Association between Neonatal Intakes and Hyperglycemia, and Left Heart and Aortic Dimensions at 6.5 Years of Age in Children Born Extremely Preterm
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Exposure Variables
2.3. Outcome Variables
2.4. Statistical Analyses
2.5. Ethics
3. Results
3.1. Participant Characteristics
3.2. Echocardiographic Outcomes
3.3. Neonatal Nutrition, Hyperglycemia, and Left Atrial Dimensions
3.4. Neonatal Nutrition, Hyperglycemia, and Left Ventricular Dimensions
3.5. Neonatal Nutrition, Hyperglycemia, and Cardiac Functional Volumes
3.6. Neonatal Nutrition, Hyperglycemia and LV Wall Thickness
3.7. Neonatal Nutrition, Hyperglycemia, and Abdominal Aortic Dimension and Stiffness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [Green Version]
- Norman, M.; Hallberg, B.; Abrahamsson, T.; Björklund, L.J.; Domellöf, M.; Farooqi, A.; Bruun, C.F.; Gadsbøll, C.; Hellström-Westas, L.; Ingemansson, F.; et al. Association between year of birth and 1-year survival among extremely preterm infants in Sweden during 2004-2007 and 2014-2016. JAMA 2019, 321, 1188–1199. [Google Scholar] [CrossRef] [Green Version]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Rydberg, A.; Halvorsen, C.P.; Liuba, P.; Fellman, V.; Domellöf, M.; Sjöberg, G.; Norman, M. The preterm heart in childhood: Left ventricular structure, geometry, and function assessed by echocardiography in 6-year-old survivors of periviable births. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Hellström, M.; Halvorsen, C.P.; Sjöberg, G.; Bonamy, A.K.E.; Liuba, P.; Fellman, V.; Domellöf, M.; et al. Preterm arteries in childhood: Dimensions, intima-media thickness, and elasticity of the aorta, coronaries, and carotids in 6-y-old children born extremely preterm. Pediatr. Res. 2017, 81, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 2013, 127, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Bonamy, A.-K.E.; Bengtsson, J.; Nagy, Z.; De Keyzer, H.; Norman, M. Preterm birth and maternal smoking in pregnancy are strong risk factors for aortic narrowing in adolescence. Acta Paediatr. 2008, 97, 1080–1085. [Google Scholar] [CrossRef]
- Crump, C.; Groves, A.; Sundquist, J.; Sundquist, K. Association of preterm birth with long-term risk of heart failure into adulthood. JAMA Pediatrics. 2021. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, K.; Sundquist, J.; Winkleby, M.A. Gestational age at birth and mortality in young adulthood. JAMA 2011, 306, 1233–1240. [Google Scholar] [CrossRef]
- Kaijser, M.; Bonamy, A.K.; Akre, O.; Cnattingius, S.; Granath, F.; Norman, M.; Ekbom, A. Perinatal risk factors for ischemic heart disease: Disentangling the roles of birth weight and preterm birth. Circulation 2008, 117, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, T.M.; Katz, S.L.; Leeson. P.; Thébaud, B.; Nuyt, A.M. Preterm birth: Risk factor for early-onset chronic diseases. CMAJ 2016, 188, 736–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, W.W. Nutritional support strategies for the preterm infant in the neonatal intensive care unit. Pediatr. Gastroenterol. Hepatol. Nutr. 2018, 21, 234–247. [Google Scholar] [CrossRef]
- Westin, V.; Klevebro, S.; Domellöf, M.; Vanpée, M.; Hallberg, B.; Sjöström, E.S. Improved nutrition for extremely preterm infants-A population based observational study. Clin. Nutr. ESPEN 2018, 23, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Zamir, I.; Tornevi, A.; Abrahamsson, T.; Ahlsson, F.; Engström, E.; Hallberg, B.; Hansen-Pupp, I.; Sjöström, E.S.; Domellöf, M. Hyperglycemia in extremely preterm infants-insulin treatment, mortality and nutrient intakes. J. Pediatr. 2018, 200, 104–110.e1. [Google Scholar] [CrossRef] [Green Version]
