Hybrid and Mixed Matrix Membranes for Separations from Fermentations
Abstract
:1. Introduction
2. Membrane Processes for Fermentative Separations
3. Inorganic Membrane Materials and Mixed Matrix Membranes
3.1. Zeolites
3.2. Metal-Organic Frameworks
3.3. Carbon Nanotubes
3.4. Summary of Inorganic Materials for MMMs
- Pressure driven filtrations: ultrafiltration, nanofiltration and reverse osmosis;
- Vapour pressure driven filtrations: hydrophilic and organophilic pervaporation.
4. Mixed Matrix Membranes for Ultrafiltration, Nanofiltration and Reverse Osmosis
4.1. Overall Process Description and Conventional Membranes
4.2. Polymeric Pressure Driven Membranes
4.3. Selection of Polymers for Pressure Driven MMMs
- If the desired effect is for the filler material to have the main selectivity and solute/solvent transport, then the polymer should not present a significant mass transfer resistance and act only as a support. The active surface or pathways of the filler material should be left free (and bypassing of the polymer is fine).
- If both the polymer and filler material impart selectivity and transport of solute/solvent within the separation, then the type of polymer and polymer matrix will be different. The polymer may bind across the active surface of the filler (since bypassing of the polymer is not desired) and the polymer must be defect free.
4.4. MOF and Zeolite MMMs for UF, NF and RO
4.5. Implications: MMMs for UF, NF and RO
- The characterization and application of MMMS with a wider range of zeolites and MOFs than currently studied in a wider range of polymer systems.
- The evaluation of a wider range of inorganic filler/secondary phase materials in a wide range of common polymer systems.
- Bespoke polymer development to complement and enhance the different fillers and separations that the resulting MMMs will be applied to.
- The evaluation of mixed filler systems for more finely tuning flux and selectivity to meet the needs of the separation and fermentation products.
5. Mixed Matrix Membranes for Pervaporation
5.1. Overall Process Description and Conventional Membranes
- Separation factor
- Enrichment Factor
- ▪
- AP = Weight fraction of permeating species A in the permeate
- ▪
- AF = Weight fraction of permeating species A in the feed
- ▪
- AF + AP = 1
- Hydrophilic pervaporation is used to dehydrate highly concentrated organic solutions through preferentially permeating water across the membrane.
- Organophilic pervaporation utilizes a hydrophobic membrane to recover small quantities of dilute organics from water as the preferentially permeating species across the membrane.
5.2. Selection of Polymers for Hydrophilic or Hydrophobic Pervaporation Membranes
5.3. Hydrophilic Pervaporation MMMs
5.3.1. Zeolite Filled MMMs for Hydrophilic Pervaporation
5.3.2. MOF Filled MMMs for Hydrophilic Pervaporation
5.3.3. Nanotubes, Carbons, and Other Filled MMMs for Hydrophilic Pervaporation
5.3.4. Implications: MMMs for Hydrophilic Pervaporation
- Further investigations into the effect of different membrane fabrication techniques on the performance of the described hydrophilic MMMs for applicable separations to fermentations.
- Further screening of hydrophilic MOFs as inorganic fillers.
- Integrating a high-performing MMM into the final purification step in the pervaporative recovery of bioethanol (or similar fermentation product) from a biorefinery and study of the long term operation of such a membrane.
5.4. Organophilic Pervaporation
5.4.1. Zeolite Filled MMMs for Organophilic Pervaporation
5.4.2. MOF Filled MMMs for Organophilic Pervaporation
5.4.3. Nanotubes, Carbons, and Other Filled MMMs for Organophilic Pervaporation
5.4.4. Implications: MMMs for Organophilic Pervaporation
- Further studies into the fouling and long term stability of high-performing MMMs for organophilic pervaporation are required to help develop measures to overcome fouling from the many varying components of microbial fermentation broths.
- Application of the varying membrane fabrication techniques developed for ZIF-8-PDMS MMMs to other MOFs and other inorganic fillers.
- Bespoke polymer development to complement and enhance the different fillers and separations that the resulting MMMs will be applied to.
- Full cost-benefit analysis of the use of novel, expensive, inorganic fillers within these MMMs investigating whether the improved membrane performance characteristics can offset the increased membrane fabrication costs.
6. Fabrication methods for MMMs
6.1. Fabrication methods for TFN Membranes for NF and RO
- Agglomeration of the inorganic phase within the polyamide layer can reduce both the surface area of the particles and create non-selective voids within the polyamide layer. This is due to the poor dispersion of the inorganic nanoparticles in either solution used for the interfacial polymerization.
- Leaching of the inorganic component out of the membrane can occur due to a lack of compatibility or chemical bonding between the polymer and inorganic phase.
6.2. Fabrication Techniques of MMMs for Pervaporation
- Agglomeration of inorganic particles reducing available surface area and potentially creating non-selective voids;
- Incompatibility between the inorganic phase and polymer matrix creating non-selective voids;
- Leaching of the inorganic phase out of the polymer matrix.
7. Other Examples of MMMs for Fermentative Separation Applications
8. Conclusions
- The intrinsic property of the inorganic filler to be used should be fully understood when utilizing it for a specific MMM separation; novel inorganic materials that have shown exemplary separation performance should be studied.
- The compatibility between the polymer and inorganic filler is important to prevent the formation of defects between the polymer and inorganic components and creating non-selective voids.
- Agglomeration of the inorganic filler should be limited, allowing for high loadings of homogeneously dispersed filler within the polymer matrix.
- Potential for leaching of the inorganic phase out of the polymer membrane.
- There has been little work in the use of MMMs to improve flux and selectivity in UF, NF and RO membranes for the separation of fermentation products, so this is a significant area for future research with great opportunities in investigating a wide range of inorganic fillers, polymers and fermentation applications.
- Further investigations into the effect of different membrane fabrication techniques on the performance of MMMs for applicable separations to fermentations.
- Further screening of a range of different water stable MOFs as inorganic fillers.
- Further studies into the fouling and long-term stability of high-performing MMMs to help develop measures to overcome fouling from the many varying components of microbial fermentation broths.
- Bespoke polymer development to complement and enhance the different fillers and separations that the resulting MMMs will be applied to.
- Improved fabrication and operational methods for preventing the leaching of the inorganic phase out of the polymer membrane.
