Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease
Abstract
1. Introduction
2. Pathogenesis and Natural History of DKD
2.1. Perfusion
2.2. Oxygenation
2.3. Microstructure
3. Magnetic Resonance Imaging and Clinical Utility
3.1. ASL
3.2. BOLD
3.3. DWI/DTI
4. Drug Therapies Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The Global Epidemiology of Diabetes and Kidney Disease. Adv. Chronic Kidney Dis. 2018, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G.; Sharma, K. Pathogenesis, Clinical Manifestations, and Natural History of Diabetic Nephropathy. In Comprehensive Clinical Nephrology; Johnson, R.J., Feehally, J., Floege, J., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2015; pp. 354–363. [Google Scholar]
- Klessens, C.Q.F.F.; Woutman, T.D.; Veraar, K.A.M.M.; Zandbergen, M.; Valk, E.J.J.J.; Rotmans, J.I.; Wolterbeek, R.; Bruijn, J.A.; Bajema, I.M. An Autopsy Study Suggests That Diabetic Nephropathy Is Underdiagnosed. Kidney Int. 2016, 90, 149–156. [Google Scholar] [CrossRef]
- Perkins, B.A.; Ficociello, L.H.; Ostrander, B.E.; Silva, K.H.; Weinberg, J.; Warram, J.H.; Krolewski, A.S. Microalbuminuria and the Risk for Early Progressive Renal Function Decline in Type 1 Diabetes. J. Am. Soc. Nephrol. 2007, 18, 1353–1361. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Textor, S.C.; Lerman, L.O. Renal Relevant Radiology: Renal Functional Magnetic Resonance Imaging. Clin. J. Am. Soc. Nephrol. CJASN 2014, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Kopel, J.; Pena-Hernandez, C.; Nugent, K. Evolving Spectrum of Diabetic Nephropathy. World J. Diabetes 2019, 10, 269–279. [Google Scholar] [CrossRef]
- De Boer, I.H.; Afkarian, M.; Rue, T.C.; Cleary, P.A.; Lachin, J.M.; Molitch, M.E.; Steffes, M.W.; Sun, W.; Zinman, B. Renal Outcomes in Patients with Type 1 Diabetes and Macroalbuminuria. J. Am. Soc. Nephrol. 2014, 25, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Perkins, B.A.; Ficociello, L.H.; Roshan, B.; Warram, J.H.; Krolewski, A.S. In Patients with Type 1 Diabetes and New-Onset Microalbuminuria the Development of Advanced Chronic Kidney Disease May Not Require Progression to Proteinuria. Kidney Int. 2010, 77, 57–64. [Google Scholar] [CrossRef]
- Goderis, G.; Van Pottelbergh, G.; Truyers, C.; Van Casteren, V.; De Clercq, E.; Van Den Broeke, C.; Buntinx, F. Long-Term Evolution of Renal Function in Patients with Type 2 Diabetes Mellitus: A Registry-Based Retrospective Cohort Study. BMJ Open 2013, 3, e004029. [Google Scholar] [CrossRef]
- Mashitani, T.; Hayashino, Y.; Okamura, S.; Kitatani, M.; Furuya, M.; Iburi, T.; Tsujii, S.; Ishii, H. Association between Dipstick Hematuria and Decline in Estimated Glomerular Filtration Rate among Japanese Patients with Type 2 Diabetes: A Prospective Cohort Study [Diabetes Distress and Care Registry at Tenri (DDCRT 14)]. J. Diabetes Complicat. 2017, 31, 1079–1084. [Google Scholar] [CrossRef]
- Oliva-Damaso, N.; Mora-Gutiérrez, J.M.; Bomback, A.S. Glomerular Diseases in Diabetic Patients: Implications for Diagnosis and Management. J. Clin. Med. 2021, 10, 1855. [Google Scholar] [CrossRef]
- Sharma, S.G.; Bomback, A.S.; Radhakrishnan, J.; Herlitz, L.C.; Stokes, M.B.; Markowitz, G.S.; D’Agati, V.D. The Modern Spectrum of Renal Biopsy Findings in Patients with Diabetes. Clin. J. Am. Soc. Nephrol. 2013, 8, 1718–1724. [Google Scholar] [CrossRef]