- Zamir, I.; Sjöström, E.S.; Bonamy, A.-K.E.; Mohlkert, L.-A.; Norman, M.; Domellöf, M. Postnatal nutritional intakes and hyperglycemia as determinants of blood pressure at 6.5 years of age in children born extremely preterm. Pediatr. Res. 2019, 86, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowski, A.J.; Lamata, P.; Francis, J.M.; Piechnik, S.K.; Ferreira, V.M.; Boardman, H.; Neubauer, S.; Singhal, A.; Leeson, P.; Lucas, A. Breast milk consumption in preterm neonates and cardiac shape in adulthood. Pediatrics 2016, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowski, A.J.; Lazdam, M.; Davis, E.; Kylintireas, I.; Diesch, J.; Francis, J.; Neubauer, S.; Singhal, A.; Lucas, A.; Kelly, B.; et al. Short-term exposure to exogenous lipids in premature infants and long-term changes in aortic and cardiac function. Arter. Thromb. Vasc. Biol. 2011, 31, 2125–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, J.; Hanson, M.; Peebles, C.; Davies, L.; Inskip, H.; Robinson, S.; Calder, P.C.; Cooper, C.; Godfrey, K.M. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness in the child at age 9 years. Circ. Res. 2015, 116, 1202–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellman, V.; Hellström-Westas, L.; Norman, M.; Westgren, M.; Källén, K.; Lagercrantz, H.; Marsál, K.; Serenius, F.; Wennergren, M.; EXPRESS Group. One-year survival of extremely preterm infants after active perinatal care in Sweden. Obstet. Anesth. Dig. 2010, 30, 22–23. [Google Scholar] [CrossRef]
- Stoltz Sjöström, E.; Öhlund, I.; Ahlsson, F.; Engström, E.; Fellman, V.; Hellström, A.; Källén, K.; Norman, M.; Olhager, E.; Serenius, F.; et al. Nutrient intakes independently affect growth in extremely preterm infants: Results from a population-based study. Acta Paediatr. 2013, 102, 1067–1074. [Google Scholar] [CrossRef]
- Zamir, I.; Sjöström, E.S.; Ahlsson, F.; Hansen-Pupp, I.; Serenius, F.; Domellöf, M. Neonatal hyperglycaemia is associated with worse neurodevelopmental outcomes in extremely preterm infants. Arch. Dis. Childhood-Fetal Neonatal Ed. 2021. [Google Scholar] [CrossRef]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Haycock, G.B.; Schwartz, G.J.; Wisotsky, D.H. Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J. Pediatr. 1978, 93, 62–66. [Google Scholar] [CrossRef]
- Kowalski, R.R.; Beare, R.; Doyle, L.W.; Smolich, J.J.; Cheung, M.M.; Callanan, C.; Davis, N.; De Luca, C.R.; Duff, J.; Hutchinson, E.; et al. Victorian Infant Collaborative Study Group. Elevated blood pressure with reduced left ventricular and aortic dimensions in adolescents born extremely preterm. J. Pediatr. 2016, 172, 75–80.e2. [Google Scholar] [CrossRef]
- Edstedt Bonamy, A.K.; Mohlkert, L.A.; Hallberg, J.; Liuba, P.; Fellman, V.; Domellöf, M.; Norman, M. Blood pressure in 6-year-old children born extremely preterm. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Obermann-Borst, S.A.; Vujkovic, M.; De Vries, J.H.; Wildhagen, M.F.; Looman, C.W.; de Jonge, R.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Godfrey, K.M.; Poston, L.; Szajewska, H.; van Goudoever, J.B.; de Waard, M.; Brands, B.; Grivell, R.M.; Deussen, A.R.; Dodd, J.M.; et al. EarlyNutrition Project Systematic Review Group. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Ann. Nutr. Metab. 2019, 74, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.; Lindblad, B.; Norman, M. Endothelial function in newborn infants is related to folate levels and birth weight. Pediatrics 2007, 119, 1152–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Arzapalo, P.Y.; Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; López de Pablo, Á.L.; López-Giménez, M.R.; Condezo-Hoyos, L.; Greenwald, S.E.; González, M.D.C.; Arribas, S.M. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta. J. Physiol. 2018, 596, 5791–5806. [Google Scholar] [CrossRef] [Green Version]