- Full cost-benefit analysis of the use of novel, expensive, inorganic fillers within these investigated MMMs is needed to determine whether the improved membrane performance characteristics can offset the increased membrane fabrication costs.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xiu, Z.L.; Zeng, A.P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 2008, 78, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Hönig, V.; Kotek, M.; Mařík, J. Use of butanol as a fuel for internal combustion engines. Agron. Res. 2014, 12, 333–340. [Google Scholar]
- McGregor, W.C. Membrane separations in biotechnology; Dekker: New York, NY, USA, 1986. [Google Scholar]
- Oroskar, A.R.; Sharma, D.; House, D.W.; Havill, A.M. Process and Adsorbent for Separating Ethanol and Associated Oxygenates from A Biofermentation System. U.S. Patent No. 8,658,845, 25 February 2014. [Google Scholar]
- Buque-Taboada, E.M.; Straathof, A.J.J.; Heijnen, J.J.; Wielen, L.A.M. In situ product recovery (ISPR) by crystallization: Basic principles, design, and potential applications in whole-cell biocatalysis. Appl. Microbiol. Biotechnol. 2006, 71, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.A.; Davey, C.J.; Rohani, R. Membrane separations: From purifications, minimisation, reuse and recycling to process intensification. In Chemical Processes for A Sustainable Future; Letcher, T., Scott, J., Patterson, D., Eds.; aRoyal Society of Chemistry: Cambridge, UK, 2014; pp. 469–504. [Google Scholar]
- Abels, C.; Carstensen, F.; Wessling, M. Membrane processes in biorefinery applications. J. Membr. Sci. 2013, 444, 285–317. [Google Scholar] [CrossRef]
- Koros, W.J. Evolving beyond the thermal age of separation processes: Membranes can lead the way. AIChE J. 2004, 50, 2326–2334. [Google Scholar] [CrossRef]
- Sen Gupta, B.; Hashim, M.A.; Ramachandran, K.B.; Sen Gupta, I.; Cui, Z.F. The effect of gas sparging in cross-flow microfiltration of 2,3-butanediol fermentation broth. Eng. Life Sci. 2005, 5, 54–57. [Google Scholar] [CrossRef]
- Whittington, P. Fermentation broth clarification techniques. Appl. Biochem. Biotechnol. 1990, 23, 91–121. [Google Scholar] [CrossRef]
- Persson, A.; Jönsson, A.-S.; Zacchi, G. Separation of lactic acid-producing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow. Biotechnol. Bioeng. 2001, 72, 269–277. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Tang, H.; Zhou, W.; Yan, D.; Xing, J.; Wan, Y. Clarification of succinic acid fermentation broth by ultrafiltration in succinic acid bio-refinery. J. Chem. Technol. Biotechnol. 2013, 88, 444–448. [Google Scholar] [CrossRef]
- Han, I.S.; Cheryan, M. Nanofiltration of model acetate solutions. J. Membr. Sci. 1995, 107, 107–113. [Google Scholar] [CrossRef]
- Han, I.; Cheryan, M. Downstream processing of acetate fermentation broths by nanofiltration. Appl. Biochem. Biotechnol. 1996, 57–58, 19–28. [Google Scholar] [CrossRef]
- Kang, S.H.; Chang, Y.K. Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J. Membr. Sci. 2005, 246, 49–57. [Google Scholar] [CrossRef]
- Timmer, J.M.K.; van der Horst, H.C.; Robbertsen, T. Transport of lactic acid through reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 85, 205–216. [Google Scholar] [CrossRef]
- Timmer, J.M.K.; Kromkamp, J.; Robbertsen, T. Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration. J. Membr. Sci. 1994, 92, 185–197. [Google Scholar] [CrossRef]
- Vane, L.M. A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 2005, 80, 603–629. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Ghaemi, N.; Rajabi, H. Advances in polymeric membranes for water treatment. In Advances in Membrane Technologies for Water Treatment; Basile, A., Rastogi, A.C.K., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 3–41. [Google Scholar]
- Baker, R.W. Membranes and modules. In Membrane Technology and Applications; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2004; pp. 89–160. [Google Scholar]
- Buekenhoudt, A.; Kovalevsky, A.; Luyten, J.; Snijkers, F. Basic aspects in inorganic membrane preparation. In Comprehensive Membrane Science and Engineering; Drioli, E., Giorno, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 217–252. [Google Scholar]
- Yu, M.; Noble, R.D.; Falconer, J.L. Zeolite membranes: Microstructure characterization and permeation mechanisms. Acc. Chem. Res. 2011, 44, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dong, J.; Nenoff, T.M.; Lee, R. Desalination by reverse osmosis using MFI zeolite membranes. J. Membr. Sci. 2004, 243, 401–404. [Google Scholar] [CrossRef]
- Liu, N.; Li, L.; McPherson, B.; Lee, R. Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes. J. Membr. Sci. 2008, 325, 357–361. [Google Scholar] [CrossRef]
- Bowen, T.C.; Noble, R.D.; Falconer, J.L. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 2004, 245, 1–33. [Google Scholar] [CrossRef]
- Maddox, I.S. Use of silicalite for the adsorption of n-butanol from fermentation liquors. Biotechnol. Lett. 1982, 4, 759–760. [Google Scholar] [CrossRef]
- Faisal, A.; Zarebska, A.; Saremi, P.; Korelskiy, D.; Ohlin, L.; Rova, U.; Hedlund, J.; Grahn, M. MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. Adsorption 2014, 20, 465–470. [Google Scholar] [CrossRef]
- Oudshoorn, A.; van der Wielen, L.A.M.; Straathof, A.J.J. Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem. Eng. J. 2009, 48, 99–103. [Google Scholar] [CrossRef]
- Bowen, T.C.; Vane, L.M. Ethanol, acetic acid, and water adsorption from binary and ternary liquid mixtures on high-silica zeolites. Langmuir 2006, 22, 3721–3727. [Google Scholar] [CrossRef] [PubMed]
- Aljundi, I.H.; Belovich, J.M.; Talu, O. Adsorption of lactic acid from fermentation broth and aqueous solutions on zeolite molecular sieves. Chem. Eng. Sci. 2005, 60, 5004–5009. [Google Scholar] [CrossRef]
- Meek, S.T.; Greathouse, J.A.; Allendorf, M.D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar]
- Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013, 166, 67–78. [Google Scholar] [CrossRef]
- Nalaparaju, A.; Zhao, X.S.; Jiang, J.W. Molecular understanding for the adsorption of water and alcohols in hydrophilic and hydrophobic zeolitic metal-organic frameworks. J. Phys. Chem. C 2010, 114, 11542–11550. [Google Scholar] [CrossRef]