- Bermejo, S.; González, E.; López-Revuelta, K.; Ibernon, M.; López, D.; Martín-Gómez, A.; Garcia-Osuna, R.; Linares, T.; Díaz, M.; Martín, N.; et al. Risk Factors for Non-Diabetic Renal Disease in Diabetic Patients. Clin. Kidney J. 2020, 13, 380–388. [Google Scholar] [CrossRef]
- Liu, D.; Huang, T.; Chen, N.; Xu, G.; Zhang, P.; Luo, Y.; Wang, Y.; Lu, T.; Wang, L.; Xiong, M.; et al. The Modern Spectrum of Biopsy-proven Renal Disease in Chinese Diabetic Patients-a Retrospective Descriptive Study. PeerJ 2018, 6, e4522. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic Classification of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef]
- Fine, L.G.; Orphanides, C.; Norman, J.T. Progressive Renal Disease: The Chronic Hypoxia Hypothesis. Kidney Int. Suppl. 1998, 65, S74–S78. [Google Scholar]
- Hesp, A.C.; Schaub, J.A.; Prasad, P.V.; Vallon, V.; Laverman, G.D.; Bjornstad, P.; van Raalte, D.H. The Role of Renal Hypoxia in the Pathogenesis of Diabetic Kidney Disease: A Promising Target for Newer Renoprotective Agents Including SGLT2 Inhibitors? Kidney Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Eirin, A.; Ebrahimi, B.; Textor, S.C.; Lerman, A.; Lerman, L.O. Early Atherosclerosis Aggravates Renal Microvascular Loss and Fibrosis in Swine Renal Artery Stenosis. J. Am. Soc. Hypertens. 2016, 10, 325–335. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Barrera-Chimal, J.; Pérez-Villalva, R.; Ortega, J.A.; Sánchez, A.; Rodríguez-Romo, R.; Durand, M.; Jaisser, F.; Bobadilla, N.A. Mild Ischemic Injury Leads to Long-Term Alterations in the Kidney: Amelioration by Spironolactone Administration. Int. J. Biol. Sci. 2015, 11, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Tonneijck, L.; Muskiet, M.H.A.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.L.; van Raalte, D.H.; Joles, J.A. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [Google Scholar] [CrossRef]
- Marckmann, P.; Skov, L.; Rossen, K.; Dupont, A.; Damholt, M.B.; Heaf, J.G.; Thomsen, H.S. Nephrogenic Systemic Fibrosis: Suspected Causative Role of Gadodiamide Used for Contrast-Enhanced Magnetic Resonance Imaging. J. Am. Soc. Nephrol. 2006, 17, 2359–2362. [Google Scholar] [CrossRef]
- Perazella, M.A. Current Status of Gadolinium Toxicity in Patients with Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 461–469. [Google Scholar] [CrossRef]
- Correas, J.-M.; Anglicheau, D.; Joly, D.; Gennisson, J.-L.; Tanter, M.; Hélénon, O. Ultrasound-Based Imaging Methods of the Kidney-Recent Developments. Kidney Int. 2016, 90, 1199–1210. [Google Scholar] [CrossRef]
- Pallone, T.L.; Robertson, C.R.; Jamison, R.L. Renal Medullary Microcirculation. Physiol. Rev. 1990, 70, 885–920. [Google Scholar] [CrossRef] [PubMed]
- Zimmerhackl, B.; Robertson, C.R.; Jamison, R.L. The Microcirculation of the Renal Medulla. Circ. Res. 1985, 57, 657–667. [Google Scholar] [CrossRef]
- Neuhofer, W.; Beck, F.X. Cell Survival in the Hostile Environment of the Renal Medulla. Annu. Rev. Physiol. 2005, 67, 531–555. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.G.; Gardiner, B.S.; Smith, D.W.; O’Connor, P.M. Intrarenal Oxygenation: Unique Challenges and the Biophysical Basis of Homeostasis. Am. J. Physiol. Renal Physiol. 2008, F1259–F1270. [Google Scholar] [CrossRef]
- Hansell, P.; Welch, W.J.; Blantz, R.C.; Palm, F. Determinants of Kidney Oxygen Consumption and Their Relationship to Tissue Oxygen Tension in Diabetes and Hypertension. Clin. Exp. Pharmacol. Physiol. 2013, 123–137. [Google Scholar] [CrossRef]
