Analysis of Frailty in Geriatric Patients as a Prognostic Factor in Endovascular Treated Patients with Large Vessel Occlusion Strokes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Study Population
2.2. Study Outcomes
2.3. Data Sources
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rechel, B.; Grundy, E.; Robine, J.-M.; Cylus, J.; Mackenbach, J.P.; Knai, C.; McKee, M. Ageing in the European Union. Lancet 2013, 381, 1312–1322. [Google Scholar] [CrossRef]
- Hubbard, R.E.; Peel, N.M.; Samanta, M.; Gray, L.C.; Mitnitski, A.; Rockwood, K. Frailty Status at Admission to Hospital Predicts Multiple Adverse Outcomes. Age Ageing 2017, 46, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in Elderly People. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C.; Arora, S.; Street, A.; Parker, S.; Roberts, H.C.; et al. Development and Validation of a Hospital Frailty Risk Score Focusing on Older People in Acute Care Settings Using Electronic Hospital Records: An Observational Study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Kundi, H.; Popma, J.J.; Reynolds, M.R.; Strom, J.B.; Pinto, D.S.; Valsdottir, L.R.; Shen, C.; Choi, E.; Yeh, R.W. Frailty and Related Outcomes in Patients Undergoing Transcatheter Valve Therapies in a Nationwide Cohort. Eur. Heart J. 2019, 40, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Kundi, H.; Noseworthy, P.A.; Valsdottir, L.R.; Shen, C.; Yao, X.; Yeh, R.W.; Kramer, D.B. Relation of Frailty to Outcomes After Catheter Ablation of Atrial Fibrillation. Am. J. Cardiol. 2020, 125, 1317–1323. [Google Scholar] [CrossRef]
- Kundi, H.; Wadhera, R.K.; Strom, J.B.; Valsdottir, L.R.; Shen, C.; Kazi, D.S.; Yeh, R.W. Association of Frailty With 30-Day Outcomes for Acute Myocardial Infarction, Heart Failure, and Pneumonia Among Elderly Adults. JAMA Cardiol. 2019, 4, 1084–1091. [Google Scholar] [CrossRef]
- Kwok, C.S.; Zieroth, S.; Spall, H.G.C.V.; Helliwell, T.; Clarson, L.; Mohamed, M.; Mallen, C.; Duckett, S.; Mamas, M.A. The Hospital Frailty Risk Score and Its Association with In-Hospital Mortality, Cost, Length of Stay and Discharge Location in Patients with Heart Failure Short Running Title: Frailty and Outcomes in Heart Failure. Int. J. Cardiol. 2020, 300, 184–190. [Google Scholar] [CrossRef]
- Winovich, D.T.; Longstreth, W.T.; Arnold, A.M.; Varadhan, R.; Zeki Al Hazzouri, A.; Cushman, M.; Newman, A.B.; Odden, M.C. Factors Associated with Ischemic Stroke Survival and Recovery in Older Adults. Stroke 2017, 48, 1818–1826. [Google Scholar] [CrossRef]
- Palmer, K.; Vetrano, D.L.; Padua, L.; Romano, V.; Rivoiro, C.; Scelfo, B.; Marengoni, A.; Bernabei, R.; Onder, G. Frailty Syndromes in Persons with Cerebrovascular Disease: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef]
- Schmidt, M.; Jacobsen, J.B.; Johnsen, S.P.; Bøtker, H.E.; Sørensen, H.T. Eighteen-Year Trends in Stroke Mortality and the Prognostic Influence of Comorbidity. Neurology 2014, 82, 340–350. [Google Scholar] [CrossRef]