- Skilton, M.R.; Gosby, A.K.; Wu, B.J.; Ho, L.M.; Stocker, R.; Caterson, I.D.; Celermajer, D.S. Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clin. Sci. 2006, 111, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Amer, M.G.; Mohamed, N.M.; Shaalan, A.A.M. Gestational protein restriction: Study of the probable effects on cardiac muscle structure and function in adult rats. Histol. Histopathol. 2017, 32, 1293–1303. [Google Scholar]
- Garcia-Flores, J.; Jañez, M.; Gonzalez, M.C.; Martinez, N.; Espada, M.; Gonzalez, A. Fetal myocardial morphological and functional changes associated with well-controlled gestational diabetes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 154, 24–26. [Google Scholar] [CrossRef]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during pregnancy: A maternal disease complicating the course of pregnancy with long-term deleterious effects on the offspring. A Clin. Rev. Int. J. Mol. Sci. 2021, 22, 2965. [Google Scholar] [CrossRef] [PubMed]
- Do, V.; Eckersley, L.; Lin, L.; Davidge, S.T.; Stickland, M.K.; Ojala, T.; Serrano-Lomelin, J.; Hornberger, L.K. Persistent aortic stiffness and left ventricular hypertrophy in children of diabetic mothers. CJC Open. 2021, 3, 345–353. [Google Scholar] [CrossRef] [PubMed]
Participant Characteristic, n = 171 | Mean ± SD/Number (%) |
---|---|
Maternal Characteristics | |
Age, years | 31.5 ± 5.45 |
Family history of cardiovascular disease | 123 (74) |
Neonatal Characteristics | |
Males | 94 (55) |
Birth weight, g | 784 ± 165 |
Gestational age, weeks | 25.4 ± 1.05 |
Treated patent ductus arteriosus | 100 (59) |
Mechanical ventilation treatment, days | 10.8 ± 8.78 |
Mean protein intake, g/kg/d | 2.6 ± 0.30 |
Mean carbohydrate intake, g/kg/d | 11.2 ± 1.25 |
Mean lipid intake, g/kg/d | 4.29 ± 1.04 |
Mean energy intake, kcal/kg/d | 95.1 ± 11.8 |
Prevalence of at least 1 day with hyperglycemia (blood glucose > 8 mmol/L) | 157 (91.8) |
Days with hyperglycemia (blood glucose > 8 mmol/L) | 6.84 ± 6.03 range: 0–27 days |
Insulin treatment | 15 (8.8) |
AT FOLLOW-UP (6.5 years) | |
Age, years | 6.6 ± 0.19 |
Height, cm | 118 ± 5.6 |
Weight, kg | 20.6 ± 3.6 |
Body mass index, kg/m2 | 14.7 ± 1.6 |
Body surface area, m2 | 0.82 ± 0.09 |
Echocardiographic Outcome Variable | Mean | ±SD | Children with Successful Measurements, n (%) | |
---|---|---|---|---|
Left Atrial Dimensions | ||||
Left atrial length in A4C view systole, mm | 36.5 | ±5.1 | 110 | (64) |
Left atrial width in A4C view systole, mm | 27.3 | ±2.8 | 110 | (64) |
Left atrial sphericity index | 1.34 | ±0.19 | 110 | (64) |
Left Ventricular Dimensions | ||||
Left ventricle length in A4C view diastole, mm | 54.9 | ±4.1 | 112 | (65) |
Left ventricle width in A4C view diastole, mm | 34.7 | ±2.7 | 114 | (66) |
Left ventricle sphericity index | 1.59 | ±0.16 | 112 | (65) |
Aorta annulus diameter systole, mm | 13.9 | ±1.1 | 146 | (85) |
Aorta sinus valsalva diameter diastole, mm | 18.9 | ±1.4 | 106 | (62) |
Volumes | ||||
Stroke volume, mL | 11.7 | ±2.8 | 109 | (64) |