- Fine, L.G.; Norman, J.T. Chronic Hypoxia as a Mechanism of Progression of Chronic Kidney Diseases: From Hypothesis to Novel Therapeutics. Kidney Int. 2008, 74, 867–872. [Google Scholar] [CrossRef]
- Rosenberger, C.; Khamaisi, M.; Abassi, Z.; Shilo, V.; Weksler-Zangen, S.; Goldfarb, M.; Shina, A.; Zibertrest, F.; Eckardt, K.U.; Rosen, S.; et al. Adaptation to Hypoxia in the Diabetic Rat Kidney. Kidney Int. 2008, 73, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Palm, F.; Cederberg, J.; Hansell, P.; Liss, P.; Carlsson, P.-O. Reactive Oxygen Species Cause Diabetes-Induced Decrease in Renal Oxygen Tension. Diabetologia 2003, 46, 1153–1160. [Google Scholar] [CrossRef]
- Sharma, K.; McGowan, T.A. TGF-Beta in Diabetic Kidney Disease: Role of Novel Signaling Pathways. Cytokine Growth Factor Rev. 2000, 11, 115–123. [Google Scholar] [CrossRef]
- Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; IJpelaar, D.H.T. Macrophages in Diabetic Nephropathy in Patients with Type 2 Diabetes. Nephrol. Dial. Transplant. 2017, 32, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gutiérrez, J.M.; Rodríguez, J.A.; Fernández-Seara, M.A.; Orbe, J.; Escalada, F.J.; Soler, M.J.; Slon Roblero, M.F.; Riera, M.; Páramo, J.A.; Garcia-Fernandez, N. MMP-10 Is Increased in Early Stage Diabetic Kidney Disease and Can Be Reduced by Renin-Angiotensin System Blockade. Sci. Rep. 2020, 10, 26. [Google Scholar] [CrossRef]
- Ritt, M.; Ott, C.; Raff, U.; Schneider, M.P.; Schuster, I.; Hilgers, K.F.; Schlaich, M.P.; Schmieder, R.E.; Deanfield, J.E.; Halcox, J.P.; et al. Renal Vascular Endothelial Function in Hypertensive Patients With Type 2 Diabetes Mellitus. Am. J. Kidney Dis. 2009, 53, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.; Mazurchuk, R.J.; Acara, M.A.; Nickerson, P.A.; Fiel, R.J. Magnetic Resonance Imaging (MRI) and Pathophysiology of the Rat Kidney in Streptozotocin-Induced Diabetes. Magn. Reson. Imaging 1991, 9, 93–100. [Google Scholar] [CrossRef]
- Mangili, R.; Sironi, S.; Rankel, G.; Makarovic, M.; Zerbini, G.; Del Maschio, A.; Pozza, G. Magnetic Resonance Imaging of the Kidney in Type 1 (Insulin-Dependent) Diabetes Mellitus. Diabetologia 1992, 35, 1002–1008. [Google Scholar] [CrossRef][Green Version]
- Selby, N.M.; Blankestijn, P.J.; Boor, P.; Combe, C.; Eckardt, K.U.; Eikefjord, E.; Garcia-Fernandez, N.; Golay, X.; Gordon, I.; Grenier, N.; et al. Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease: A Position Paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol. Dial. Transplant. 2018, 33, ii4–ii14. [Google Scholar] [CrossRef]
- Simms, R.; Sourbron, S. Recent Findings on the Clinical Utility of Renal Magnetic Resonance Imaging Biomarkers. Nephrol. Dial. Transplant. 2020, 35, 915–919. [Google Scholar] [CrossRef]
- Caroli, A.; Pruijm, M.; Burnier, M.; Selby, N.M. Functional Magnetic Resonance Imaging of the Kidneys: Where Do We Stand? The Perspective of the European COST Action PARENCHIMA. Nephrol. Dial. Transplant. 2018, 1–3. [Google Scholar] [CrossRef]
- Mendichovszky, I.; Pullens, P.; Dekkers, I.; Nery, F.; Bane, O.; Pohlmann, A.; de Boer, A.; Ljimani, A.; Odudu, A.; Buchanan, C.; et al. Technical Recommendations for Clinical Translation of Renal MRI: A Consensus Project of the Cooperation in Science and Technology Action PARENCHIMA. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, C.E.; Mahmoud, H.; Cox, E.F.; McCulloch, T.; Prestwich, B.L.; Taal, M.W.; Selby, N.M.; Francis, S.T. Quantitative Assessment of Renal Structural and Functional Changes in Chronic Kidney Disease Using Multi-Parametric Magnetic Resonance Imaging. Nephrol. Dial. Transplant. 2020, 35. [Google Scholar] [CrossRef]