- Evans, N.R.; Wall, J.; To, B.; Wallis, S.J.; Romero-Ortuno, R.; Warburton, E.A. Clinical Frailty Independently Predicts Early Mortality after Ischaemic Stroke. Age Ageing 2020, 49, 588–591. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular Thrombectomy after Large-Vessel Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Five Randomised Trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; van der Lugt, A.; Menon, B.K.; Majoie, C.B.L.M.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; et al. Time to Treatment with Endovascular Thrombectomy and Outcomes from Ischemic Stroke: A Meta-Analysis. JAMA 2016, 316, 1279–1289. [Google Scholar] [CrossRef]
- Hill, M.D.; Rowley, H.A.; Adler, F.; Eliasziw, M.; Furlan, A.; Higashida, R.T.; Wechsler, L.R.; Roberts, H.C.; Dillon, W.P.; Fischbein, N.J.; et al. Selection of Acute Ischemic Stroke Patients for Intra-Arterial Thrombolysis with Pro-Urokinase by Using ASPECTS. Stroke 2003, 34, 1925–1931. [Google Scholar] [CrossRef]
- Tsogkas, I.; Knauth, M.; Schregel, K.; Behme, D.; Wasser, K.; Maier, I.; Liman, J.; Psychogios, M.N. Added Value of CT Perfusion Compared to CT Angiography in Predicting Clinical Outcomes of Stroke Patients Treated with Mechanical Thrombectomy. Eur. Radiol. 2016, 26, 4213–4219. [Google Scholar] [CrossRef]
- Meyer, L.; Alexandrou, M.; Flottmann, F.; Deb-Chatterji, M.; Abdullayev, N.; Maus, V.; Politi, M.; Bernkopf, K.; Roth, C.; Kastrup, A.; et al. Endovascular Treatment of Very Elderly Patients Aged ≥90 with Acute Ischemic Stroke. J. Am. Heart Assoc. 2020, 9, e014447. [Google Scholar] [CrossRef]
- Drouard-de Rousiers, E.; Ludovic, L.; Sébastien, R.; Consoli, A.; Mazighi, M.; Labreuche, J.; Kyheng, M.; Gory, B.; Dargazanli, C.; Arquizan, C.; et al. Impact of Reperfusion for Nonagenarians Treated by Mechanical Thrombectomy. Stroke 2019, 50, 3164–3169. [Google Scholar] [CrossRef]
- Derex, L.; Haesebaert, J.; Odier, C.; Alesefir, W.; Berthezène, Y.; Buisson, M.; Daneault, N.; Deschaintre, Y.; Eker, O.F.; Gioia, L.; et al. Predictors of Outcome After Mechanical Thrombectomy in Stroke Patients Aged ≥85 Years. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2021, 1–6. [Google Scholar] [CrossRef]
- Moore, B.J.; White, S.; Washington, R.; Coenen, N.; Elixhauser, A. Identifying Increased Risk of Readmission and In-Hospital Mortality Using Hospital Administrative Data: The AHRQ Elixhauser Comorbidity Index. Med. Care 2017, 55, 698–705. [Google Scholar] [CrossRef]
- Bannay, A.; Chaignot, C.; Blotière, P.-O.; Basson, M.; Weill, A.; Ricordeau, P.; Alla, F. The Best Use of the Charlson Comorbidity Index with Electronic Health Care Database to Predict Mortality. Med. Care 2016, 54, 188–194. [Google Scholar] [CrossRef]
- Muggeo, V.M.R. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 8, 20–25. [Google Scholar]
- Eckart, A.; Hauser, S.I.; Haubitz, S.; Struja, T.; Kutz, A.; Koch, D.; Neeser, O.; Meier, M.A.; Mueller, B.; Schuetz, P. Validation of the Hospital Frailty Risk Score in a Tertiary Care Hospital in Switzerland: Results of a Prospective, Observational Study. BMJ Open 2019, 9, e026923. [Google Scholar] [CrossRef] [Green Version]
