.M.; Beckstead, J.W. The effects of a cardiac rehabilitation program tailored for women on global quality of life: A randomized clinical trial. J. Womens Health 2010, 19, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andraos, C.; Arthur, H.M.; Oh, P.; Chessex, C.; Brister, S.; Grace, S.L. Women’s preferences for cardiac rehabilitation program model: A randomized controlled trial. Eur. J. Prev. Cardiol. 2015, 22, 1513–1522. [Google Scholar] [CrossRef]
- Härtel, U. Körperliche Aktivität von Frauen im Jahr nach akuter koronare Herzkrankheit. Ergebnisse einer Frauen-Interventionsstudie. In Gesundheit in Bewegung: Impulse aus Geschlechterperspektive: Beiträge aus dem Symposium “Gender and Health in Motion—Gesundheit, Bewegung und Geschlecht aus Interdisziplinärer Perspektive”; Hartmann-Tews, I., Ed.; Brennpunkte der Sportwissenschaft. 32. 1. Aufl. Ed.; Academia: Sankt Augustin, Germany, 2010; p. 175 S. [Google Scholar]
- Al-Smadi, A.M.; Ashour, A.; Hweidi, I.; Gharaibeh, B.; Fitzsimons, D. Illness perception in patients with coronary artery disease: A systematic review. Int. J. Nurs. Pr. 2016, 22, 633–648. [Google Scholar] [CrossRef] [PubMed]
- Statistisches Bundesamt. Bevölkerung und Erwerbstätigkeit. Bevölkerung mit Migrationshintergrund. Ergebnisse des Mikrozensus 2019. Fachserie 1 Reihe 2.2 Wiesbaden: Statistisches Bundesamt. 2019. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Migration-Integration/Publikationen/Downloads-Migration/migrationshintergrund-2010220197004.pdf;jsessionid=F58B0D13E24CB051B9976111DE3B6374.live712?__blob=publicationFile (accessed on 21 April 2021).
- Becker, J.; Faller, G. Arbeitsbelastung und Gesundheit von Erwerbstätigen mit Migrationshintergrund. Bundesgesundheitsblatt Gesundh. Gesundh. 2019, 62, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Razum, O.; Meesmann, U.; Bredehorst, M.; Brzoska, P.; Dercks, T.; Glodny, S.; Zeeb, H.; Schenk, L.; Salman, R.; Menkhaus, B.; et al. Migration und Gesundheit. Schwerpkt. Der Gesundh. Des Bundes 2008, 49, 873–883. [Google Scholar]
- Brzoska, P.; Voigtlander, S.; Spallek, J.; Razum, O. Utilization and effectiveness of medical rehabilitation in foreign nationals residing in Germany. Eur. J. Epidemiol. 2010, 25, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berens, E.M.; Ganahl, K.; Vogt, D.; Schaeffer, D. Health literacy in the domain of healthcare among older migrants in Germany (North Rhine-Westphalia). Findings from a cross-sectional survey. Int. J. Migr. Health Soc. Care 2021, 17, 62–74. [Google Scholar] [CrossRef]
- Brzoska, P.; Razum, O. Erreichbarkeit und Ergebnisqualität rehabilitativer Versorgung bei Menschen mit Migrationshintergrund. Bundesgesundheitsblatt Gesundh. Gesundh. 2015, 58, 553–559. [Google Scholar] [CrossRef]
- Lebano, A.; Hamed, S.; Bradby, H.; Gil-Salmeron, A.; Dura-Ferrandis, E.; Garces-Ferrer, J.; Azzedine, F.; Riza, E.; Karnaki, P.; Zota, D.; et al. Migrants’ and refugees’ health status and healthcare in Europe: A scoping literature review. BMC Public Health 2020, 20, 1039. [Google Scholar] [CrossRef]
- Wenner, J.; Bozorgmehr, K.; Duwendag, S.; Rolke, K.; Razum, O. Differences in realized access to healthcare among newly arrived refugees in Germany: Results from a natural quasi-experiment. BMC Public Health 2020, 20, 846. [Google Scholar] [CrossRef]