- Nery, F.; Buchanan, C.E.; Harteveld, A.A.; Odudu, A.; Bane, O.; Cox, E.F.; Derlin, K.; Gach, H.M.; Golay, X.; Gutberlet, M.; et al. Consensus-Based Technical Recommendations for Clinical Translation of Renal ASL MRI. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 141–161. [Google Scholar] [CrossRef]
- Ritt, M.; Janka, R.; Schneider, M.P.; Martirosian, P.; Hornegger, J.; Bautz, W.; Uder, M.; Schmieder, R.E. Measurement of Kidney Perfusion by Magnetic Resonance Imaging: Comparison of MRI with Arterial Spin Labeling to Para-Aminohippuric Acid Plasma Clearance in Male Subjects with Metabolic Syndrome. Nephrol. Dial. Transplant. 2010, 25, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Artz, N.S.; Wentland, A.L.; Sadowski, E.A.; Djamali, A.; Grist, T.M.; Seo, S.; Fain, S.B. Comparing Kidney Perfusion Using Noncontrast Arterial Spin Labeling MRI and Microsphere Methods in an Interventional Swine Model. Investig. Radiol. Radiol. 2011, 46, 124–131. [Google Scholar] [CrossRef]
- Artz, N.S.; Sadowski, E.A.; Wentland, A.L.; Djamali, A.; Grist, T.M.; Seo, S.; Fain, S.B. Reproducibility of Renal Perfusion MR Imaging in Native and Transplanted Kidneys Using Non-Contrast Arterial Spin Labeling. J. Magn. Reson. Imaging 2011, 33, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gutiérrez, J.M.; Garcia-Fernandez, N.; Slon Roblero, M.F.; Páramo, J.A.; Escalada, F.J.; Wang, D.J.; Benito, A.; Fernández-Seara, M.A. Arterial Spin Labeling MRI Is Able to Detect Early Hemodynamic Changes in Diabetic Nephropathy. J. Magn. Reson. Imaging 2017, 46, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Koktzoglou, I.; Prasad, P.V. Renal Perfusion Imaging with Two-Dimensional Navigator Gated Arterial Spin Labeling. Magn. Reson. Med. 2014, 71, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-P.; Tan, H.; Thacker, J.M.; Li, W.; Zhou, Y.; Kohn, O.; Sprague, S.M.; Prasad, P.V. Evaluation of Renal Blood Flow in Chronic Kidney Disease Using Arterial Spin Labeling Perfusion Magnetic Resonance Imaging. Kidney Int. Rep. 2017, 2, 36–46. [Google Scholar] [CrossRef]
- Brown, R.S.; Sun, M.R.M.; Stillman, I.E.; Russell, T.L.; Rosas, S.E.; Wei, J.L. The Utility of Magnetic Resonance Imaging for Noninvasive Evaluation of Diabetic Nephropathy. Nephrol. Dial. Transplant. 2020, 35, 970–978. [Google Scholar] [CrossRef]
- Prasad, P.V.; Li, L.-P.; Thacker, J.M.; Li, W.; Hack, B.; Kohn, O.; Sprague, S.M. Cortical Perfusion and Tubular Function as Evaluated by MRI Correlate with Annual Loss in Renal Function in Moderate CKD. Am. J. Nephrol 2019, 49, 114–124. [Google Scholar] [CrossRef]
- Prasad, P.V.; Edelman, R.R.; Epstein, F.H. Noninvasive Evaluation of Intrarenal Oxygenation with BOLD MRI. Circulation 1996, 94, 3271–3275. [Google Scholar] [CrossRef] [PubMed]
- Khatir, D.S.; Pedersen, M.; Jespersen, B.; Buus, N.H. Reproducibility of MRI Renal Artery Blood Flow and BOLD Measurements in Patients with Chronic Kidney Disease and Healthy Controls. J. Magn. Reson. Imaging 2014, 40, 1091–1098. [Google Scholar] [CrossRef]
