Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water
Abstract
:1. Introduction
2 Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Experimental Procedures
2.4. Selection of Optimum TiO2 Concentration
2.5. Analyses
2.5.1. TOC, Turbidity and UV254 Measurements
2.5.2. Zeta Potential and Particle Size Analysis
2.5.3. Liquid Chromatography (LC)
3. Results
3.1. Effect of TiO2/UV Photocatalytic Oxidation of HA on the Permeate Flux
3.2. Effect of Electrolyte Concentration on the Permeate Flux and HA Degradation
3.3. Effect of TiO2 Concentration on the Permeate Flux and HA Degradation
3.4. Recycling of Spent TiO2 Slurry
3.5. Liquid Chromatography (LC)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tay, J.; Chen, D.; Sun, D. Removal of color substances using photocatalytic oxidation for membrane filtration processes. Water Sci. Technol. 2001, 43, 319–325. [Google Scholar] [PubMed]
- Li, X.Z.; Fan, C.M.; Sun, Y.P. Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere 2002, 48, 453–460. [Google Scholar] [CrossRef]
- Fang, H.; Sun, D.; Wu, M.; Phay, W.; Tay, J. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation process. Water Sci. Technol. 2005, 51, 373–380. [Google Scholar] [PubMed]
- Lee, S.-A.; Choo, K.-H.; Lee, C.-H.; Lee, H.-I.; Hyeon, T.; Choi, W.; Kwon, H.-H. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Ind. Eng. Chem. Res. 2001, 40, 1712–1719. [Google Scholar] [CrossRef]
- Kagaya, S.; Shimizu, K.; Arai, R.; Hasegawa, K. Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride. Water Res. 1999, 33, 1753–1755. [Google Scholar] [CrossRef]
- Ho, D.P.; Vigneswaran, S.; Ngo, H.H. Photocatalysis-membrane hybrid system for organic removal from biologically treated sewage effluent. Sep. Purif. Technol. 2009, 68, 145–152. [Google Scholar] [CrossRef]
- Huang, X.; Leal, M.; Li, Q. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Res. 2008, 42, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Le-Clech, P.; Lee, E.-K.; Chen, V. Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Res. 2006, 40, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Ollis, D.F. Integrating photocatalysis and membrane technologies for water treatment. Ann. N. Y. Acad. Sci. 2003, 984, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Wintgens, T.; Melin, T.; Schäfer, A.; Khan, S.; Muston, M.; Bixio, D.; Thoeye, C. The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 2005, 178, 1–11. [Google Scholar] [CrossRef]
- Mozia, S.; Morawski, A.W. Hybridization of photocatalysis and membrane distillation for purification of wastewater. Catal. Today 2006, 118, 181–188. [Google Scholar] [CrossRef]
- Chin, S.S.; Chiang, K.; Fane, A.G. The stability of polymeric membranes in a TiO2 photocatalysis process. J. Membr. Sci. 2006, 275, 202–211. [Google Scholar] [CrossRef]
- Mozia, S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 2010, 73, 71–91. [Google Scholar] [CrossRef]
- Meng, Y.; Huang, X.; Yang, Q.; Qian, Y.; Kubota, N.; Fukunaga, S. Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane. Desalination 2005, 181, 121–133. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, J.; Li, H.; Xu, N.; Shi, J. Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles. J. Membr. Sci. 2002, 208, 331–341. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Nguyen, D.A.; Baskaran, K. Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination 2011, 279, 383–389. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Baskaran, K. Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater. Desalin. Water Treat. 2013, 1–8. [Google Scholar] [CrossRef]
- Dow, N.; Murphy, D.; Clement, J.; Duke, M. Outcomes of the australian ozone/ceramic membrane trial on secondary effluent:[performance results from a trial using ozone combined with ceramic membranes to treat secondary effluent at eastern treatment plant in Melbourne. Water 2013, 40, 45. [Google Scholar]
- Karnik, B.S.; Davies, S.H.; Chen, K.C.; Jaglowski, D.R.; Baumann, M.J.; Masten, S. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Res. 2005, 39, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, G.; Guan, Y.; Zhang, X. Treatment of river water by a hybrid coagulation and ceramic membrane process. Desalination 2011, 280, 114–119. [Google Scholar] [CrossRef]
- Kabsch-Korbutowicz, M.; Biłyk, A.; Mołczan, M. The effect of feed water pretreatment on ultrafiltration membrane performance. Polish J. Environ. Stud. 2006, 15, 719–725. [Google Scholar]
- Kim, J.; Davies, S.H.R.; Baumann, M.J.; Tarabara, V.V.; Masten, S.J. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation–ceramic ultrafiltration system treating natural waters. J. Membr. Sci. 2008, 311, 165–172. [Google Scholar] [CrossRef]
- Kim, J.-O.; Jung, J.-T.; Yeom, I.-T.; Aoh, G.-H. Effect of fouling reduction by ozone backwashing in a microfiltration system with advanced new membrane material. Desalination 2007, 202, 361–368. [Google Scholar] [CrossRef]
- Lehman, S.G.; Liu, L. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent. Water Res. 2009, 43, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Benotti, M.J.; Stanford, B.D.; Wert, E.C.; Snyder, S.A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 2009, 43, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, S.; Song, L.; Zhu, B.; Darli, M.; Jin-Yuan, C.; Stephen, G.; Mikel, D. UV/TiO2 photocatalytic oxidation of recalcitrant organic matter: Effect of salinity and pH. Water Sci. Technol. 2014, 70, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 2009, 11, 77–89. [Google Scholar] [CrossRef]
- Xi, W.; Geissen, S.-U. Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Res. 2001, 35, 1256–1262. [Google Scholar] [CrossRef]
- Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Weber, J.-V. Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. J. Photochem. Photobiol. A Chem. 2002, 152, 267–273. [Google Scholar] [CrossRef]
- Lee, S.; Cho, J. Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal. Desalination 2004, 160, 223–232. [Google Scholar] [CrossRef]
- Rizzo, L.; Koch, J.; Belgiorno, V.; Anderson, M.A. Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm. Desalination 2007, 211, 1–9. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res. 2004, 8, 501–551. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Ulrike, D. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Zhu, B.; Gray, S.; Duke, M.; Muthukumaran, S. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water. Membranes 2016, 6, 18. https://doi.org/10.3390/membranes6010018
Song L, Zhu B, Gray S, Duke M, Muthukumaran S. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water. Membranes. 2016; 6(1):18. https://doi.org/10.3390/membranes6010018
Chicago/Turabian StyleSong, Lili, Bo Zhu, Stephen Gray, Mikel Duke, and Shobha Muthukumaran. 2016. "Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water" Membranes 6, no. 1: 18. https://doi.org/10.3390/membranes6010018
APA StyleSong, L., Zhu, B., Gray, S., Duke, M., & Muthukumaran, S. (2016). Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water. Membranes, 6(1), 18. https://doi.org/10.3390/membranes6010018