Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Color Fundus Photography and ETDRS Classification
2.2. Microaneurysm Turnover Quantification by RetmarkerDR
2.3. DR Severity Progression—ETDRS Step Change
2.4. Outcome Definition—CIME, CSME, and PDR
2.5. Optical Coherence Tomography
2.6. Statistical Analysis
3. Results
3.1. Demographic Distribution of the Population
3.2. Comparison of MA Changes with Development of Vision-Threatening Complications
3.3. Comparison of MA Changes with DR Severity Progression over 5-Years of Follow-Up
3.4. Microaneurysm Changes after 5-Years of Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, S.; Pires, I.; Rosa, A.; Duarte, L.; Bernardes, R.; Cunha-Vaz, J. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: Findings for type 2 diabetics with nonproliferative retinopathy. Ophthalmologica 2009, 223, 292–297. [Google Scholar] [CrossRef]
- Sjølie, A.K.; Klein, R.; Porta, M.; Orchard, T.; Fuller, J.; Parving, H.H.; Bilous, R.; Aldington, S.; Chaturvedi, N. Retinal microaneurysm count predicts progression and regression of diabetic retinopathy. Post-hoc results from the DIRECT Programme. Diabet. Med. 2011, 28, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology 1991. [CrossRef]
- Marques, I.P.; Alves, D.; Santos, T.; Mendes, L.; Santos, A.R.; Lobo, C.; Durbin, M.; Cunha-Vaz, J. Multimodal Imaging of the Initial Stages of Diabetic Retinopathy: Different Disease Pathways in Different Patients. Diabetes 2019, 68, 648–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, I.P.; Madeira, M.H.; Messias, A.L.; Santos, T.; Martinho, A.C.; Figueira, J.; Cunha-Vaz, J. Retinopathy phenotypes in type 2 diabetes with different risks for macular edema and proliferative retinopathy. J. Clin. Med. 2020, 9, 1433. [Google Scholar] [CrossRef]
- Marques, I.P.; Alves, D.; Santos, T.; Mendes, L.; Lobo, C.; Santos, A.R.; Durbin, M.; Cunha-Vaz, J. Characterization of Disease Progression in the Initial Stages of Retinopathy in Type 2 Diabetes: A 2-Year Longitudinal Study. Investig. Opthalmol. Vis. Sci. 2020, 61, 20. [Google Scholar] [CrossRef] [PubMed]
- Chalam, K.V.; Bressler, S.B.; Edwards, A.R.; Berger, B.B.; Bressler, N.M.; Glassman, A.R.; Grover, S.; Gupta, S.K.; Nielsen, J.S.; Diabetic Retinopathy Clinical Research Network. Retinal thickness in people with diabetes and minimal or no diabetic retinopathy: Heidelberg spectralis optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8154–8161. [Google Scholar] [CrossRef] [Green Version]
- Marques, I.P.; Madeira, M.H.; Messias, A.L.; Martinho, A.C.-V.; Santos, T.; Sousa, D.C.; Figueira, J.; Cunha-Vaz, J. Different retinopathy phenotypes in type 2 diabetes predict retinopathy progression. Acta Diabetol. 2021, 58, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991, 98, 823–833. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Cristóvão, L.M.; Ribeiro, M.L.; Abreu, J.R.F. Improved automated screening of diabetic retinopathy. Ophthalmologica 2011, 226, 191–197. [Google Scholar] [CrossRef]
- Cunha-Vaz, J.; Bernardes, R.; Santos, T.; Oliveira, C.; Lobo, C.; Pires, I.; Ribeiro, L. Computer-aided detection of diabetic retinopathy progression. In Digital Teleretinal Screening: Teleophthalmology in Practice; Springer: Berlin/Heidelberg, Germany, 2012; Volume 226, pp. 161–181. [Google Scholar] [CrossRef]