- Milani, B.; Ansaloni, A.; Sousa-Guimaraes, S.; Vakilzadeh, N.; Piskunowicz, M.; Vogt, B.; Stuber, M.; Burnier, M.; Pruijm, M. Reduction of Cortical Oxygenation in Chronic Kidney Disease: Evidence Obtained with a New Analysis Method of Blood Oxygenation Level-Dependent Magnetic Resonance Imaging. Nephrol. Dial. Transplant. 2017, 32, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Vinovskis, C.; Li, L.P.; Prasad, P.; Tommerdahl, K.; Pyle, L.; Nelson, R.G.; Pavkov, M.E.; van Raalte, D.; Rewers, M.; Pragnell, M.; et al. Relative Hypoxia and Early Diabetic Kidney Disease in Type 1 Diabetes. Diabetes 2020, 69, 2700–2708. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Inoue, T.; Kozawa, E.; Ishikawa, M.; Shimada, A.; Kobayashi, N.; Tanaka, J.; Okada, H. Reduced Oxygenation but Not Fibrosis Defined by Functional Magnetic Resonance Imaging Predicts the Long-Term Progression of Chronic Kidney Disease. Nephrol. Dial. Transplant. 2020, 35. [Google Scholar] [CrossRef]
- Pruijm, M.; Milani, B.; Pivin, E.; Podhajska, A.; Vogt, B.; Stuber, M.; Burnier, M. Reduced Cortical Oxygenation Predicts a Progressive Decline of Renal Function in Patients with Chronic Kidney Disease. Kidney Int. 2018, 93. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.S.; He, Y.M.; Lu, J. Noninvasive Evaluation of Diabetic Patients with High Fasting Blood Glucose Using DWI and BOLD MRI. Abdom. Radiol. 2020. [Google Scholar] [CrossRef]
- Yin, W.-J.J.; Liu, F.; Li, X.-M.M.; Yang, L.; Zhao, S.; Huang, Z.-X.X.; Huang, Y.-Q.Q.; Liu, R.-B.B. Noninvasive Evaluation of Renal Oxygenation in Diabetic Nephropathy by BOLD-MRI. Eur. J. Radiol. 2012, 81, 1426–1431. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Ye, Y.J.; Cheng, Z.Y.; Hu, J.J.; Zhang, C.B.; Qian, L.; Lu, X.H.; Cai, X.R. Non-Invasive Assessment of Early Stage Diabetic Nephropathy by DTI and BOLD MRI. Br. J. Radiol. 2020, 93. [Google Scholar] [CrossRef]
- Dos Santos, E.A.; Li, L.P.; Ji, L.; Prasad, P.V. Early Changes with Diabetes in Renal Medullary Hemodynamics as Evaluated by Fiberoptic Probes and BOLD Magnetic Resonance Imaging. Invest. Radiol. 2007, 42, 157–162. [Google Scholar] [CrossRef]
- Li, L.P.; Ji, L.; Santos, E.A.; Prasad, P.; Dunkle, E.; Pierchala, L. Effect of Nitric Oxide Synthase Inhibition on Intrarenal Oxygenation as Evaluated by Blood Oxygenation Level-Dependent Magnetic Resonance Imaging. Investig. Radiol. 2009, 44, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hueper, K.; Hartung, D.; Gutberlet, M.; Gueler, F.; Sann, H.; Husen, B.; Wacker, F.; Reiche, D. Assessment of Impaired Vascular Reactivity in a Rat Model of Diabetic Nephropathy: Effect of Nitric Oxide Synthesis Inhibition on Intrarenal Diffusion and Oxygenation Measured by Magnetic Resonance Imaging. Am. J. Physiol. Renal Physiol. 2013, 305. [Google Scholar] [CrossRef]
- Epstein, F.H.; Veves, A.; Prasad, P.V. Effect of Diabetes on Renal Medullary Oxygenation During Water Diuresis. Diabetes Care 2002, 25, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Economides, P.A.; Caselli, A.; Zuo, C.S.; Sparks, C.; Khaodhiar, L.; Katsilambros, N.; Horton, E.S.; Veves, A. Kidney Oxygenation during Water Diuresis and Endothelial Function in Patients with Type 2 Diabetes and Subjects at Risk to Develop Diabetes. Metabolism 2004, 53, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Kumar, R.; Banerjee, S.; Hsu, C.Y. Blood Oxygen Level-Dependent (BOLD) MRI of Diabetic Nephropathy: Preliminary Experience. J. Magn. Reson. Imaging 2011, 33, 655–660. [Google Scholar] [CrossRef]