- Nalaparaju, A.; Zhao, X.S.; Jiang, J.W. Biofuel purification by pervaporation and vapor permeation in metal-organic frameworks: A computational study. Energy Environ. Sci. 2011, 4, 2107–2116. [Google Scholar] [CrossRef]
- Ortiz, A.U.; Freitas, A.P.; Boutin, A.; Fuchs, A.H.; Coudert, F.-X. What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption. Phys. Chem. Chem. Phys. 2014, 16, 9940–9949. [Google Scholar] [CrossRef] [PubMed]
- De Lima, G.F.; Mavrandonakis, A.; de Abreu, H.A.; Duarte, H.A.; Heine, T. Mechanism of alcohol–water separation in metal–organic frameworks. J. Phys. Chem. C 2013, 117, 4124–4130. [Google Scholar] [CrossRef]
- Akiyama, G.; Matsuda, R.; Sato, H.; Hori, A.; Takata, M.; Kitagawa, S. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 2012, 157, 89–93. [Google Scholar] [CrossRef]
- Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330. [Google Scholar] [CrossRef]
- Banerjee, D.; Deibert, B.J.; Wang, H.; Li, J. Metal-organic frameworks: Adsorption of hydrocarbons and alcohols. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2011. [Google Scholar]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’Keeffe, M.; Yaghi, O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2009, 43, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Lively, R.P.; Dose, M.E.; Thompson, J.A.; McCool, B.A.; Chance, R.R.; Koros, W.J. Ethanol and water adsorption in methanol-derived ZIF-71. Chem. Commun. 2011, 47, 8667–8669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lively, R.P.; Dose, M.E.; Brown, A.J.; Zhang, C.; Chung, J.; Nair, S.; Koros, W.J.; Chance, R.R. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 2013, 49, 3245–3247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lively, R.P.; Zhang, C.; Koros, W.J.; Chance, R.R. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study. J. Phys. Chem. C 2013, 117, 7214–7225. [Google Scholar] [CrossRef]
- Zhang, K.; Lively, R.P.; Zhang, C.; Chance, R.R.; Koros, W.J.; Sholl, D.S.; Nair, S. Exploring the framework hydrophobicity and flexibility of ZIF-8: From biofuel recovery to hydrocarbon separations. J. Phys. Chem. Lett. 2013, 3618–3622. [Google Scholar] [CrossRef]
- Cousin Saint Remi, J.; Rémy, T.; van Hunskerken, V.; van de Perre, S.; Duerinck, T.; Maes, M.; de Vos, D.; Gobechiya, E.; Kirschhock, C.E.A.; Baron, G.V.; et al. Biobutanol separation with the metal-organic framework zif-8. Chem. Sus. Chem. 2011, 4, 1074–1077. [Google Scholar] [CrossRef] [PubMed]
- Gee, J.A.; Chung, J.; Nair, S.; Sholl, D.S. Adsorption and diffusion of small alcohols in zeolitic imidazolate frameworks ZIF-8 and ZIF-90. J. Phys. Chem. C 2013, 117, 3169–3176. [Google Scholar] [CrossRef]
- Paradise, M.; Goswami, T. Carbon nanotubes—Production and industrial applications. Mater. Des. 2007, 28, 1477–1489. [Google Scholar] [CrossRef]
- Ismail, A.F.; Goh, P.S.; Sanip, S.M.; Aziz, M. Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. Purif. Technol. 2009, 70, 12–26. [Google Scholar] [CrossRef]
- Reid, C.E.; Breton, E.J. Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci. 1959, 1, 133–143. [Google Scholar] [CrossRef]
- Sidney, L.; Srinivasa, S. Sea water demineralization by means of an osmotic membrane. In Saline Water Conversion? II; American Chemical Society: Washington, DC, USA, 1963; Volume 38, pp. 117–132. [Google Scholar]
- Bhattacharyya, D.; Williams, M.; Ray, R.; McCray, S. Design. In Membrane Handbook; Ho, W.S.W., Sirkar, K., Eds.; Springer US: New York, NY, USA, 1992; pp. 281–311. [Google Scholar]
- Petersen, R.J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 83, 81–150. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009, 242, 149–167. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 2009, 242, 168–182. [Google Scholar] [CrossRef]
- Roh, I.J.; Park, S.Y.; Kim, J.J.; Kim, C.K. Effects of the polyamide molecular structure on the performance of reverse osmosis membranes. J. Polym. Sci. B Polym. Phys. 1998, 36, 1821–1830. [Google Scholar] [CrossRef]
- Brás, T.; Fernandes, M.C.; Santos, J.L.C.; Neves, L.A. Recovering bioethanol from olive bagasse fermentation by nanofiltration. Desalin. Water Treat. 2013, 51, 4333–4342. [Google Scholar] [CrossRef]
- Bastrzyk, J.; Gryta, M.; Karakulski, K. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 2014, 68, 757–765. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Tang, C.Y.; Huo, F. Fabrication of porous matrix membrane (PMM) using metal-organic framework as green template for water treatment. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef]
- Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Paul Chen, J.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 2015, 80, 306–324. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.-H.; Hoek, E.M.V.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of added nax nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 2011, 375, 88–95. [Google Scholar] [CrossRef]
- Kim, E.-S.; Deng, B. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J. Membr. Sci. 2011, 375, 46–54. [Google Scholar] [CrossRef]
- Yin, J.; Kim, E.-S.; Yang, J.; Deng, B. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPS) for water purification. J. Membr. Sci. 2012, 423–424, 238–246. [Google Scholar] [CrossRef]
- Rajaeian, B.; Rahimpour, A.; Tade, M.O.; Liu, S. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 2013, 313, 176–188. [Google Scholar] [CrossRef]
- Sorribas, S.; Gorgojo, P.; Téllez, C.; Coronas, J.; Livingston, A.G. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013, 135, 15201–15208. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, Y.; Jiang, J. Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation. J. Chem. Phys. 2011, 134, 134705. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Pan, Y.; Pacheco, F.; Litwiller, E.; Lai, Z.; Pinnau, I. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Membr. Sci. 2015, 476, 303–310. [Google Scholar] [CrossRef]
- Wang, L.; Fang, M.; Liu, J.; He, J.; Deng, L.; Li, J.; Lei, J. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 2015, 5, 50942–50954. [Google Scholar] [CrossRef]