- Kohner, E.M.; Stratton, I.M.; Aldington, S.J.; Turner, R.C.; Matthews, D.R. Microaneurysms in the development of diabetic retinopathy (UKPDS 42). UK Prospective Diabetes Study Group. Diabetologia 1999, 42, 1107–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, M.L.; Nunes, S.G.; Cunha-Vaz, J.G. Microaneurysm turnover at the macula predicts risk of development of clinically significant macular edema in persons withmild nonproliferative diabetic retinopathy. Diabetes Care 2013, 36, 1254–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappuru, R.K.R.; Ribeiro, L.; Lobo, C.; Alves, D.; Cunha-Vaz, J. Microaneurysm turnover is a predictor of diabetic retinopathy progression. Br. J. Ophthalmol. 2019, 3, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Harnett, M.E. Vascular endothelial growth factor in eye disease. Prog. Retin. Eye Res. 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stitt, A.W.; Gardiner, T.A.; Archer, D.B. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br. J. Ophthalmol. 1995, 79, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, T.; Nishijima, K.; Sakamoto, A.; Ota, M.; Horii, T.; Yoshimura, N. Foveal cystoid spaces are associated with enlarged foveal avascular zone and microaneurysms in diabetic macular edema. Ophthalmology 2011, 118, 359–367. [Google Scholar] [CrossRef]
- Martinho, A.C.-V.; Marques, I.P.; Messias, A.L.; Santos, T.; Madeira, M.H.; Sousa, D.C.; Lobo, C.; Cunha-Vaz, J. Ocular and Systemic Risk Markers for Development of Macular Edema and Proliferative Retinopathy in Type 2 Diabetes: A 5-Year Longitudinal Study. Diabetes Care 2011, 44, e12–e14. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.N.; Chhablani, J.; Chan, C.K.; Wang, H.; Barteselli, G.; El-Emam, S.; Gomez, M.L.; Kozak, I.; Cheng, L.; Freeman, W.R. Characterization of microaneurysm closure after focal laser photocoagulation in diabetic macular edema. Am. J. Ophthalmol. 2013, 155, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Vaz, J. A Central Role for Ischemia and OCTA Metrics to Follow DR Progression. J. Clin. Med. 2021, 10, 1821. [Google Scholar] [CrossRef]
- Durbin, M.K.; An, L.; Shemonski, N.D.; Soares, M.; Santos, T.; Lopes, M.; Neves, C.; Cunha-Vaz, J. Quantification of Retinal Microvascular Density in Optical Coherence Tomographic Angiography Images in Diabetic Retinopathy. JAMA Ophthalmol. 2017, 135, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Akil, H.; Karst, S.; Heisler, M.; Etminan, M.; Navajas, E.; Maberly, D. Application of optical coherence tomography angiography in diabetic retinopathy: A comprehensive review. Can. J. Ophthalmol. 2019, 54, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.; Warren, L.H.; Santos, A.R.; Marques, I.P.; Kubach, S.; Mendes, L.G.; de Sisternes, L.; Madeira, M.H.; Durbin, M.; Cunha-Vaz, J.G. Swept source OCTA quantification of capillary closure predicts ETDRS severity staging of NPDR. Br. J. Ophthalmol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Chua, J.; Lin, E.; Cheng, J.; Gan, A.; Yao, X.; Wong, D.W.; Sabanayagam, C.; Wong, D.; Chan, C.M.; et al. Quantitative Microvascular Analysis With Wide-Field Optical Coherence Tomography Angiography in Eyes with Diabetic Retinopathy. JAMA Netw. Open 2020, 3, e1919469. [Google Scholar] [CrossRef] [PubMed]
ETDRS Groups | p Value (between ETDRS Groups) | ||
---|---|---|---|
10–20 | 35 | ||
Demographics | |||
Males/Females, n (%) | 33 (68.8)/15 (31.3) | 84 (67.7)/40 (32.3) | 0.899 1 |
Age, mean ± SD, y | 63.2 ± 6.8, 64 (58–67.5) | 62.6 ± 7.4, 63 (57.5–68) | 0.619 2 |
Diabetes duration, mean ± SD, y | 12.0 ± 6.8, 11 (6.5–15) | 15 ± 7.5, 14.5 (10–19) | 0.011 2 |
Clinical Characteristics, Mean ± SD | |||
BMI, kg/m2 | 30.1 ± 6.1, 29.1 (25.7–33.6) | 30.1 ± 5.8, 29.9 (26.1–33.6) | 0.874 2 |
HbA1c, % | 6.8 ± 1.0, 6.5 (6.2–7.5) | 7.8 ± 1.3, 7.7 (6.7–8.8) | <0.001 2 |
