Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges
Abstract
:1. Introduction
2. Interactions between Aquaporin Proteins and Block Copolymer Matrixes
Polymer | Mn | PDI | f | Membrane Protein | Transport Cargo | FI? | mPAR | S | Incorporation method Main Functional incorporation measurement | References | |
---|---|---|---|---|---|---|---|---|---|---|---|
PMOXA13–PDMS23–PMOXA13 | 3.9 | e− | X | 1:3300 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] | |||
PMOXA13–PDMS23–PMOXA13 | 4.7 | NA | 0.44 | Alamethicin | X | 1:590 | P | MAq | Current change | [50] | |
PMOXA13–PDMS23–PMOXA13 | 4.7 | NA | 0.44 | Hemolysin | X | 1:110,000,000 | P | MAq | Current change | [50] | |
PMOXA13–PDMS23–PMOXA13 | 4.7 | NA | 0.44 | OmpG | X | 1:33,000,000 | P | MAq | Current change | [50] | |
PMOXA20-PDMS41-PMOXA20 | 6.4 | 1.61 | 0.49 | NtAQP1 | CO2 | X | 1:360 | P | MOr | Cargo → Reaction inside vesicle → pH change | [51] |
PMOXA20-PDMS41-PMOXA20 | 6.4 | 1.61 | 0.49 | NtPIP2:1 | CO2 | X | 1:360 | P | MOr | Cargo → Reaction inside vesicle → pH change | [51] |
PMOXA20-PDMS41-PMOXA20 | 6.5 | <1.2 | 0.51 | AQP0 | H2O | ND | 10:1–1:1 | P | MAq & dialysis | [18] | |
PMOXA20-PDMS41-PMOXA20 | 6.5 | <1.2 | 0.51 | AQP0 | H2O | ND | 10:1–1:50 | V | MAq & dialysis | [18] | |
PMOXA20-PDMS41-PMOXA20 | 6.5 | <1.2 | 0.51 | AQP0 | H2O | - | 1:2.5–0 | V | MAq & dialysis | Vesicle size change | [18] |
PMOXA12-PDMS54-PMOXA12 | 6.0 | 1.01 | 0.2 | AqpZ | H2O | X | 1:100–1:1600 | V | MAq & biobeads | Vesicle size change | [3,52] |
PMOXA19-PDMS74-PMOXA19 | 8.7 | 1.46 | 0.23 | ||||||||
PMOXA12-PDMS54-PMOXA12 | 6.0 | 1.01 | 0.30 | AqpZ | H2O | X | 1:50–1:400 | V | MAq & biobeads | Vesicle size change | [53,54] |
PMOXA12-PDMS54-PMOXA12 | 6.0 | 1.01 | 0.30 | Hemolysin | - | 1:83,000,000 | P | MAq | Current change | [50] | |
PMOXA20-PDMS54-PMOXA20 | 7.4 | NA | 0.42 | TsX | Nucleosides | X | 1:450 | V | MOr, SI & SEC | Cargo → Encapsulated enzyme activity → Color change | [55] |
PMOXA8-PDMS55-PMOXA8 | 5.4 | NA | 0.22 | AqpZ | H2O | X | 1:3500 | V | PFR, biobeads & SEC | Vesicle size change | [56] |
PMOXA12-PDMS55-PMOXA12 | 6.1 | 1.64 | 0.30 | OmpF | ELF97 | X | 1:1200 | V | MAq & SEC Cargo | Precipitation inside vesicle → Color change | [57] |
PMOXA12-PDMS55-PMOXA12 | 6.1 | 1.64 | 0.30 | OmpF | Acridine orange | X | 1:9,100,000 | V | PPFR & SEC | Cargo release → Color change | [58] |
PMOXA12-PDMS55-PMOXA12 | 6.1 | 1.64 | 0.30 | OmpF | Paraquat. Pyocyanin | X | 1:640 | V | MAq & dialysis | No cargo → No detoxication of encapsulated enzyme→ Cell death | [59,60] |
PMOXA12-PDMS55-PMOXA12 | 6.1 | 1.64 | 0.30 | AQP0 | H2O | ND | 10:1–1:25 | P | MAq & dialysis | [18] | |
PMOXA12-PDMS55-PMOXA12 | 6.1 | 1.64 | 0.30 | AQP0 | H2O | - | 1:3–0 | V | MAq & dialysis | Vesicle size change | [18] |
PMOXA12-PDMS55-PMOXA12 | 6.1 | 1.64 | 0.30 | AqpZ | H2O | ND | 1:4 | Cr. V | MAq & biobeads | [29] | |
PMOXA7-PDMS60-PMOXA7 | 5.6 | NA | 0.19 | Gramicidin A | Monovalent cations | X | 1:81,000 | P | MOr | Current change | [37] |
PMOXA8-PDMS60-PMOXA8 | 5.8 | NA | 0.21 | AqpZ | H2O | X | 1:3800 | V | PFR, biobeads & SEC | Vesicle size change | [56] |
PMOXA13-PDMS62-PMOXA13 | 6.8 | 1.47 | 0.29 | NADH reductase | e− | X | 1:1900 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] |