- McAlister, F.; van Walraven, C. External Validation of the Hospital Frailty Risk Score and Comparison with the Hospital-Patient One-Year Mortality Risk Score to Predict Outcomes in Elderly Hospitalised Patients: A Retrospective Cohort Study. BMJ Qual. Saf. 2019, 28, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Hannah, T.C.; Neifert, S.N.; Caridi, J.M.; Martini, M.L.; Lamb, C.; Rothrock, R.J.; Yuk, F.J.; Gilligan, J.; Genadry, L.; Gal, J.S. Utility of the Hospital Frailty Risk Score for Predicting Adverse Outcomes in Degenerative Spine Surgery Cohorts. Neurosurgery 2020. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | Total n = 318 |
---|---|
Age [median (IQR)] | 80.1 (IQR 9.58) |
Female [n (%)] | 192 (60.4%) |
Pneumonia [n (%)] | 40 (12.6%) |
NIHSS at admission [median (IQR)] | 15.0 (IQR 10) |
NIHSS at discharge [median (IQR)] | 8 (IQR 19) |
mRS at discharge [median (IQR)] | 4 (IQR 3.75) |
mRS at 90 days [median (IQR)] | 4 (IQR 5) |
good outcome (mRS 0–2) [n (%)] | 109 (34.3%) |
HFRS [median (IQR)] | 1.6 (IQR 4.8) |
low frailty risk (<5) [n (%)] | 238 (75.1%) |
moderate frailty risk (5–15) [n (%)] | 73 (22.7%) |
high frailty risk (>15) [n (%)] | 7 (2.2%) |
Charlson comorbidity index [median (IQR)] | 4 (IQR 6) |
Elixhauser comorbidity index [median (IQR)] | 9 (IQR 13) |
Hemicraniectomy [n (%)] | 11 (3.5%) |
intravenous thrombolysis [n (%)] | 187 (58.8%) |
in hospital death [n (%)] | 63 (19.8%) |
mortality rate after 90 days [n (%)] | 120 (37.7%) |
Neuroradiological Characteristics | n = 318 |
---|---|
door-to-groin time [min (IQR)] | 50 (31) |
Time from onset to treatment [min (IQR)] | 110 (70) |
Time from onset to recanalization [min (IQR)] | 231 (210) |
periprocedural subarachoid hemorrhage [n (%)] | 32 (10.1%) |
intracerebral hemorrhage [n (%)] | 39 (12.4%) |
mTICI scale | |
0 | 24 (7.6%) |
1 | 6 (1.9%) |
2a | 29 (9.2%) |
2b | 75 (23.7%) |
2c | 50 (15.8%) |
3 | 132 (41.8%) |
Occlusion side | |
Proximal internal carotid artery | 11 (3.5%) |
Carotid-T | 56 (17.6%) |
M1-branch of MCA | 152 (47.8%) |
M2-branch of MCA | 54 (17%) |
Basilar artery | 32 (10.1%) |
ACA | 4 (1.3%) |
PCA | 7 (2.2%) |
ASPECTS [median (IQR)] | 8 (2) |
Clinical Characteristics | HFRS < 5 | HFRS 5–15 | HFRS > 15 | p-Value |
---|---|---|---|---|
age [median (IQR)] | 78.9 (9.6) | 83.8 (9.6) | 84.2 (7.2) | p < 0.001 |
Female [n (%)] | 137 (57.6%) | 50 (68.5%) | 5 (71.4%) | p = 0.206 |
Pneumonia [n (%)] | 27 (11.3%) | 11 (15.3%) | 1 (14.3%) | p = 0.664 |
NIHSS at admission [median (IQR)] | 15 (9) | 14 (8) | 17 (6) | p = 0.254 |
NIHSS at discharge [median (IQR)] | 7 (16) | 12 (35) | 15 (37) | p = 0.052 |
mRS at discharge [median (IQR)] | 3 (4) | 4 (4) | 5 (3) | p = 0.027 |
mRS at 90 days [median (IQR)] | 4 (2) | 5 (2) | 6 (5) | p < 0.001 |
good outcome (mRS 0–2) [n (%)] | 95 (39.9%) | 14 (19.4%) | 0 (0%) | p < 0.001 |
Charlson comorbidity index [median (IQR)] | 4 (2) | 5 (3.5) | 5 (2) | p < 0.001 |
Elixhauser comorbidity index [median (IQR)] | 9 (10.5) | 15 (14) | 13 (10) | p = 0.005 |
Hemicraniectomy [n (%)] | 9 (3.8%) | 2 (2.7%) | 0 (0%) | p = 0.811 |
intravenous thrombolysis [n (%)] | 137 (57.6%) | 45 (51.6%) | 5 (71.4%) | p = 0.652 |
in hospital death [n (%)] | 44 (18.5%) | 18 (25.0%) | 1 (14.3%) | p = 0.448 |
mortality rate after 90 days [n (%)] | 79 (33.2%) | 36 (50.0%) | 5 (71.4%) | p = 0.005 |
Neuroradiological Characteristics | HFRS < 5 | HFRS 5–15 | HFRS > 15 | p-Value |
---|---|---|---|---|
Door-to-groin time [min (IQR)] | 50 (31) | 47 (40) | 54 (50) | p = 0.572 |