HbA1c, % (mean, mmol/mol) | 50.8 | 61.7 | |
Total cholesterol, mg/dL | 183.3 ± 37.9, 175.5 (155–214) | 184.3 ± 39.4, 185 (159–209) | 0.694 2 |
HDL cholesterol, mg/dL | 47.4 ± 9.2, 47 (42–53) | 47.5 ± 11.8, 46.5 (40–54) | 0.671 2 |
LDL cholesterol, mg/dL | 124.0 ± 30.9, 118 (105–146) | 122.5 ± 32.1, 119 (102–140) | 0.851 2 |
Triglycerides, mg/dL | 154.0 ± 69.6, 136.5 (104–193) | 171.2 ± 101.1, 145.5 (105–196) | 0.506 2 |
Systolic BP, mmHg | 138.4 ± 14.4, 139.5 (130–147.5) | 136.3 ± 16.4, 138 (124.5–146.5) | 0.432 2 |
Diastolic BP, mmHg | 71.5 ± 7.8, 72 (64–80) | 71.6 ± 8.7, 70 (65–77) | 0.808 2 |
Ocular Characteristics, Mean ± SD | |||
BCVA, letters | 85.8 ± 3.8, 85.5 (84–88) | 85.5 ± 3.9, 85 (84–89) | 0.617 2 |
MAT, no. per 12 months | 0.7 ± 0.9, 0 (0–1) | 3.3 ± 4.5, 2 (1–4) | <0.001 2 |
MA formation rate, no. per 12 months | 0.3 ± 0.6, 0 (0–0) | 1.7 ± 2.7, 1 (0–2) | <0.001 2 |
MA disappearance rate, no. per 12 months | 0.4 ± 0.6, 0 (0–1) | 1.6 ± 2.4, 1 (0–2) | <0.001 2 |
CRT, µm | 276.7 ± 25.1, 277 (261.5–290) | 269.6 ± 25.1, 267 (253–287) | 0.069 2 |
GCL + IPL Average thickness, µm | 81.2 ± 7.5, 82 (76.5–86) | 80.8 ± 7.2, 81 (75–85) | 0.592 2 |
Outcome (DME and/or PDR) | MA Turnover 12 m (Mean ± SD Median [Q1–Q3]) | MA Formation Rate 12 m (Mean ± SD Median [Q1–Q3]) | MA Disappearance Rate 12 m (Mean ± SD Median [Q1–Q3]) |
---|---|---|---|
Outcome (n = 25) | 4.6 ± 6.6, 2 (1–5) | 2.4 ± 4.0, 1 (0–3) | 2.2 ± 2.9, 1 (0–2) |
No Outcome (n = 137) | 2.2 ± 3.2, 1 (0–2) | 1.1 ± 1.9, 0 (0–1) | 1.1 ± 2.0, 0 (0–1) |
p value * | 0.018 * | 0.086 | 0.007 * |
ETDRS Severity Changes | MA Turnover 12 m (Mean ± SD Median [Q1–Q3]) | MA Formation Rate 12 m (Mean ± SD Median [Q1–Q3]) | MA Disappearance Rate 12 m (Mean ± SD Median [Q1–Q3]) |
---|---|---|---|
Worsening (n = 61) (≥1 or 2 steps progression) | 2.9 ± 3.8, 2 (1–4) | 1.6 ± 2.2, 1 (0–3) | 1.3 ± 2.1, 1 (0–2) |
Improvement or Maintenance (n = 101) | 2.3 ± 4.1, 1 (0–2) | 1.1 ± 2.4, 0 (0–1) | 1.2 ± 2.2, 0 (0–1) |
p value * | 0.035 * | 0.033 * | 0.316 |
0–12 M (n = 162) (Mean ± SD Median Q1–Q3) | 48–60 M (n = 127) (Mean ± SD Median Q1–Q3) | p Value * | |
---|---|---|---|
MAT (n = 121) | 2.0 ± 3.2, 1 (0–2) | 2.3 ± 3.1, 1 (0–3) | 0.060 |
MA Formation Rate (n = 121) | 1.0 ± 1.7, 0 (0–1) | 0.8 ± 1.6, 0 (0–1) | 0.089 |
MA Disappearance Rate (n = 121) | 1. 0 ± 2.0, 0 (0–1) | 1.5 ± 1.9, 1(0–2) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.R.; Mendes, L.; Madeira, M.H.; Marques, I.P.; Tavares, D.; Figueira, J.; Lobo, C.; Cunha-Vaz, J. Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study. J. Clin. Med. 2021, 10, 2142. https://doi.org/10.3390/jcm10102142
Santos AR, Mendes L, Madeira MH, Marques IP, Tavares D, Figueira J, Lobo C, Cunha-Vaz J. Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study. Journal of Clinical Medicine. 2021; 10(10):2142. https://doi.org/10.3390/jcm10102142
Chicago/Turabian StyleSantos, Ana Rita, Luis Mendes, Maria Helena Madeira, Ines P. Marques, Diana Tavares, João Figueira, Conceição Lobo, and José Cunha-Vaz. 2021. "Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study" Journal of Clinical Medicine 10, no. 10: 2142. https://doi.org/10.3390/jcm10102142
APA StyleSantos, A. R., Mendes, L., Madeira, M. H., Marques, I. P., Tavares, D., Figueira, J., Lobo, C., & Cunha-Vaz, J. (2021). Microaneurysm Turnover in Mild Non-Proliferative Diabetic Retinopathy is Associated with Progression and Development of Vision-Threatening Complications: A 5-Year Longitudinal Study. Journal of Clinical Medicine, 10(10), 2142. https://doi.org/10.3390/jcm10102142