- Brause, M.; Reutin, B.; Razum, O.; Schott, T. Rehabilitationserfolg bei Menschen mit türkischem Migrationshintergrund—Eine Auswertung von Routinedaten der Deutschen Rentenversicherungen Rheinland und Westfalen. Die Rehabil. 2012, 51, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Brzoska, P.; Ellert, U.; Kimil, A.; Razum, O.; Sass, A.C.; Salman, R.; Zeeb, H. Reviewing the topic of migration and health as a new national health target for Germany. Int. J. Public Health 2015, 60, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Conway, A.; Poulsen, V.; Keech, W.; Tirimacco, R.; Tideman, P. Alternative models of cardiac rehabilitation: A systematic review. Eur. J. Prev. Cardiol. 2015, 22, 35–74. [Google Scholar] [CrossRef] [PubMed]
- Frederix, I.; Vanhees, L.; Dendale, P.; Goetschalckx, K. A review of telerehabilitation for cardiac patients. J. Telemed. Telecare 2015, 21, 45–53. [Google Scholar] [CrossRef]
- Huang, K.; Liu, W.; He, D.; Huang, B.; Xiao, D.; Peng, Y.; He, Y.; Hu, H.; Chen, M.; Huang, D. Telehealth interventions versus center-based cardiac rehabilitation of coronary artery disease: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2015, 22, 959–971. [Google Scholar] [CrossRef]
- Hwang, R.; Bruning, J.; Morris, N.; Mandrusiak, A.; Russell, T. A Systematic Review of the Effects of Telerehabilitation in Patients with Cardiopulmonary Diseases. J. Cardiopulm. Rehabil. Prev. 2015, 35, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Rawstorn, J.C.; Gant, N.; Direito, A.; Beckmann, C.; Maddison, R. Telehealth exercise-based cardiac rehabilitation: A systematic review and meta-analysis. Heart 2016, 102, 1183–1192. [Google Scholar] [CrossRef]
- Xia, T.L.; Huang, F.Y.; Peng, Y.; Huang, B.T.; Pu, X.B.; Yang, Y.; Chai, H.; Chen, M. Efficacy of Different Types of Exercise-Based Cardiac Rehabilitation on Coronary Heart Disease: A Network Meta-analysis. J. Gen. Intern. Med. 2018, 33, 2201–2209. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.; Yamabayashi, C.; Syed, N.; Kirkham, A.; Camp, P.G. Exercise Telemonitoring and Telerehabilitation Compared with Traditional Cardiac and Pulmonary Rehabilitation: A Systematic Review and Meta-Analysis. Physiother. Can. 2016, 68, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Sharp, G.A.; Norton, R.J.; Dalal, H.; Dean, S.G.; Jolly, K.; Cowie, A.; Zawada, A.; Taylor, R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst. Rev. 2017, 6, CD007130. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, E.; Pencina, M.J.; Opolski, G.; Zareba, W.; Banach, M.; Kowalik, I.; Orzechowski, P.; Szalewska, D.; Pluta, S.; Glowczynska, R.; et al. Effects of a 9-Week Hybrid Comprehensive Telerehabilitation Program on Long-term Outcomes in Patients with Heart Failure: The Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Claes, J.; Cornelissen, V.; McDermott, C.; Moyna, N.; Pattyn, N.; Cornelis, N.; Gallagher, A.; McCormack, C.; Newton, H.; Gillain, A.; et al. Feasibility, Acceptability, and Clinical Effectiveness of a Technology-Enabled Cardiac Rehabilitation Platform (Physical Activity Toward Health-I): Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e14221. [Google Scholar] [CrossRef] [PubMed]