- Jiang, J.-Q.; Yang, C.-X.; Yan, X.-P. Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Interfaces 2013, 5, 9837–9842. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Y.-N.; Li, Z.; Zhang, B.; Zhu, M.; Hu, X.; Zhang, Y.; Li, F. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C 2014, 118, 27382–27387. [Google Scholar] [CrossRef]
- Jung, B.K.; Jun, J.W.; Hasan, Z.; Jhung, S.H. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem. Eng. J. 2015, 267, 9–15. [Google Scholar] [CrossRef]
- Khan, N.A.; Jung, B.K.; Hasan, Z.; Jhung, S.H. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J. Hazard. Mater. 2015, 282, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, D.; Yao, Y.; Zhang, B.; Lin, Y.S. Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci. 2015, 485, 103–111. [Google Scholar] [CrossRef]
- Kujawski, W. Application of pervaporation and vapor permeation in environmental protection. Pol. J. Environ. Stud. 2000, 9, 13–26. [Google Scholar]
- Nagai, K. Fundamentals and perspectives for pervaporation. In Comprehensive Membrane Science and Engineering; Drioli, E., Giorno, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 243–271. [Google Scholar]
- Uragami, T. Selective membranes for purification and separation of organic liquid mixtures. In Comprehensive Membrane Science and Engineering; Drioli, E., Giorno, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 273–324. [Google Scholar]
- Vankelecom, I.F.J.; Gevers, L.E.M.; Schäfer, T.; Crespo, J.G. Membrane processes. In Green Separation Processes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 251–289. [Google Scholar]
- Feng, X.; Huang, R.Y.M. Liquid separation by membrane pervaporation: A review. Ind. Eng. Chem. Res. 1997, 36, 1048–1066. [Google Scholar] [CrossRef]
- Gao, Z.; Yue, Y.; Li, W. Application of zeolite-filled pervaporation membrane. Zeolites 1996, 16, 70–74. [Google Scholar] [CrossRef]
- Masuda, T.; Tang, B.-Z.; Higashimura, T. Ethanol-water separation by pervaporation through substituted-polyacetylene membranes. Polym. J. 1986, 18, 565–567. [Google Scholar] [CrossRef]
- Masuda, T.; Takatsuka, M.; Tang, B.-Z.; Higashimura, T. Pervaporation of organic liquid-water mixtures through substituted polyacetylene membranes. J. Membr. Sci. 1990, 49, 69–83. [Google Scholar] [CrossRef]
- Okamoto, K.-I.; Butsuen, A.; Tsuru, S.; Nishioka, S.; Tanaka, K.; Kita, H.; Asakawa, S. Pervaporation of water-ethanol mixtures through poly-dimethylsiloxane block-copolymer membranes. Polym. J. 1987, 19, 747–756. [Google Scholar] [CrossRef]
- González-Velasco, J.R.; González-Marcos, J.A.; López-Dehesa, C. Pervaporation of ethanol—Water mixtures through poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes. Desalination 2002, 149, 61–65. [Google Scholar] [CrossRef]
- Aroujalian, A.; Raisi, A. Pervaporation as a means of recovering ethanol from lignocellulosic bioconversions. Desalination 2009, 247, 509–517. [Google Scholar] [CrossRef]
- Nakao, S.-i.; Saitoh, F.; Asakura, T.; Toda, K.; Kimura, S. Continuous ethanol extraction by pervaporation from a membrane bioreactor. J. Membr. Sci. 1987, 30, 273–287. [Google Scholar] [CrossRef]
- Adymkanov, S.V.; Yampol’skii, Y.P.; Polyakov, A.M.; Budd, P.M.; Reynolds, K.J.; McKeown, N.B.; Msayib, K.J. Pervaporation of alcohols through highly permeable PIM-1 polymer films. Polym. Sci. Ser. A 2008, 50, 444–450. [Google Scholar] [CrossRef]
- Lazarova, M.; Bösch, P.; Friedl, A. POMS membrane for selective separation of ethanol from dilute alcohol-aqueous solutions by pervaporation. Sep. Sci. Technol. 2012, 47, 1709–1714. [Google Scholar] [CrossRef]
- Liu, F.; Liu, L.; Feng, X. Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep. Purif. Technol. 2005, 42, 273–282. [Google Scholar] [CrossRef]
- Li, S.; Qin, F.; Qin, P.; Karim, M.N.; Tan, T. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chem. 2013, 15, 2180–2190. [Google Scholar] [CrossRef]
- Baker, R.W. Pervaporation. In Membrane Technology and Applications; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2012; pp. 379–416. [Google Scholar]
- Chapman, P.D.; Oliveira, T.; Livingston, A.G.; Li, K. Membranes for the dehydration of solvents by pervaporation. J. Membr. Sci. 2008, 318, 5–37. [Google Scholar] [CrossRef]
- Bhat, S.D.; Aminabhavi, T.M. Zeolite K-LTL-loaded sodium alginate mixed matrix membranes for pervaporation dehydration of aqueous–organic mixtures. J. Membr. Sci. 2007, 306, 173–185. [Google Scholar] [CrossRef]
- Qiao, X.; Chung, T.-S.; Rajagopalan, R. Zeolite filled P84 co-polyimide membranes for dehydration of isopropanol through pervaporation process. Chem. Eng. Sci. 2006, 61, 6816–6825. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, H.-M.; Tan, W.L.; Qiao, X.-Y.; Kulprathipanja, S. Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes: Effect of zeolites. J. Membr. Sci. 2006, 276, 260–271. [Google Scholar] [CrossRef]
- Mosleh, S.; Khosravi, T.; Bakhtiari, O.; Mohammadi, T. Zeolite filled polyimide membranes for dehydration of isopropanol through pervaporation process. Chem. Eng. Res. Des. 2012, 90, 433–441. [Google Scholar] [CrossRef]
- Das, P.; Ray, S.K.; Kuila, S.B.; Samanta, H.S.; Singha, N.R. Systematic choice of crosslinker and filler for pervaporation membrane: A case study with dehydration of isopropyl alcohol-water mixtures by polyvinyl alcohol membranes. Sep. Purif. Technol. 2011, 81, 159–173. [Google Scholar] [CrossRef]
- Oh, D.; Lee, S.; Lee, Y. Mixed-matrix membrane prepared from crosslinked PVA with naa zeolite for pervaporative separation of water-butanol mixtures. Desalin. Water Treat. 2013, 51, 5362–5370. [Google Scholar] [CrossRef]
- Sun, H.; Lu, L.; Chen, X.; Jiang, Z. Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes. Sep. Purif. Technol. 2008, 58, 429–436. [Google Scholar] [CrossRef]
- Sun, H.; Lu, L.; Chen, X.; Jiang, Z. Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol. Appl. Surf. Sci. 2008, 254, 5367–5374. [Google Scholar] [CrossRef]
- Amirilargani, M.; Sadatnia, B. Poly(vinyl alcohol)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci. 2014, 469, 1–10. [Google Scholar] [CrossRef]
- Shi, G.M.; Yang, T.; Chung, T.S. Polybenzimidazole (pbi)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J. Membr. Sci. 2012, 415–416, 577–586. [Google Scholar] [CrossRef]