- Inoue, T.; Kozawa, E.; Okada, H.; Inukai, K.; Watanabe, S.; Kikuta, T.; Watanabe, Y.; Takenaka, T.; Katayama, S.; Tanaka, J.; et al. Noninvasive Evaluation of Kidney Hypoxia and Fibrosis Using Magnetic Resonance Imaging. J. Am. Soc. Nephrol. 2011, 22, 1429–1434. [Google Scholar] [CrossRef]
- Prasad, P.V.; Epstein, F.H. Changes in Renal Medullary PO2 during Water Diuresis as Evaluated by Blood Oxygenation Level-Dependent Magnetic Resonance Imaging: Effects of Aging and Cyclooxygenase Inhibition. Kidney Int. 1999, 55, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Pruijm, M.; Hofmann, L.; Maillard, M.; Tremblay, S.; Glatz, N.; Wuerzner, G.; Burnier, M.; Vogt, B. Effect of Sodium Loading/Depletion on Renal Oxygenation in Young Normotensive and Hypertensive Men. Hypertension 2010, 55, 1116–1122. [Google Scholar] [CrossRef]
- Bane, O.; Mendichovszky, I.A.; Milani, B.; Dekkers, I.A.; Deux, J.F.; Eckerbom, P.; Grenier, N.; Hall, M.E.; Inoue, T.; Laustsen, C.; et al. Consensus-Based Technical Recommendations for Clinical Translation of Renal BOLD MRI. Magn. Reson. Mater. Phys. Biol. Med. 2020, 199–215. [Google Scholar] [CrossRef]
- Caroli, A.; Schneider, M.; Friedli, I.; Ljimani, A.; De Seigneux, S.; Boor, P.; Gullapudi, L.; Kazmi, I.; Mendichovszky, I.A.; Notohamiprodjo, M.; et al. Diffusion-Weighted Magnetic Resonance Imaging to Assess Diffuse Renal Pathology: A Systematic Review and Statement Paper. Nephrol. Dial. Transplant. 2018, 33, ii29–ii40. [Google Scholar] [CrossRef]
- Thoeny, H.C.; Binser, T.; Roth, B.; Kessler, T.M.; Vermathen, P. Noninvasive Assessment of Acute Ureteral Obstruction with Diffusion-Weighted MR Imaging: A Prospective Study. Radiology 2009, 252, 721–728. [Google Scholar] [CrossRef]
- Hueper, K.; Khalifa, A.A.; Bräsen, J.H.; Vo Chieu, V.D.; Gutberlet, M.; Wintterle, S.; Lehner, F.; Richter, N.; Peperhove, M.; Tewes, S.; et al. Diffusion-Weighted Imaging and Diffusion Tensor Imaging Detect Delayed Graft Function and Correlate with Allograft Fibrosis in Patients Early after Kidney Transplantation. J. Magn. Reson. Imaging 2016, 44, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yang, B.; Peng, Y.; Liu, Z.; Luo, J.; Du, G. Use of Intravoxel Incoherent Motion Diffusion-Weighted Imaging to Detect Early Changes in Diabetic Kidneys. Abdom. Radiol. 2018, 43, 2728–2733. [Google Scholar] [CrossRef]
- Lu, L.; Sedor, J.R.; Gulani, V.; Schelling, J.R.; O’Brien, A.; Flask, C.A.; MacRae Dell, K. Use of Diffusion Tensor MRI to Identify Early Changes in Diabetic Nephropathy. Am. J. Nephrol. 2011, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Mrđanin, T.; Nikolić, O.; Molnar, U.; Mitrović, M.; Till, V. Diffusion-Weighted Imaging in the Assessment of Renal Function in Patients with Diabetes Mellitus Type 2. Magn. Reson. Mater. Phys. Biol. Med. 2020. [Google Scholar] [CrossRef]
- Wang, Y.C.; Feng, Y.; Lu, C.Q.; Ju, S. Renal Fat Fraction and Diffusion Tensor Imaging in Patients with Early-Stage Diabetic Nephropathy. Eur. Radiol. 2018, 28, 3326–3334. [Google Scholar] [CrossRef]
- Hueper, K.; Hartung, D.; Gutberlet, M.; Gueler, F.; Sann, H.; Husen, B.; Wacker, F.; Reiche, D. Magnetic Resonance Diffusion Tensor Imaging for Evaluation of Histopathological Changes in a Rat Model of Diabetic Nephropathy. Investig. Radiol. 2012, 47, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Kaimori, J.-Y.; Isaka, Y.; Hatanaka, M.; Yamamoto, S.; Ichimaru, N.; Fujikawa, A.; Shibata, H.; Fujimori, A.; Miyoshi, S.; Yokawa, T.; et al. Visualization of Kidney Fibrosis in Diabetic Nephropathy by Long Diffusion Tensor Imaging MRI with Spin-Echo Sequence OPEN. Sci. Rep. 2017, 7, 5731. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.Y.; Hartono, S.; Hennedige, T.; Koh, T.S.; Chan, C.M.; Zhou, L.; Rumpel, H.; Martarello, L.; Khoo, J.B.; Koh, D.M.; et al. Intravoxel Incoherent Motion and Diffusion Tensor Imaging of Early Renal Fibrosis Induced in a Murine Model of Streptozotocin Induced Diabetes. Magn. Reson. Imaging 2017, 38, 71–76. [Google Scholar] [CrossRef]