- Snoek, J.A.; Prescott, E.I.; van der Velde, A.E.; Eijsvogels, T.M.H.; Mikkelsen, N.; Prins, L.F.; Bruins, W.; Meindersma, E.; Gonzalez-Juanatey, J.R.; Pena-Gil, C.; et al. Effectiveness of Home-Based Mobile Guided Cardiac Rehabilitation as Alternative Strategy for Nonparticipation in Clinic-Based Cardiac Rehabilitation Among Elderly Patients in Europe: A Randomized Clinical Trial. JAMA Cardiol. 2021, 6, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Frederix, I.; Hansen, D.; Coninx, K.; Vandervoort, P.; Vandijck, D.; Hens, N.; Van Craenenbroeck, E.; Van Driessche, N.; Dendale, P. Effect of comprehensive cardiac telerehabilitation on one-year cardiovascular rehospitalization rate, medical costs and quality of life: A cost-effectiveness analysis. Eur. J. Prev. Cardiol. 2016, 23, 674–682. [Google Scholar] [CrossRef]
- Frederix, I.; Solmi, F.; Piepoli, M.F.; Dendale, P. Cardiac telerehabilitation: A novel cost-efficient care delivery strategy that can induce long-term health benefits. Eur. J. Prev. Cardiol. 2017, 24, 1708–1717. [Google Scholar] [CrossRef]
- Hwang, R.; Bruning, J.; Morris, N.R.; Mandrusiak, A.; Russell, T. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: A randomised trial. J. Physiother. 2017, 63, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Scalvini, S.; Zanelli, E.; Comini, L.; Tomba, M.D.; Troise, G.; Giordano, A. Home-based exercise rehabilitation with telemedicine following cardiac surgery. J. Telemed. Telecare 2009, 15, 297–301. [Google Scholar] [CrossRef]
- Kraal, J.J.; Van den Akker-Van Marle, M.E.; Abu-Hanna, A.; Stut, W.; Peek, N.; Kemps, H.M. Clinical and cost-effectiveness of home-based cardiac rehabilitation compared to conventional, centre-based cardiac rehabilitation: Results of the FIT@Home study. Eur. J. Prev. Cardiol. 2017, 24, 1260–1273. [Google Scholar] [CrossRef]
- Kidholm, K.; Rasmussen, M.K.; Andreasen, J.J.; Hansen, J.; Nielsen, G.; Spindler, H.; Dinesen, B. Cost-Utility Analysis of a Cardiac Telerehabilitation Program: The Teledialog Project. Telemed. J. E Health 2016, 22, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Balady, G.; Banka, G.; Beckie, T.M.; Chiu, J.; Gokak, S.; Ho, P.M.; Keteyian, S.J.; King, M.; Lui, K.; et al. 2018 ACC/AHA Clinical Performance and Quality Measures for Cardiac Rehabilitation: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. J. Am. Coll. Cardiol. 2018, 71, 1814–1837. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Corra, U.; Dendale, P.; Frederix, I.; Prescott, E.; Schmid, J.P.; Cupples, M.; Deaton, C.; Doherty, P.; Giannuzzi, P.; et al. Challenges in secondary prevention after acute myocardial infarction: A call for action. Eur. J. Prev. Cardiol. 2016, 23, 1994–2006. [Google Scholar] [CrossRef] [PubMed]
- Frederix, I.; Caiani, E.G.; Dendale, P.; Anker, S.; Bax, J.; Bohm, A.; Cowie, M.; Crawford, J.; de Groot, N.; Dilaveris, P.; et al. ESC e-Cardiology Working Group Position Paper: Overcoming challenges in digital health implementation in cardiovascular medicine. Eur. J. Prev. Cardiol. 2019, 26, 1166–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsche Rentenversicherung. Anforderungsprofil zur Durchführung der Medizinisch-Beruflich Orientierten Rehabilitation (MBOR) im Auftrag der Deutschen Rentenversicherung 2015 [updated 13.04.2019]. Available online: http://www.deutsche-rentenversicherung.de/cae/servlet/contentblob/207024/publicationFile/50641/mbor_datei.pdf (accessed on 21 April 2021).