- Shi, G.M.; Chen, H.; Jean, Y.C.; Chung, T.S. Sorption, swelling, and free volume of polybenzimidazole (PBI) and pbi/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer 2013, 54, 774–783. [Google Scholar] [CrossRef]
- Kudasheva, A.; Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Pervaporation of water/ethanol mixtures through polyimide based mixed matrix membranes containing zif-8, ordered mesoporous silica and ZIF-8-silica core-shell spheres. J. Chem. Technol. Biotechnol. 2015, 90, 669–677. [Google Scholar] [CrossRef]
- Hua, D.; Ong, Y.K.; Wang, Y.; Yang, T.; Chung, T.-S. Zif-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci. 2014, 453, 155–167. [Google Scholar] [CrossRef]
- Li, Y.; Krantz, W.B.; Chung, T.-S. A novel primer to prevent nanoparticle agglomeration in mixed matrix membranes. AIChE J. 2007, 53, 2470–2475. [Google Scholar] [CrossRef]
- Kang, C.-H.; Lin, Y.-F.; Huang, Y.-S.; Tung, K.-L.; Chang, K.-S.; Chen, J.-T.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. J. Membr. Sci. 2013, 438, 105–111. [Google Scholar] [CrossRef]
- Tan, J.C.; Bennett, T.D.; Cheetham, A.K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2010, 107, 9938–9943. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-L.; Li, Y.-S.; Zhu, G.-Q.; Ban, Y.-J.; Xu, L.-Y.; Yang, W.-S. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angew. Chem. Int. Ed. 2011, 50, 10636–10639. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, Y.; Tofighy, M.A.; Mohammadi, T. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol. J. Membr. Sci. 2011, 378, 551–561. [Google Scholar] [CrossRef]
- Amirilargani, M.; Ghadimi, A.; Tofighy, M.A.; Mohammadi, T. Effects of poly (allylamine hydrochloride) as a new functionalization agent for preparation of poly vinyl alcohol/multiwalled carbon nanotubes membranes. J. Membr. Sci. 2013, 447, 315–324. [Google Scholar] [CrossRef]
- Suhas, D.P.; Raghu, A.V.; Jeong, H.M.; Aminabhavi, T.M. Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv. 2013, 3, 17120–17130. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Anjanapura, R.V.; Han, J.M.; Aminabhavi, T.M. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind. Eng. Chem. Res. 2014, 53, 14474–14484. [Google Scholar] [CrossRef]
- Teli, S.B.; Gokavi, G.S.; Sairam, M.; Aminabhavi, T.M. Mixed matrix membranes of poly(vinyl alcohol) loaded with phosphomolybdic heteropolyacid for the pervaporation separation of water-isopropanol mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 55–62. [Google Scholar] [CrossRef]
- Adoor, S.G.; Sairam, M.; Manjeshwar, L.S.; Raju, K.V.S.N.; Aminabhavi, T.M. Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane. J. Membr. Sci. 2006, 285, 182–195. [Google Scholar] [CrossRef]
- Le, N.L.; Tang, Y.P.; Chung, T.-S. The development of high-performance 6fda-NDA/DABA/POSS/Ultem® dual-layer hollow fibers for ethanol dehydration via pervaporation. J. Membr. Sci. 2013, 447, 163–176. [Google Scholar] [CrossRef]
- Le, N.L.; Chung, T.-S. High-performance sulfonated polyimide/polyimide/polyhedral oligosilsesquioxane hybrid membranes for ethanol dehydration applications. J. Membr. Sci. 2014, 454, 62–73. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, L.; Shi, G.; Zhang, L.; Chen, H.; Gao, C. Preparation and pervaporation property of chitosan membrane with functionalized multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 2010, 49, 11667–11675. [Google Scholar] [CrossRef]
- Adoor, S.G.; Prathab, B.; Manjeshwar, L.S.; Aminabhavi, T.M. Mixed matrix membranes of sodium alginate and poly(vinyl alcohol) for pervaporation dehydration of isopropanol at different temperatures. Polymer 2007, 48, 5417–5430. [Google Scholar] [CrossRef]
- Kittur, A.A.; Kariduraganavar, M.Y.; Toti, U.S.; Ramesh, K.; Aminabhavi, T.M. Pervaporation separation of water–isopropanol mixtures using ZSM-5 zeolite incorporated poly(vinyl alcohol) membranes. J. Appl. Polym. Sci. 2003, 90, 2441–2448. [Google Scholar] [CrossRef]
- Kittur, A.A.; Kulkarni, S.S.; Aralaguppi, M.I.; Kariduraganavar, M.Y. Preparation and characterization of novel pervaporation membranes for the separation of water–isopropanol mixtures using chitosan and nay zeolite. J. Membr. Sci. 2005, 247, 75–86. [Google Scholar] [CrossRef]
- García, V.; Päkkilä, J.; Ojamo, H.; Muurinen, E.; Keiski, R.L. Challenges in biobutanol production: How to improve the efficiency? Renew. Sustain. Energy Rev. 2011, 15, 964–980. [Google Scholar] [CrossRef]
- Liu, G.; Wei, W.; Jin, W. Pervaporation membranes for biobutanol production. ACS Sustain. Chem. Eng. 2013, 2, 546–560. [Google Scholar] [CrossRef]
- Vane, L.M. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod. Biorefin. 2008, 2, 553–588. [Google Scholar] [CrossRef]
- Te Hennepe, H.J.C.; Bargeman, D.; Mulder, M.H.V.; Smolders, C.A. Zeolite-filled silicone rubber membranes. J. Membr. Sci. 1987, 35, 39–55. [Google Scholar] [CrossRef]
- Jia, M.-D.; Pleinemann, K.-V.; Behling, R.-D. Preparation and characterization of thin-film zeolite-pdms composite membranes. J. Membr. Sci. 1992, 73, 119–128. [Google Scholar] [CrossRef]
- Jonquières, A.; Fane, A. Filled and unfilled composite GFT pdms membranes for the recovery of butanols from dilute aqueous solutions: Influence of alcohol polarity. J. Membr. Sci. 1997, 125, 245–255. [Google Scholar] [CrossRef]
- Fouad, E.A.; Feng, X. Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes. J. Membr. Sci. 2009, 339, 120–125. [Google Scholar] [CrossRef]
- Huang, J.; Meagher, M.M. Pervaporative recovery of n-butanol from aqueous solutions and abe fermentation broth using thin-film silicalite-filled silicone composite membranes. J. Membr. Sci. 2001, 192, 231–242. [Google Scholar] [CrossRef]
- Zhou, H.; Su, Y.; Chen, X.; Wan, Y. Separation of acetone, butanol and ethanol (ABE) from dilute aqueous solutions by silicalite-1/PDMS hybrid pervaporation membranes. Sep. Purif. Technol. 2011, 79, 375–384. [Google Scholar] [CrossRef]
- Moermans, B.; Beuckelaer, W.D.; Vankelecom, I.F.J.; Ravishankar, R.; Martens, J.A.; Jacobs, P.A. Incorporation of nano-sized zeolites in membranes. Chem. Commun. 2000, 2467–2468. [Google Scholar] [CrossRef]