- Berchtold, L.; Friedli, I.; Crowe, L.A.; Martinez, C.; Moll, S.; Hadaya, K.; De Perrot, T.; Combescure, C.; Martin, P.Y.; Vallée, J.P.; et al. Validation of the Corticomedullary Difference in Magnetic Resonance Imaging-Derived Apparent Diffusion Coefficient for Kidney Fibrosis Detection: A Cross-Sectional Study. Nephrol. Dial. Transplant. 2020, 35. [Google Scholar] [CrossRef]
- Prasad, P.V.; Thacker, J.; Li, L.P.; Haque, M.; Li, W.; Koenigs, H.; Zhou, Y.; Sprague, S.M. Multi-Parametric Evaluation of Chronic Kidney Disease by MRI: A Preliminary Cross-Sectional Study. PLoS ONE 2015, 10, e0139661. [Google Scholar] [CrossRef]
- Cakmak, P.; Yagci, A.B.; Dursun, B.; Herek, D.; Fenkci, S.M. Renal Diffusion-Weighted Imaging in Diabetic Nephropathy: Correlation with Clinical Stages of Disease. Diagn. Interv. Radiol. 2014, 20, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.; Li, W.; Raj, D.S.; Carr, J.; Carr, M.; Thacker, J.; Li, L.P.; Wang, C.; Sprague, S.M.; Ix, J.H.; et al. Multicenter Study Evaluating Intrarenal Oxygenation and Fibrosis Using Magnetic Resonance Imaging in Individuals with Advanced CKD. Kidney Int. Rep. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiao, W.; Li, X.; He, J.; Huang, X.; Tan, Y. In Vivo Evaluation of Renal Function Using Diffusion Weighted Imaging and Diffusion Tensor Imaging in Type 2 Diabetics with Normoalbuminuria versus Microalbuminuria. Front. Med. 2014, 8, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Razek, A.A.K.A.; Al-Adlany, M.A.A.A.; Alhadidy, A.M.; Atwa, M.A.; Abdou, N.E.A. Diffusion Tensor Imaging of the Renal Cortex in Diabetic Patients: Correlation with Urinary and Serum Biomarkers. Abdom. Radiol. 2017, 42, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, J.; Zhang, X.M.; Chen, T.; Hu, J.; Jing, Z.; Jian, S. Noninvasive Evaluation of Early Diabetic Nephropathy Using Diffusion Kurtosis Imaging: An Experimental Study. Eur. Radiol. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.C.; James, J.; Patel, D.; Viljoen, A.; Ali, A.; Evans, M.; Fernando, K.; Hicks, D.; Milne, N.; Newland-Jones, P.; et al. SGLT2 Inhibitors: Slowing of Chronic Kidney Disease Progression in Type 2 Diabetes. Diabetes 2020, 11, 2757–2774. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of Diabetic Kidney Disease: Impact of SGLT2 Inhibitors. Nat. Rev. Nephrol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Niles, D.J.; Artz, N.S.; Djamali, A.; Sadowski, E.A.; Grist, T.M.; Fain, S.B. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging. Investig. Radiol. 2016, 51, 113–120. [Google Scholar] [CrossRef]
- Su, C.H.; Hsu, Y.C.; Thangudu, S.; Chen, W.Y.; Huang, Y.T.; Yu, C.C.; Shih, Y.H.; Wang, C.J.; Lin, C.L. Application of Multiparametric MR Imaging to Predict the Diversification of Renal Function in MiR29a-Mediated Diabetic Nephropathy. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Bjornstad, P.; Škrtić, M.; Lytvyn, Y.; Maahs, D.M.; Johnson, R.J.; Cherney, D.Z.I. The Gomez Equations and Renal Hemodynamic Function in Kidney Disease Research. Am. J. Physiol. Renal Physiol. 2016, 311, F967–F975. [Google Scholar] [CrossRef] [PubMed]