- Thomas, R.J.; Beatty, A.L.; Beckie, T.M.; Brewer, L.C.; Brown, T.M.; Forman, D.E.; Franklin, B.A.; Keteyian, S.J.; Kitzman, D.W.; Regensteiner, J.G.; et al. Home-Based Cardiac Rehabilitation: A scientific statement from the american association of cardiovascular and pulmonary rehabilitation, the american heart association, and the american college of cardiology. J. Cardiopulm. Rehabil. Prev. 2019, 39, 208–225. [Google Scholar] [CrossRef]
- Streibelt, M.; Bethge, M.; Gross, T.; Herrmann, K.; Ustaoglu, F.; Reichel, C. Predictive Validity of a Screening Instrument for the Risk of Non-Return to Work in Patients with Internal Diseases. Arch. Phys. Med. Rehabil. 2017, 98, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.S.; Chaudhary, K.; Blackstock, F. Concordant Evidence-Based Interventions in Cardiac and Pulmonary Rehabilitation Guidelines. J. Cardiopulm. Rehabil. Prev. 2019, 39, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; McKelvie, R.S.; Thorpe, K.E.; Arthur, H.M. Six-year follow-up of a randomised controlled trial examining hospital versus home-based exercise training after coronary artery bypass graft surgery. Heart 2011, 97, 1169–1174. [Google Scholar] [CrossRef]
- Frederix, I.; Dendale, P.; Sheikh, A. FIT@Home editorial: Supporting a new era of cardiac rehabilitation at home? Eur. J. Prev. Cardiol. 2017, 24, 1485–1487. [Google Scholar] [CrossRef] [Green Version]
- McLean, L.D.; Clark, A.M. Telehealth interventions versus center-based cardiac rehabilitation: It’s time to strengthen the evidence. Eur. J. Prev. Cardiol. 2016, 23, 21–22. [Google Scholar] [CrossRef]
- Neubeck, L. Telehealth-based cardiac rehabilitation: A solution to the problem of access? Eur. J. Prev. Cardiol. 2015, 22, 957–958. [Google Scholar] [CrossRef]
- Piotrowicz, E.; Piepoli, M.F.; Jaarsma, T.; Lambrinou, E.; Coats, A.J.; Schmid, J.P.; Corra, U.; Agostoni, P.; Dickstein, K.; Seferovic, P.M.; et al. Telerehabilitation in heart failure patients: The evidence and the pitfalls. Int. J. Cardiol. 2016, 220, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Schwaab, B. Telemedicine in cardiac rehabilitation—A literature review and critical appraisement. Rehabilitation 2007, 46, 276–282. [Google Scholar] [CrossRef]
- Schwaab, B. Telemedicine during cardiac rehabilitation after acute myocardial infarction. Herz 2012, 37, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Duff, O.M.; Walsh, D.M.; Furlong, B.A.; O’Connor, N.E.; Moran, K.A.; Woods, C.B. Behavior Change Techniques in Physical Activity eHealth Interventions for People with Cardiovascular Disease: Systematic Review. J. Med. Internet Res. 2017, 19, e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, D.; Ottaviano, M.; Muuraiskangas, S.; Martinez-Romero, A.; Vera-Munoz, C.; Triantafyllidis, A.; Cabrera Umpierrez, M.F.; Arredondo Waldmeyer, M.T.; Skobel, E.; Knackstedt, C.; et al. An m-Health system for education and motivation in cardiac rehabilitation: The experience of HeartCycle guided exercise. J. Telemed. Telecare 2018, 24, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Myers, J. Principles of exercise prescription for patients with chronic heart failure. Heart Fail. Rev. 2008, 13, 61–68. [Google Scholar] [CrossRef]