Cardiac output, mL/min | 1029 | ±299 | 99 | (58) |
Wall Thickness | ||||
Interventricular septum diastole, mm | 5.7 | ±0.8 | 113 | (66) |
Left ventricle posterior wall diastole, mm | 5.4 | ±0.8 | 113 | (66) |
Relative wall thickness | 0.32 | ±0.036 | 110 | (64) |
Left ventricle mass, g | 48.2 | ±10.7 | 113 | (66) |
Aorta | ||||
Aortic strain, % | 28.5 | ±8.4 | 108 | (63) |
Aortic stiffness index | 2.58 | ±4.99 | 108 | (63) |
Abdominal aorta diastole, mm | 7.3 | ±0.8 | 108 | (63) |
Neonatal Nutrition and Hyperglycemia | Left Atrial (LA) Dimensions * B (95% CI), p-Value | ||
---|---|---|---|
LA Length Systole, mm | LA Width Systole, mm | LA Sphericity Index | |
Mean daily protein intake per 1 g/kg/d increase | 0.126 (−0.188, 0.439), p = 0.428 | 0.034 (−0.150, 0.218), p = 0.715 | 0.024 (−0.107, 0.155), p = 0.718 |
Mean daily carbohydrate intake per 1 g/kg/d increase | 0.050 (−0.021, 0.120), p = 0.168 | 0.013 (−0.029, 0.055), p = 0.529 | 0.010 (−0.020, 0.039), p = 0.527 |
Mean daily lipid intake per 1 g/kg/d increase | −0.018 (−0.116, 0.080), p = 0.715 | 0.033 (−0.024, 0.090), p = 0.256 | −0.024 (−0.065, 0.016), p = 0.239 |
Mean daily energy intake per 1 kcal/kg/d increase | 0.001 (−0.007, 0.010), p = 0.769 | 0.003 (−0.002, 0.008), p = 0.186 | −0.001 (−0.005, 0.002), p = 0.430 |
N days with hyperglycemia > 8 mmol/L per 1 day increase | 0.023 (0.003, 0.043), p = 0.028 | −0.002 (−0.014, 0.10), p = 0.742 | 0.009 (0.001, 0.018), p = 0.035 |
Neonatal Nutrition and Hyperglycemia | Left Ventricular (LV) Dimensions * B (95% CI), p-Value | ||||
---|---|---|---|---|---|
LVd Length, mm | LVd Width, mm | LV Sphericity Index | Aorta Annulus Diameter, mm | Aorta Sinus Valsalva Diameter, mm | |
Mean daily protein intake per 1 g/kg/d increase | −0.155 (−0.397, 0.086) p = 0.205 | −0.059 (−0.225, 0.107) p = 0.483 | −0.018 (−0.119, 0.084) p = 0.731 | −0.034 (−0.087, 0.018) p = 0.200 | 0.075 (−0.027, 0.177) p = 0.147 |
Mean daily carbohydrate intake per 1 g/kg/d increase | −0.047 (−0.102, 0.008) p = 0.092 | −0.013 (−0.051, 0.024) p = 0.483 | −0.006 (−0.029, 0.017) p = 0.584 | −0.016 (−0.028, −0.004) p = 0.008 | −0.018 (−0.041, 0.004) p = 0.109 |
Mean daily lipid intake per 1 g/kg/d increase | −0.072 (−0.145, 0.01) p = 0.054 | 0.026 (−0.025, 0.077) p = 0.307 | −0.032 (−0.062, −0.001) p = 0.042 ** | 0.008 (−0.008, 0.023) p = 0.338 | 0.040 (0.011, 0.070) p = 0.009 |
Mean daily energy intake per 1 kcal/kg/d increase | −0.009 (−0.015, −0.002) p = 0.009 | 0.001 (−0.004, 0.006) p = 0.654 | −0.003 (−0.006, 0.000) p = 0.041 *** | −0.000 (−0.002, 0.001) p = 0.628 | 0.002 (−0.001, 0.005) p = 0.163 |
N days with hyperglycemia > 8 mmol/L per 1 day increase | −0.016 (−0.032, −0.001) p = 0.041 | −0.001 (−0.012, 0.010) p = 0.835 | −0.005 (−0.012, 0.002) p = 0.182 | 0.001 (−0.003, 0.004) p = 0.685 | 0.002 (−0.004, 0.009) p = 0.517 |
Neonatal Nutrition and Hyperglycemia | Cardiac Functional Volumes * B (95% CI), p-Value | |
---|---|---|
SV, mL | CO, mL/min | |
Mean daily protein intake per 1 g/kg/d increase | 1.191 (−0.677, 3.059) p = 0.209 | 149.328 (−66.983, 365.639) p = 0.173 |
Mean daily carbohydrate intake per 1 g/kg/d increase | −0.205 (−0.618, 0.209) p = 0.328 | −12.333 (−59.823, 35.157) p = 0.607 |
Mean daily lipid intake per 1 g/kg/d increase | 0.438 (−0.109, 0.984) p = 0.115 | 50.274 (−13.299, 113.848) p = 0.120 |
Mean daily energy intake per 1 kcal/kg/d increase | 0.021 (−0.027, 0.070) p = 0.390 | 2.970 (−2.609, 8.550) p = 0.293 |
N days with hyperglycemia > 8 mmol/L per 1 day increase | −0.075 (−0.192, 0.043) p = 0.209 | −13.421 (−27.156, 0.313) p = 0.055 |