PMOXA15-PDMS62-PMOXA15 | 7.1 | 1.50 | 0.32 | NADH reductase | e− | X | 1:1800 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] |
PMOXA12-PDMS65-PMOXA12 | 6.9 | 1.67 | 0.27 | MloK1 | Potassium | X | 1:390 | P | MAq & biobeads | Current change | [61] |
PMOXA15-PDMS68-PMOXA15 | 7.6 | NA | 0.30 | LamB | Maltohexaose | X | NA | P | MAq | Current change at varying cargo concentrations | [62] |
PMOXA15-PDMS68-PMOXA15 | 7.6 | NA | 0.30 | OmpF | Actylthiocholine | X | 1:10000 | V | PFR | Cargo → Encapsulated enzyme activity → Color change | [62] |
PMOXA15-PDMS68-PMOXA15 | 7.6 | 1.20 | 0.30 | AqpZ | H2O | X | 1:10–1:1000 | V | PFR & biobeads | Vesicle size change | [63] |
PMOXA15-PDMS68-PMOXA15 | 7.6 | 1.20 | 0.30 | Hemolysin | 1:66,000,000 | V | MAq | Current change | [50] | ||
PMOXA21-PDMS69-PMOXA21 | 8.7 | 2.00 | 0.37 | NADH reductase | e− | X | 1:1500 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] |
PMOXA16-PDMS72-PMOXA16 | 8.0 | 1.17 | 0.30 | OmpF | Enone | X | 1:220 | V | PPFR & dialysis | Cargo → Encapsulated enzyme activity → Color change | [64] |
PMOXA-PDMS-PMOXA | 8.8 | NA | NA | OmpF | ELF97 | X | 1:50 | V | MAq & SEC | Cargo → Precipitation inside vesicle → Color change | [65] |
PMOXA32-PDMS72-PMOXA32 | 10.7 | 1.83 | 0.47 | OmpF | 7-ADCA. PGME | X | NA | V | PFR & dialysis | Cargo → Encapsulated enzyme activity → Bacterial death | [66] |
PMOXA11-PDMS73-PMOXA11 | 7.2 | 1.70 | 0.22 | LamB | DNA | X | 1:390 | V | MOr, SI & SEC | Fluorescence-labelled cargo | [67] |
PMOXA11-PDMS73-PMOXA11 | 7.2 | 1.70 | 0.22 | OmpF | Nucleosides | X | 1:10, 1:100 | V | PPFR & SEC | Cargo → Encapsulated enzyme activity → Color change | [68] |
PMOXA11-PDMS73-PMOXA11 | 7.2 | 1.70 | 0.22 | TsX | Nucleosides | X | 1:10, 1:100 | V | PPFR & SEC | Cargo → Encapsulated enzyme activity → Color change | [68] |
PMOXA11-PDMS73-PMOXA11 | 7.2 | 1.70 | 0.22 | LamB | DNA | X | NA | P | MAq | [67] | |
Lipids | |||||||||||
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | Alamethicin | Calcium | X | 1:24 | V | MAq | Cargo precipitation inside vesicle | [69,70] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | FhuA | Sulphorhodamine B | X | 1:6,000,000 | V | MOr, SI & SEC | Cargo → Quenching inside vesicle → Color change | [71,72,73] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | FhuA | TMB | X | 1:4500. 1:3,600,000 | V | MAq/ & biobeads/MOr, SI & SEC | Cargo → Encapsulated enzyme activity → Color change | [71,72,74] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | FhuA | ND | 3000:1 | P | MAq | [72] | ||
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | FhuA | NAD | - | NA | V | MAq | Cargo → Encapsulated enzyme activity→ Absorbance change of cargo | [73] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | FhuA | DNA | - | NA | V | MOr, SI & SEC | Fluorescence-labelled cargo | [73] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | LamB | Sugar | X | NA | P | MAq | Current change at varying cargo concentration | [75] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | OmpF | e− | X | NA | P | MAq | Current change | [75] |
PMOXA21-PDMS73-PMOXA21 | 9.0 | 1.70 | 0.36 | OmpF | Ampicillin | X | 1:1000 | V | MOr & SEC | Cargo → Hydrolysis inside vesicle → Color change | [12,76] |