Strong recommendation | “is recommended…” ↑↑ “is not recommended…” ↓↓ |
Medium recommendation | “is suggested…” ↑ “is not suggested….” ↓ |
neutral | “may be considered” ↔ |
Study-Design | Number of Studies | Population | Results: (+) = Effective; (0) = Effectivity Not Proven (SMD, MD, OR, log-OR, d, ARR, r (95% CI)) | Annotations |
---|---|---|---|---|
[215] | ||||
RCTs | 12 | N = 2.202 CHD, ACS/MI | Depression SMD −0.35 (−0.52; −0.17) (+) (depressive symptoms reduced) Anxiety SMD −0.34 (−0.65; −0.03) (+) (anxiety reduced) QoL mental MD 3.62 (0.2; 7.02) (+) (mental quality of life improved) QoL somatic MD 2.59 (−0.41; 5.60) (0) CV events OR 0.80 (0.3; 1.93) (0) treatment satisfaction SMD 0.11 (−0.29; 0.51) (0) | Studies 2003–2014. Patients with higher depressive symptoms and anxiety. CBT only +/− antidepressive medication. Low study-quality, control and intervention group inhomogeneous |
[216] | ||||
RCTs | 35 | N = 10.703 CAD, AMI, PCI, CABG, | Depression SMD −0.27 (−0.39; −0.15) (+) (depressive symptoms reduced) Anxiety SMD −0.24 (−0.38;−0.09) (+) (anxiety reduced) Disstress SMD −0.56 (−0.88; −0.24) (+) (disstress reduced) Cardiac mortality RR 0.79 (0.63; 0.98) (+) (Cardiac mortality reduced) Total mortality RR 0.90 (0.77; 1.05) (0) PCI/CABG RR 0.94 (0.81; 1.11) (0) Non-fatal MI RR 0.82 (0.64; 1.05) (0) | Studies 1974–2016. Low study-quality, control and intervention group inhomogeneous |
[217] (results on “mental health treatments“ only) | ||||
RCTs | 18 | N = 9.819 CHD, CHF | Depression d 0.297 (0.16; 0.43) (+) (depressive symptoms reduced) Total mortality ARR −0.001 (−0.016; 0.15) (0) Cardiovascular mortality and events ARR 0.029 (0.007; 0.51) (+) (Cardiovascular mortality and events reduced) | Studies 1996–2011 Psychological intervention without antidepressive medication. Low study-quality, control and intervention group inhomogenous |
[218] | ||||
RCTs | 51 | N = n. a. CHD | Depression SMD −0.23 (−0.35; −0.11) (+) (depressive symptoms reduced) Anxiety SMD −0.15 (−0.29; −0.04) (+) (anxiety reduced) Total mortality log-OR −0.14 (−0.47; 0.15) (0) Cardiac Mortality log-OR −0.16 (−0.44; 0.07) (0) Non-fatal MI log-OR −0.35 (−0.65; −0.10) (+) (non-fatal MI reduced) | Studies 1974–2006 Control and intervention group inhomogeneous |
[214] | ||||
RCTs | 43 | N = 12.023 CHD, MI, PCI, CABG | Depression (Int vs. Co) r −0.30 vs. −0.21 (0) Depression men (Int vs. Co) r −0.28 vs. −0.17 (+) (Depression in men reduced) Depression women (Int vs. Co) r −0.28 vs. −0.23 (0) Anxiety (Int vs. Co) r −0.17 vs. −0.11 (0) Anxiety in men (Int vs. Co) r −0.11 vs. −0.03 (0) Anxiety in women (Int vs. Co) r −0.18 vs. −0.25 (0) Disstress (Int vs. Co) r −0.36 vs. −0.20 (0) Disstress in men (Int vs. Co) r −0.76 vs. −0.53 (0) Disstress women (Int vs. Co) r −0.27 vs. −0.10 (+) (Disstress in women reduced) Social support (Int vs. Co) r −0.28 vs. −0.2 (+) (social support improved) Social support men (Int vs. Co) r −0.29 vs. −0.14(+) (social suppoprt in men improved) Social support women (Int vs. Co) r −0.44 vs. −0.14 (+) (social support in women improved) QoL (Int vs. Co) r −0.21 vs. −0.13 (+) (quality of life improved) SBD (int vs. Co) r −0.03 vs. 0.08 (0) DBD (Int vs. Co) r −0.09 vs. 0.03 (0) Total mortality (<2 years) OR 0.72 (0.56; 0.94) (+) (total mortality improved until 2 years) Total mortality (>2 years) OR 0.89 (0.80; 1.01) (0) Total mortality men OR 0.73 (0.57; 1.00) (+) (total mortality in men reduced) Total mortality in women OR 1.01 (0.87; 1.72) (0) | Studies 1975–2005 Control and intervention group inhomogeneous |
Endpoints | Intervention | Number of Patients n (I; C) | Heterogeneity | SMD | 95% CI | Annotations |
---|---|---|---|---|---|---|
depressive symptoms | LC | 165; 159 | I2 = 60% | −0.19 | −2.89; 2.51 | 2 studies f/u 12 m |
DM | 266; 237 | I2 = 0% | −0.19 | −0.47; 0.10 | 4 studies f/u 6–12 m | |
LC + DM | 273; 226 | I2 = 58% | 0.03 | −0.56; 0.61 | 3 studies f/u 6–12 m | |
all interventions | 694; 622 | I2 = 44% | −0.13 | −0.30; 0.05 | 9 studies f/u 6–12 m | |
anxiety | LC | 52; 62 | n.a. | 0.04 | −0.33; 0.40 | 1 study f/u 12 m |
DM | 256; 232 | I2 = 0% | −0.11 | −0.29; 0.06 | 1 study f/u 12 m | |
LC + DM | 57; 59 | n.a. | 0.43 | 0.07; 0.80 | 1 study f/u 6 m | |
all interventions | 365; 355 | I2 = 37% | 0.01 | −0.24; 0.27 | 6 study f/u 6–12 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwaab, B.; Bjarnason-Wehrens, B.; Meng, K.; Albus, C.; Salzwedel, A.; Schmid, J.-P.; Benzer, W.; Metz, M.; Jensen, K.; Rauch, B.; et al. Cardiac Rehabilitation in German Speaking Countries of Europe—Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH—Part 2. J. Clin. Med. 2021, 10, 3071. https://doi.org/10.3390/jcm10143071
Schwaab B, Bjarnason-Wehrens B, Meng K, Albus C, Salzwedel A, Schmid J-P, Benzer W, Metz M, Jensen K, Rauch B, et al. Cardiac Rehabilitation in German Speaking Countries of Europe—Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH—Part 2. Journal of Clinical Medicine. 2021; 10(14):3071. https://doi.org/10.3390/jcm10143071
Chicago/Turabian StyleSchwaab, Bernhard, Birna Bjarnason-Wehrens, Karin Meng, Christian Albus, Annett Salzwedel, Jean-Paul Schmid, Werner Benzer, Matthes Metz, Katrin Jensen, Bernhard Rauch, and et al. 2021. "Cardiac Rehabilitation in German Speaking Countries of Europe—Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH—Part 2" Journal of Clinical Medicine 10, no. 14: 3071. https://doi.org/10.3390/jcm10143071
APA StyleSchwaab, B., Bjarnason-Wehrens, B., Meng, K., Albus, C., Salzwedel, A., Schmid, J.-P., Benzer, W., Metz, M., Jensen, K., Rauch, B., Bönner, G., Brzoska, P., Buhr-Schinner, H., Charrier, A., Cordes, C., Dörr, G., Eichler, S., Exner, A.-K., Fromm, B., ... Westphal, R. (2021). Cardiac Rehabilitation in German Speaking Countries of Europe—Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH—Part 2. Journal of Clinical Medicine, 10(14), 3071. https://doi.org/10.3390/jcm10143071