- Wang, N.; Liu, J.; Li, J.; Gao, J.; Ji, S.; Li, J.-R. Tuning properties of silicalite-1 for enhanced ethanol/water pervaporation separation in its PDMS hybrid membrane. Microporous Mesoporous Mater. 2015, 201, 35–42. [Google Scholar] [CrossRef]
- Yi, S.; Su, Y.; Wan, Y. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution. J. Membr. Sci. 2010, 360, 341–351. [Google Scholar] [CrossRef]
- Zhou, H.; Su, Y.; Chen, X.; Yi, S.; Wan, Y. Modification of silicalite-1 by vinyltrimethoxysilane (VTMS) and preparation of silicalite-1 filled polydimethylsiloxane (PDMS) hybrid pervaporation membranes. Sep. Purif. Technol. 2010, 75, 286–294. [Google Scholar] [CrossRef]
- Zhan, X.; Li, J.-D.; Fan, C.; Han, X.-L. Pervaporation separation of ethanol/water mixtures with chlorosilane modified silicalite-1/PDMS hybrid membranes. Chin. J. Polym. Sci. 2010, 28, 625–635. [Google Scholar] [CrossRef]
- Gu, J.; Shi, X.; Bai, Y.; Zhang, H.; Zhang, L.; Huang, H. Silicalite-filled peba membranes for recovering ethanol from aqueous solution by pervaporation. Chem. Eng. Technol. 2009, 32, 155–160. [Google Scholar] [CrossRef]
- McKeown, N.B.; Budd, P.M. Polymers of intrinsic microporosity (PIMS): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Budd, P.M.; Elabas, E.S.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E.; Wang, D. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv. Mater. 2004, 16, 456–459. [Google Scholar] [CrossRef]
- Žák, M.; Klepic, M.; Štastná, L.Č.; Sedláková, Z.; Vychodilová, H.; Hovorka, Š.; Friess, K.; Randová, A.; Brožová, L.; Jansen, J.C.; et al. Selective removal of butanol from aqueous solution by pervaporation with a PIM-1 membrane and membrane aging. Sep. Purif. Technol. 2015, 151, 108–114. [Google Scholar] [CrossRef]
- Mason, C.R.; Buonomenna, M.G.; Golemme, G.; Budd, P.M.; Galiano, F.; Figoli, A.; Friess, K.; Hynek, V. New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer 2013, 54, 2222–2230. [Google Scholar] [CrossRef]
- Vane, L.M.; Namboodiri, V.V.; Bowen, T.C. Hydrophobic zeolite–silicone rubber mixed matrix membranes for ethanol-water separation: Effect of zeolite and silicone component selection on pervaporation performance. J. Membr. Sci. 2008, 308, 230–241. [Google Scholar] [CrossRef]
- Vane, L.M.; Namboodiri, V.V.; Meier, R.G. Factors affecting alcohol-water pervaporation performance of hydrophobic zeolite-silicone rubber mixed matrix membranes. J. Membr. Sci. 2010, 364, 102–110. [Google Scholar] [CrossRef]
- Tan, H.; Wu, Y.; Li, T. Pervaporation of n-butanol aqueous solution through ZSM-5-PEBA composite membranes. J. Appl. Polym. Sci. 2013, 129, 105–112. [Google Scholar] [CrossRef]
- Takamizawa, S.; Kachi-Terajima, C.; Kohbara, M.-A.; Akatsuka, T.; Jin, T. Alcohol-vapor inclusion in single-crystal adsorbents [MII2(bza)4(pyz)]n (M = Rh, Cu): Structural study and application to separation membranes. Chem. Asian J. 2007, 2, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Fairen-Jimenez, D.; Moggach, S.A.; Wharmby, M.T.; Wright, P.A.; Parsons, S.; Düren, T. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 2011, 133, 8900–8902. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Xiao, Y.; Ma, J.; Guo, X.; Huang, H.; Yang, Q.; Liu, D.; Zhong, C. Recovery of acetone from aqueous solution by ZIF-7/PDMS mixed matrix membranes. RSC Adv. 2015, 5, 28394–28400. [Google Scholar] [CrossRef]
- Bai, Y.; Dong, L.; Zhang, C.; Gu, J.; Sun, Y.; Zhang, L.; Chen, H. ZIF-8 filled polydimethylsiloxane membranes for pervaporative separation of n-butanol from aqueous solution. Sep. Sci. Technol. 2013, 48, 2531–2539. [Google Scholar] [CrossRef]
- Fan, H.; Shi, Q.; Yan, H.; Ji, S.; Dong, J.; Zhang, G. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angew. Chem. Int. Ed. 2014, 53, 5578–5582. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, N.; Ji, S.; Yan, H.; Zhang, G. Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation. J. Mater. Chem. A 2014, 2, 20947–20957. [Google Scholar] [CrossRef]
- Li, J.; Wang, N.; Yan, H.; Ji, S.; Zhang, G. Designing superhydrophobic surfaces with sam modification on hierarchical ZIF-8/polymer hybrid membranes for efficient bioalcohol pervaporation. RSC Adv. 2014, 4, 59750–59753. [Google Scholar] [CrossRef]
- Wang, N.; Shi, G.; Gao, J.; Li, J.; Wang, L.; Guo, H.; Zhang, G.; Ji, S. Mcm-41@ZIF-8/PDMS hybrid membranes with micro- and nanoscaled hierarchical structure for alcohol permselective pervaporation. Sep. Purif. Technol. 2015, 153, 146–155. [Google Scholar] [CrossRef]
- Liu, S.; Liu, G.; Zhao, X.; Jin, W. Hydrophobic-ZIF-71 filled peba mixed matrix membranes for recovery of biobutanol via pervaporation. J. Membr. Sci. 2013, 446, 181–188. [Google Scholar] [CrossRef]
- Li, Y.; Wee, L.H.; Martens, J.A.; Vankelecom, I.F.J. ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery. J. Mater. Chem. A 2014, 2, 10034–10040. [Google Scholar] [CrossRef]
- Liu, S.; Liu, G.; Shen, J.; Jin, W. Fabrication of mofs/peba mixed matrix membranes and their application in bio-butanol production. Sep. Purif. Technol. 2014, 133, 40–47. [Google Scholar] [CrossRef]
- Lee, J.Y.; Olson, D.H.; Pan, L.; Emge, T.J.; Li, J. Microporous metal–organic frameworks with high gas sorption and separation capacity. Adv. Funct. Mater. 2007, 17, 1255–1262. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lee, J.Y.; Babarao, R.; Li, J.; Jiang, J.W. A highly hydrophobic metal-organic framework Zn(bdc)(ted)0.5 for adsorption and separation of CH3OH/H2O and CO2/CH4: An integrated experimental and simulation study. J. Phys. Chem. C 2010, 114, 6602–6609. [Google Scholar] [CrossRef]
- Bourrelly, S.; Moulin, B.; Rivera, A.; Maurin, G.; Devautour-Vinot, S.; Serre, C.; Devic, T.; Horcajada, P.; Vimont, A.; Clet, G.; et al. Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). J. Am. Chem. Soc. 2010, 132, 9488–9498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, J.; Wang, N.; Fan, H.; Zhang, R.; Ji, S. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles. J. Membr. Sci. 2015, 492, 322–330. [Google Scholar] [CrossRef]