Neonatal Nutrition and Hyperglycemia | LV Wall Thickness (WT) * B (95% CI), p-Value | |||
---|---|---|---|---|
IVS Diastole, mm | LV PW Diastole, mm | Relative WT | LV Mass, g | |
Mean daily protein intake per 1 g/kg/d increase | 0.009 (−0.044, 0.062) p = 0.746 | 0.001 (−0.051, 0.052) p = 0.979 | 0.006 (−0.021, 0.032) p = 0.670 | 1.839 (−3.776, 7.454), p = 0.517 |
Mean daily carbohydrate intake per 1 g/kg/d increase | −0.008 (−0.020, 0.004) p = 0.197 | 0.001 (−0.011, 0.012) p = 0.891 | 0.021 (−0.006, 0.006) p = 0.995 | −0.481 (−1.756, 0.795), p = 0.456 |
Mean daily lipid intake per 1 g/kg/d increase | −0.003 (−0.019, 0.013) p = 0.736 | 0.011 (−0.005, 0.026) p = 0.169 | 0.001 (−0.007, 0.009) p = 0.773 | 0.843 (−0.842, 2.528), p = 0.323 |
Mean daily energy intake per 1 kcal/kg/d increase | −0.001 (−0.002, 0.001) p = 0.399 | 0.001 (0.000, 0.002) p = 0.202 | 0.000 (−0.001, 0.001) p = 0.731 | 0.043 (−0.105, 0.191), p = 0.564 |
N days with hyperglycemia > 8 mmol/L per 1 day increase | 0.004 (0.001, 0.008) p = 0.010 | 0.004 (0.001, 0.008) p = 0.008 | 0.003 (0.001, 0.004) p = 0.002 ** | 0.331 (−0.027, 0.688), p = 0.069 |
Neonatal Nutrition and Hyperglycemia | Abdominal Aortic Diameter * and Stiffness B (95% CI), p-Value | ||
---|---|---|---|
Abdominal Aorta End-Diastolic Diameter, mm | Aortic Strain, % | Aortic Stiffness Index (Log) | |
Mean daily protein intake per 1 g/kg/d increase | 0.001 (−0.057, 0.059) p = 0.978 | 0.153 (−6.004, 6.310) p = 0.961 | −0.110 (−0.261, 0.040) p = 0.150 |
Mean daily carbohydrate intake per 1 g/kg/d increase | −0.010 (−0.022, 0.003) p = 0.132 | −0.010 (−1.345, 1.324) p = 0.988 | −0.011 (−0.044, 0.022) p = 0.519 |
Mean daily lipid intake per 1 g/kg/d increase | 0.014 (−0.003, 0.031) p = 0.110 | −0.830 (−2.643, 0.983) p = 0.366 | −0.006 (−0.051, 0.039) p = 0.804 |
Mean daily energy intake per 1 kcal/kg/d increase | 0.000 (−0.001, 0.002) p = 0.614 | −0.057 (−0.211, 0.098) p = 0.470 | −0.001 (−0.005, 0.003) p = 0.535 |
N days with hyperglycemia > 8 mmol/L per 1 day increase | −0.002 (−0.006, 0.002) p = 0.261 | 0.002 (−0.393, 0.398) p = 0.990 | −0.002 (−0.011, 0.008) p = 0.747 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamayun, J.; Mohlkert, L.-A.; Stoltz Sjöström, E.; Domellöf, M.; Norman, M.; Zamir, I. Association between Neonatal Intakes and Hyperglycemia, and Left Heart and Aortic Dimensions at 6.5 Years of Age in Children Born Extremely Preterm. J. Clin. Med. 2021, 10, 2554. https://doi.org/10.3390/jcm10122554
Hamayun J, Mohlkert L-A, Stoltz Sjöström E, Domellöf M, Norman M, Zamir I. Association between Neonatal Intakes and Hyperglycemia, and Left Heart and Aortic Dimensions at 6.5 Years of Age in Children Born Extremely Preterm. Journal of Clinical Medicine. 2021; 10(12):2554. https://doi.org/10.3390/jcm10122554
Chicago/Turabian StyleHamayun, Jawwad, Lilly-Ann Mohlkert, Elisabeth Stoltz Sjöström, Magnus Domellöf, Mikael Norman, and Itay Zamir. 2021. "Association between Neonatal Intakes and Hyperglycemia, and Left Heart and Aortic Dimensions at 6.5 Years of Age in Children Born Extremely Preterm" Journal of Clinical Medicine 10, no. 12: 2554. https://doi.org/10.3390/jcm10122554
APA StyleHamayun, J., Mohlkert, L.-A., Stoltz Sjöström, E., Domellöf, M., Norman, M., & Zamir, I. (2021). Association between Neonatal Intakes and Hyperglycemia, and Left Heart and Aortic Dimensions at 6.5 Years of Age in Children Born Extremely Preterm. Journal of Clinical Medicine, 10(12), 2554. https://doi.org/10.3390/jcm10122554