Onset to recanalization time [min (IQR)] | 228 (198) | 241.5 (293) | 219.5 (103) | p = 0.697 |
onset to treatment time [min (IQR)] | 107.5 (66) | 115 (86) | 140 | p = 0.798 |
periprocedural subarachoid hemorrhage [n (%)] | 23 (10.1%) | 8 (11.1%) | 1 (16.7%) | p = 0.855 |
intracerebral hemorrhage [n (%)] | 32 (13.6%) | 7 (9.7%) | 0 (0%) | p = 0.410 |
TICI [n (%)] | p = 0.676 | |||
0 | 18 (7.6%) | 5 (6.8%) | 1 (14.3%) | |
1 | 5 (2.1%) | 1 (1.4%) | 0 (0%) | |
2a | 17 (7.2%) | 11 (15.1%) | 1 (14.3%) | |
2b | 57 (24.2%) | 15 (20.5%) | 3 (42.9%) | |
2c | 38 (16.1%) | 11 (15.1%) | 1 (14.3%) | |
3 | 101 (42.8%) | 30 (41.1%) | 1 (14.3%) | |
Occlusion site | p = 0.039 | |||
Proximal ACI | 10 (4.2%) | 1 (1.4%) | 0 (0%) | |
Carotid-T | 46 (19.3%) | 8 (11%) | 2 (28.6%) | |
M1-branch of MCA | 114 (47.9%) | 38 (52.1%) | 0 (0%) | |
M2-branch of MCA | 31 (13%) | 18 (24.7%) | 5 (71.4%) | |
Basilar artery | 26 (10.9%) | 6 (8.2%) | 0 (0%) | |
ACA | 3 (1.3%) | 1 (1.4%) | 0 (0%) | |
PCA | 6 (2.5%) | 1 (1.4%) | 0 (0%) | |
ASPECTS | 8 (2) | 9 (1) | 9 (3) | p = 0.165 |
Mortality after 90 Days | Odds Ratio | 95% Confidence | Interval | p-Value |
---|---|---|---|---|
HFRS | 1.124 | 1.018 | 1.240 | 0.020 |
Age (years) | 1.159 | 1.090 | 1.232 | <0.001 |
mTICI scale | 0.760 | 0.581 | 0.993 | 0.044 |
ASPECTS | 0.740 | 0.576 | 0.951 | 0.019 |
Δ-NIHSS | 0.868 | 0.835 | 0.903 | <0.001 |
Poor Neurological Outcome (mRS 3–6) | Odds Ratio | 95% Confidence | Interval | p-Value |
---|---|---|---|---|
HFRS | 1.127 | 1.012 | 1.254 | 0.029 |
Age | 1.077 | 1.023 | 1.135 | 0.005 |
ASPECTS | 0.584 | 0.450 | 0.758 | <0.001 |
mTICI scale | 0.696 | 0.526 | 0.921 | 0.011 |
Elixhauser Comorbidity Index | 1.074 | 1.028 | 1.122 | 0.001 |
Δ-NIHSS | 0.897 | 0.857 | 0.939 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnieder, M.; Bähr, M.; Kirsch, M.; Maier, I.; Behme, D.; Riedel, C.H.; Psychogios, M.-N.; Brehm, A.; Liman, J.; von Arnim, C.A.F. Analysis of Frailty in Geriatric Patients as a Prognostic Factor in Endovascular Treated Patients with Large Vessel Occlusion Strokes. J. Clin. Med. 2021, 10, 2171. https://doi.org/10.3390/jcm10102171
Schnieder M, Bähr M, Kirsch M, Maier I, Behme D, Riedel CH, Psychogios M-N, Brehm A, Liman J, von Arnim CAF. Analysis of Frailty in Geriatric Patients as a Prognostic Factor in Endovascular Treated Patients with Large Vessel Occlusion Strokes. Journal of Clinical Medicine. 2021; 10(10):2171. https://doi.org/10.3390/jcm10102171
Chicago/Turabian StyleSchnieder, Marlena, Mathias Bähr, Mareike Kirsch, Ilko Maier, Daniel Behme, Christian Heiner Riedel, Marios-Nikos Psychogios, Alex Brehm, Jan Liman, and Christine A. F. von Arnim. 2021. "Analysis of Frailty in Geriatric Patients as a Prognostic Factor in Endovascular Treated Patients with Large Vessel Occlusion Strokes" Journal of Clinical Medicine 10, no. 10: 2171. https://doi.org/10.3390/jcm10102171
APA StyleSchnieder, M., Bähr, M., Kirsch, M., Maier, I., Behme, D., Riedel, C. H., Psychogios, M.-N., Brehm, A., Liman, J., & von Arnim, C. A. F. (2021). Analysis of Frailty in Geriatric Patients as a Prognostic Factor in Endovascular Treated Patients with Large Vessel Occlusion Strokes. Journal of Clinical Medicine, 10(10), 2171. https://doi.org/10.3390/jcm10102171