- Yen, H.-W.; Chen, Z.-H.; Yang, I.K. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTS) in a pervaporation system incorporated with fermentation for butanol production by clostridium acetobutylicum. Bioresour. Technol. 2012, 109, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, P.; Fu, J.; Zhou, Y.; Huang, X.; Tang, X. Pervaporation of ethanol aqueous solution by polydimethylsiloxane/polyphosphazene nanotube nanocomposite membranes. J. Membr. Sci. 2009, 339, 85–92. [Google Scholar] [CrossRef]
- Le, N.L.; Wang, Y.; Chung, T.-S. Pebax/poss mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. J. Membr. Sci. 2011, 379, 174–183. [Google Scholar] [CrossRef]
- Liu, G.; Hung, W.-S.; Shen, J.; Li, Q.; Huang, Y.-H.; Jin, W.; Lee, K.-R.; Lai, J.-Y. Mixed matrix membranes with molecular-interaction-driven tunable free volumes for efficient bio-fuel recovery. J. Mater. Chem. A 2015, 3, 4510–4521. [Google Scholar] [CrossRef]
- Liu, G.; Xiangli, F.; Wei, W.; Liu, S.; Jin, W. Improved performance of pdms/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in pdms via a surface graft/coating approach. Chem. Eng. J. 2011, 174, 495–503. [Google Scholar] [CrossRef]
- Zhan, X.; Lu, J.; Tan, T.; Li, J. Mixed matrix membranes with hf acid etched ZSM-5 for ethanol/water separation: Preparation and pervaporation performance. Appl. Surf. Sci. 2012, 259, 547–556. [Google Scholar] [CrossRef]
- Tan, H.; Wu, Y.; Zhou, Y.; Liu, Z.; Li, T. Pervaporative recovery of n-butanol from aqueous solutions with MCM-41 filled peba mixed matrix membrane. J. Membr. Sci. 2014, 453, 302–311. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Valtchev, V.; Tosheva, L. Porous nanosized particles: Preparation, properties, and applications. Chem. Rev. 2013, 113, 6734–6760. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Kumar, A. Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme. J. Membr. Sci. 2009, 329, 160–168. [Google Scholar] [CrossRef]
- Shao, P.; Kumar, A. Separation of 1-butanol/2,3-butanediol using ZSM-5 zeolite-filled polydimethylsiloxane membranes. J. Membr. Sci. 2009, 339, 143–150. [Google Scholar] [CrossRef]
- Haelssig, J.B.; Tremblay, A.Y.; Thibault, J. A new hybrid membrane separation process for enhanced ethanol recovery: Process description and numerical studies. Chem. Eng. Sci. 2012, 68, 492–505. [Google Scholar] [CrossRef]
- Vane, L.M.; Alvarez, F.R. Membrane-assisted vapor stripping: Energy efficient hybrid distillation—Vapor permeation process for alcohol—Water separation. J. Chem. Technol. Biotechnol. 2008, 83, 1275–1287. [Google Scholar] [CrossRef]
Driving Force | Membrane Process | Pore Size/Molecular Weight Cut-Off (MWCO) | Separation of: | Literature: |
---|---|---|---|---|
Pressure | Microfiltration | 0.1–10 μm | Yeast, Bacteria | [9,10,11] |
Ultrafiltration | 1–100 nm or >2000 g·mol−1 | Proteins, DNA | [12] | |
Nanofiltration | 200–2000 g·mol−1 | Sugars, Acids, Salts | [13,14,15] | |
Reverse Osmosis | <100 g·mol−1 | Alcohols, Acids, Salts | [16,17] | |
Vapour Pressure | Pervaporation/Vapour Permeation | – | Water or Organic Solvent | [18] |
Dehydration of: Alcohol/Water (wt %/wt %) | Polymer | Inorganic Filler | Membrane Performance | Temperature (°C) | Membrane Thickness (μm) | Ref | |
---|---|---|---|---|---|---|---|
Total Flux (kg·m−2·h−1) | Separation Factor (α) | ||||||
Ethanol/Water (90/10) | Polyacrylonitrile | – | 0.03 | 12500 | 70 | 50 | [78] |
Ethanol/Water (90/10) | Polyacrylamide | – | 0.42 | 2200 | 70 | 50 | [78] |
Ethanol/Water (90/10) | Polyvinylalcohol | – | 0.38 | 140 | 70 | 50 | [78] |
Ethanol/Water (90/10) | Polyethersulfone | – | 0.72 | 52 | 70 | 50 | [78] |
Ethanol/Water (80/20) | Polyvinylalcohol | – | 0.14 | 40 | 50 | 70–80 | [83] |
Ethanol/Water (80/20) | Polyvinylalcohol | Zeolite NaX (11 wt %) | 0.21 | 19.4 | 50 | 70–80 | [83] |
Organophilic Pervaporation of: | Polymer | Membrane Performance | Temperature (°C) | Membrane Thickness (μm) | Ref | |
---|---|---|---|---|---|---|
Total Flux (kg·m−2·h−1) | Separation Factor (α) | |||||
1 wt % Ethanol | PTMSP | – | 10.7 | 75 | 100 | [87] |
2 wt % Ethanol | PTFE (0.2 μm pore diameter) | 12 | 2 | 60 | 175 | [88] |
5 wt % Ethanol | PTFE (0.2 μm pore diameter) | 4 | 8 | 30 | 80 | [89] |
1 wt % Ethanol | PIM-1 | 0.47 | 10.7 | 30 | 25–40 | [90] |
5 wt % Ethanol | Poly(octylmethyl siloxane) POMS | 0.12 | 3.95 | 50 | – | [91] |
5 wt % Ethanol | PEBA 2533 | 0.37 | 2.4 | 23 | 100 | [92] |
1.5 wt % Butanol | PDMS | 0.72 | 33.7 | 55 | 30 | [93] |
5 wt % Butanol | PEBA 2533 | 0.65 | 8.2 | 23 | 100 | [92] |
Dehydration of: Alcohol/Water (wt %/wt %) | Inorganic Filler | Polymer | Neat Membrane Performance | MMM Performance | Temperature (°C) | Ref | ||
---|---|---|---|---|---|---|---|---|
Total Flux (g·m−2·h−1) | Separation Factor (α) | Total Flux (g·m−2·h−1) | Separation Factor (α) | |||||
Ethanol/Water (90/10) | H-ZSM-5 (8 wt %) | Chitosan | 54.18 | 158 | 231 | 153 | 80 | [102] |
Ethanol/Water (90/10) | MPTMS-modified H-ZSM-5 (8 wt %) | Chitosan | 120 | 175 | 278 | 274 | 80 | [103] |
Ethanol/Water (90/10) | Functionalized-MWCNT (2 wt %) | Chitosan | 112 | 580 | 337 | 570 | 30 | [121] |
Ethanol/Water (80/20) | Zeolite KA (11 wt %) | PVA | 140 | 40 | 164 | 40 | 50 | [83] |
Ethanol/Water (80/20) | Zeolite NaA (11 wt %) | PVA | 140 | 40 | 172 | 36.6 | 50 | [83] |
Ethanol/Water (80/20) | Zeolite CaA (11 wt %) | PVA | 140 | 40 | 194 | 22.3 | 50 | [83] |
Ethanol/Water (80/20) | Zeolite NaX (11 wt %) | PVA | 140 | 40 | 214 | 19.4 | 50 | [83] |
Ethanol/Water (85/15) | ZIF-8 33.7 wt % | PBI | 151 | 4 | 106 | 25.4 | 60 | [105] |
Ethanol/Water (85/15) | ZIF-8 58.7 wt % | PBI | 151 | 4 | 992 | 10 | 60 | [105] |
Ethanol/Water (90/10) | ZIF-7 (5 wt %) | Chitosan | 602 | 148 | 322 | 2812 | 25 | [110] |
Ethanol/Water (90/10) | ZIF-8 (12 wt %) | Matrimid 5218 (polyimide) | 240 | 260 | 260 | 300 | 42 | [107] |
Ethanol/Water (90/10) | MCM-41 3.1 μm (12 wt %) | Matrimid 5218 (polyimide) | 240 | 260 | 310 | 190 | 42 | [107] |
Ethanol/Water (90/10) | MCM-41 0.53 μm (12 wt %) | Matrimid 5218 (polyimide) | 240 | 260 | 440 | 252 | 42 | [107] |
Ethanol/Water (90/10) | MCM-41-ZIF-8 coated (12 wt %) | Matrimid 5218 (polyimide) | 240 | 260 | 200 | 137 | 42 | [107] |
Ethanol/Water (85/15) | POSS (AMO273) (2 wt %) | 6FDA-NDA/DABA | – | – | 1900 | 166 | 60 | [119] |
Ethanol/Water (85/15) | POSS (SO1440) | 6FDA-NDA/DABA (3 wt % sulfonated polyimide) | – | – | 2000 | 237 | 60 | [120] |