- Ries, M.; Basseau, F.; Tyndal, B.; Jones, R.; Deminière, C.; Catargi, B.; Combe, C.; Moonen, C.W.T.T.; Grenier, N. Renal Diffusion and BOLD MRI in Experimental Diabetic Nephropathy. Blood Oxygen Level-Dependent. J. Magn. Reson. Imaging 2003, 17, 104–113. [Google Scholar] [CrossRef]
- Warner, L.; Glockner, J.F.; Woollard, J.; Textor, S.C.; Romero, J.C.; Lerman, L.O. Determinations of Renal Cortical and Medullary Oxygenation Using Blood Oxygen Level-Dependent Magnetic Resonance Imaging and Selective Diuretics. Investig. Radiol. 2011, 46, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.-G.; Bai, Y.-Y.; Fang, F.; Wang, X.-Y.; Mao, H.; Teng, G.-J.; Ju, S. Renal Lipids and Oxygenation in Diabetic Mice: Noninvasive Quantification with MR Imaging. Radiology 2013, 269, 748–757. [Google Scholar] [CrossRef]
- Wang, J.H.; Ren, K.; Sun, W.G.; Zhao, L.; Zhong, H.S.; Xu, K. Effects of Iodinated Contrast Agents on Renal Oxygenation Level Determined by Blood Oxygenation Level Dependent Magnetic Resonance Imaging in Rabbit Models of Type 1 and Type 2 Diabetic Nephropathy. BMC Nephrol. 2014, 15, 140. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gooding, K.M.; Lienczewski, C.; Papale, M.; Koivuviita, N.; Maziarz, M.; Dutius Andersson, A.M.; Sharma, K.; Pontrelli, P.; Garcia Hernandez, A.; Bailey, J.; et al. Prognostic Imaging Biomarkers for Diabetic Kidney Disease (IBEAt): Study Protocol. BMC Nephrol. 2020, 21, 242. [Google Scholar] [CrossRef]
- Wang, F.; Katagiri, D.; Li, K.; Takahashi, K.; Wang, S.; Nagasaka, S.; Li, H.; Quarles, C.C.; Zhang, M.Z.; Shimizu, A.; et al. Assessment of Renal Fibrosis in Murine Diabetic Nephropathy Using Quantitative Magnetization Transfer MRI. Magn. Reson. Med. 2018, 80, 2655–2669. [Google Scholar] [CrossRef]
- Kodama, Y.; Hyodo, F.; Yamato, M.; Yasukawa, K.; Minami, Y.; Sonoda, N.; Ogawa, Y.; Ichikawa, K.; Inoguchi, T. Dynamic Nuclear Polarization Magnetic Resonance Imaging and the Oxygen-Sensitive Paramagnetic Agent OX63 Provide a Noninvasive Quantitative Evaluation of Kidney Hypoxia in Diabetic Mice. Kidney Int. 2019, 96, 787–792. [Google Scholar] [CrossRef]
- Prasad, P.V. Update on renal blood oxygenation level-dependent MRI to assess intrarenal oxygenation in chronic kidney disease. Kidney Int. 2018, 93, 778–780. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Gutiérrez, J.M.; Fernández-Seara, M.A.; Echeverria-Chasco, R.; Garcia-Fernandez, N. Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease. J. Clin. Med. 2021, 10, 2461. https://doi.org/10.3390/jcm10112461
Mora-Gutiérrez JM, Fernández-Seara MA, Echeverria-Chasco R, Garcia-Fernandez N. Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease. Journal of Clinical Medicine. 2021; 10(11):2461. https://doi.org/10.3390/jcm10112461
Chicago/Turabian StyleMora-Gutiérrez, José María, María A. Fernández-Seara, Rebeca Echeverria-Chasco, and Nuria Garcia-Fernandez. 2021. "Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease" Journal of Clinical Medicine 10, no. 11: 2461. https://doi.org/10.3390/jcm10112461
APA StyleMora-Gutiérrez, J. M., Fernández-Seara, M. A., Echeverria-Chasco, R., & Garcia-Fernandez, N. (2021). Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease. Journal of Clinical Medicine, 10(11), 2461. https://doi.org/10.3390/jcm10112461