IPA/Water (90/10) | Na+MMT (5 wt %) | PVA | 95 | 77 | 51 | 1116 | 30 | [118] |
IPA/Water (90/10) | Na+MMT (10 wt %) | PVA | 95 | 77 | 75 | 2241 | 30 | [118] |
IPA/Water (90/10) | Silicalite-1 (20 wt %) | PVA | 95 | 77 | 69 | 2241 | 30 | [122] |
IPA/Water (87.7/13.3) | Aluminosilicate (6 wt %) | PVA-glutaraldehyde crosslinked | 109.8 | 73 | 40 | [100] | ||
IPA/Water (90/10) | ZSM-5 (6 wt %) | PVA | – | – | 320 | 216 | 30 | [123] |
IPA/Water (80/20) | Zeolite KA (11 wt %) | PVA | 146 | 223 | 179 | 410 | 50 | [83] |
IPA/Water (80/20) | Zeolite NaA (11 wt %) | PVA | 146 | 223 | 183 | 328 | 50 | [83] |
IPA/Water (80/20) | Zeolite CaA (11 wt %) | PVA | 146 | 223 | 190 | 233 | 50 | [83] |
IPA/Water (80/20) | Zeolite NaX (11 wt %) | PVA | 146 | 223 | 216 | 233 | 50 | [83] |
IPA/Water (90/10) | Zeolite 5A (20 wt %) | P84 | 30 | 3000 | 40 | 4200 | 60 | [97] |
IPA/Water (90/10) | Zeolite 13X (40 wt %) | P84 | 30 | 3000 | 110 | 2700 | 60 | [97] |
IPA/Water (90/10) | Zeolite 4A (10 wt %) | Matrimid 5218 | 14 | 12716 | 18 | 8991 | 30 | [99] |
IPA/Water (90/10) | ZSM-5 (10 wt %) | Matrimid 5218 | 14 | 12716 | 16 | 3904 | 30 | [99] |
IPA/Water (95/5) | NaY (30 wt %) | Chitosan | 32 | 422 | 115 | 2620 | 30 | [124] |
IPA/Water (87.4/12.6) | Zeolite-K-LTL (10 wt %) | Sodium Alginate | – | – | 140 | 3847 | 30 | [96] |
IPA/Water (90/10) | ZIF-8 (5 wt %) | PVA | 135 | 163 | 868 | 132 | 30 | [104] |
IPA/Water (90/10) | ZIF-8 (7.5 wt %) | PVA | 135 | 163 | 952 | 91 | 30 | [104] |
IPA/Water (85/15) | ZIF-8 (33.7 wt %) | PBI | 13 | >5000 | 103 | 1686 | 60 | [105] |
IPA/Water (85/15) | ZIF-8 (58.7 wt %) | PBI | 13 | >5000 | 246 | 310 | 60 | [105] |
IPA/Water (85/15) | ZIF-90 (30 wt %) | P84 | – | – | 114 | 385 | 60 | [108] |
IPA/Water (85/15) | ZIF-90-SPES (30 wt %) | P84 | – | – | 109 | 5668 | 60 | |
IPA/Water (90/10) | CNTs 1 wt % | PVA | – | – | 96 | 817 | 30 | [113] |
IPA/Water (90/10) | CNTs 2 wt % | PVA | – | – | 79 | 1794 | 30 | [113] |
IPA/Water (90/10) | MWNT-PAH (1 wt %) | PVA | 229 | 141 | 207 | 945 | 30 | [114] |
IPA/Water (90/10) | HPA 40–50 μm (7 wt %) | PVA | 132 | 77 | 32 | 89991 | 30 | [117] |
n-Butanol/Water (85/15) | ZIF-8 (33.7 wt %) | PBI | 11.6 | >5000 | 81 | 3417 | 60 | [105] |
n-Butanol/Water (85/15) | ZIF-8 (58.7 wt %) | PBI | 11.6 | >5000 | 226 | 698 | 60 | [105] |
Organophilic Pervaporation of: | Inorganic Filler | Polymer | Neat Membrane Performance | MMM Performance | Temperature | Ref | ||
---|---|---|---|---|---|---|---|---|
Total Flux (g·m−2·h−1) | Separation Factor (α) | Total Flux (g·m−2·h−1) | Separation Factor (α) | |||||
5 wt % Methanol | [CuII2(bza)4(pyz)]n (3 wt %) | PDMS | 24 | 2 | 33 | 6.5 | RT | [147] |
5 wt % Ethanol | ZSM-5 (40 wt %) | PDMS | – | – | 408 | 14 | 40 | [166] |
5 wt % Ethanol | ZSM-5 HF etched | PDMS | – | – | 211 | 9.2 | 50 | [167] |
5 wt % Ethanol | Silicalite-1 (60 wt %) | PDMS | 24 | 7.6 | 50.7 | 16.5 | 22.5 | [128] |
5.1 wt % Ethanol | Silicalite-1 (77 wt %) TFC | PDMS | 530 | 4.4 (7.0 wt % EtOH Feed) | 150 | 34 | 22 | [129] |
1.6 wt % Ethanol | Silicalite-1-VTMS | PDMS | – | – | – | 18 | 50 | [137] |
5 wt % Ethanol | Silicalite-1 (2 wt %) | PEBA | – | – | 833 | 3.6 | 40 | [139] |
1 wt % Ethanol | - | PIM-1 | 470 | 10.7 | – | – | 30 | [90] |
5 wt % Ethanol | Silicalite-1 (19.3 wt %) | PIM-1 | 6520 | 3.61 | 5460 | 5.68 | 60 | [143] |
5 wt % Ethanol | Silicalite-1 (2 wt %) | PEBA | – | – | 833 | 3.6 | 40 | [139] |
5 wt % Ethanol | MIL-53 (40 wt %) | PDMS | 1667 | 7.6 | 5467 | 11.1 | 70 | [161] |
5 wt % Ethanol | MCM-41@ZIF-8 | PDMS | 886 | 6.8 | 1846 | 9.5 | 60 | [154] |
5 wt % Ethanol | [CuII2(bza)4(pyz)]n (3 wt %) | PDMS | 23 | 2.3 | 47 | 6.2 | RT | [147] |
10 wt % Ethanol | PZSNTs (10 wt %) | PDMS | – | – | 11.9 × 10−3 g·mm−2·h−1 | 10 | 40 | [163] |
5 wt % Ethanol | POSS (AL0136) (2 wt %) | PEBAX 2533 | – | – | 183.5 | 4.6 | RT | [164] |
5 wt % Ethanol | POSS (SO1440) (2 wt %) | PEBAX 2533 | – | – | 125.8 | 4.1 | RT | [164] |
1% 1-butanol | Silicalite-1 | PDMS | – | – | 607 | 93 | 70 | [132] |
4.3 wt % 1-butanol | ZSM-5 (5 wt %) | PEBA | – | – | 719.3 | 33.3 | 35 | [146] |
2.5 wt % 1-butanol | MCM-41 (2 wt %) | PEBA | – | – | > 500 | 25 | 35 | [168] |
1.0 wt % isobutanol | ZIF-8 (10 wt %) | PMPS | – | – | 6400 | 40.1 | 80 | [112] |
1 wt % 1-butanol | ZIF-8 | PMPS | – | – | 5100 | 36.8 | 80 | [112] |
0.96 wt % 1-butanol | ZIF-8 | PDMS | 2.59 (Permeability of n-butanol × 105 barrer) | 3.21 | 1.71 (Permeability of n-butanol × 105 barrer) | 5.95 | 40 | [150] |
5 wt % 1-butanol | ZIF-8 (nanodisperse) | PDMS | – | – | 2800.5 | 52.8 | 80 | [152] |
1 wt % 1-butanol | ZIF-8 (40 wt %) Simultaneous spray self-assembly | PDMS | – | – | 4846.2 | 81.6 | 80 | [151] |
3 wt % 1-butanol | ZIF-8 | PDMS | 1065 | 13.4 | 1459 | 58.4 | 60 | [153] |
3 wt % 1-butanol | ZIF-8 | PDMSCF3 | 1049 | 19.4 | 1339 | 84.8 | 60 | |
3 wt % 1-butanol | MCM-41@ZIF-8 | PDMS | – | – | 2052 | 45 | 60 | [154] |
Model ABE Broth / 1-Butanol (12 g/L) | ZIF-71 | PEBA | – | – | 520 | 18.8 | 37 | [155] |
Model ABE Broth 1-Butanol (12 g/L) | Zn(BDC)(TED)0.5 | PEBA | – | – | 630 | 17.4 | 40 | [157] |
1 wt % 1-butanol | CNT 5 wt % | PEBA | 85 | 17.4 | 153 | 19.4 | 37 | [162] |
1 wt % 1-butanol | CNT 10 wt % | PEBA | 85 | 17.4 | 139 | 18 | 37 | [162] |
1 wt % 1-butanol | POSS | PDMS | – | – | 745 | 40 | 40 | [165] |
Acetone | ZIF-7 | PDMS | – | – | 1236.8 | 39.1 | 60 | [149] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davey, C.J.; Leak, D.; Patterson, D.A. Hybrid and Mixed Matrix Membranes for Separations from Fermentations. Membranes 2016, 6, 17. https://doi.org/10.3390/membranes6010017
Davey CJ, Leak D, Patterson DA. Hybrid and Mixed Matrix Membranes for Separations from Fermentations. Membranes. 2016; 6(1):17. https://doi.org/10.3390/membranes6010017
Chicago/Turabian StyleDavey, Christopher John, David Leak, and Darrell Alec Patterson. 2016. "Hybrid and Mixed Matrix Membranes for Separations from Fermentations" Membranes 6, no. 1: 17. https://doi.org/10.3390/membranes6010017
APA StyleDavey, C. J., Leak, D., & Patterson, D. A. (2016). Hybrid and Mixed Matrix Membranes for Separations from Fermentations. Membranes, 6(1), 17. https://doi.org/10.3390/membranes6010017