PMOXA20-PDMS75-PMOXA20 | 9.0 | 1.46 | 0.34 | AqpZ | H2O | X | 1:25, 1:50, 1:200 | V | PFR & biobeads | Vesicle size change | [77] |
PMOXA11-PDMS76-PMOXA11 | 7.8 | 1.48 | 0.25 | BR | H+ | X | NA | V/Mc | MOr & SI | pH change | [78,79] |
PMOXA11-PDMS76-PMOXA11 | 7.8 | 1.48 | 0.25 | BR & ATPase | H+ | X | 1:180 | V | MOr & dialysis | pH change & bioluminescence assay | [15] |
PMOXA11-PDMS76-PMOXA11 | 7.8 | 1.48 | 0.25 | BR & ATPase | H+ | X | 1:20 | V | PBR & dialysis | pH change | [80,81,82] |
PMOXA6-PDMS90-PMOXA6 | 9.5 | NA | 0.12 | OmpF | L-ascorbic acid, CO, Na2 S2 O4, ONOO− | X | 1:1300 | V | PFR, dialysis & SEC | Cargo → Absorbance change of encapsulated protein | [83] |
PMOXA21-PDMS97-PMOXA21 | 9.0 | 1.70 | 0.30 | Hemaglutinin | X | 1:3800 | V | MAq & biobeads | MP → Fusion with fluorescence-labelled liposomes | [74] | |
PMOXA9-PDMS106-PMOXA9 | 9.4 | 1.38 | 0.14 | NADH reductase | e− | X | 1:1400 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] |
PMOXA13-PDMS110-PMOXA13 | 10.4 | 1.44 | 0.19 | NADH reductase | e− | X | 1:1200 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] |
PMOXA14-PDMS110-PMOXA14 | 10.5 | 1.36 | 0.20 | NADH reductase | e− | X | 1:1200 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] |
PMOXA15-PDMS110-PMOXA15 | 10.7 | 1.62 | 0.21 | AqpZ | H2O | X | 1:25–1:500 | V | PFR & SEC | Vesicle size change | [17,29] |
PMOXA15-PDMS110-PMOXA15 | 10.7 | 1.62 | 0.21 | OmpF | ND | NA | P | MAq | [84] | ||
PMOXA-PDMS-PMOXA | 20.0 | NA | FhuA | Calcein | X | 1:2,700,000 | V | MOr, SI & SEC | Cargo release → Color change | [85] | |
PMOXA65-PDMS165-PMOXA65 | 23.3 | 1.63 | NADH reductase | e− | X | 1:550 | V | MAq, biobeads & SEC | Cargo → Reduction of MP → EPR signal | [49] | |
PMOXA-PDMS-PMOXA | NA | NA | NA | BR | H+ | X | NA | P | MAq | pH change | [86,87] |
PMOXA-PDMS-PMOXA | NA | NA | NA | BR & CcO | H+ & e− | X | NA | V | MOr, SI & SEC | Current & pH change | [87,88] |
PMOXA-PDMS-PMOXA | NA | NA | NA | CcO | e− | X | NA | P | MOr, SI & SEC | Current change | [86,87] |
PMOXA-PDMS-PMOXA | NA | NA | NA | OmpF | H+ | X | NA | P | MAq | Current change | [89] |
PMOXA110-PDMS40-PEO25 | 13.4 | NA | 0.75 | AQP0 | H2O | ND | 1:200 | V | MOr, SI & SEC | [25] | |
PMOXA45-PDMS40-PMOXA67 | 10.6 | NA | 0.68 | AQP0 | H2O | ND | 1:200 | V | MOr, SI & SEC | [25] | |
MPEG-PVL | 6.5 | <1.2 | 0.00 | Polymyxin B | Calcein | X | 1:2 | V | MAq | Cargo release → Color change | [73] |
P2VP-PEO | NA | NA | NA | FhuA | NAD | - | NA | V | MOr, SI & SEC | Cargo → Enzyme reaction inside vesicle → Absorbance change of cargo | [73] |
PB12-PEO10 | 1.1 | 1.09 | 0.32 | AQP0 | H2O | X | 1:5–1:250 | V | MAq & dialysis | Vesicle size change | [18] |
PB12-PEO10 | 1.1 | 1.09 | 0.32 | AQP0 | H2O | ND | 1:1.3 | Cr | MAq & dialysis | [18] | |
PB12-PEO10 | 1.1 | 1.09 | 0.32 | AQP0 | H2O | ND | 1:1–1:10 | P | MAq & dialysis | [18] | |
PB12-PEO10 | 1.1 | 1.09 | 0.3 | AqpZ | H2O | X | 1:50-1:1000 | V | MAq & dialysis | Vesicle size change | [90] |
PB12-PEO10 | 1.1 | 1.09 | 0.32 | BR | H+ | X | 1:500 | V | MAq & biobeads | pH change | [91] |
PB12-PEO10 | 1.1 | 1.09 | 0.3 | SoPIP2;1 | H2O | - | 1:200 | V | MAq & biobeads | Vesicle size change | [90] |
PB12-PEO10 | 1.1 | NA | 0.34 | Hemolysin | Calcein | X | 1:33,000 | V | MAq & dialysis | Cargo release → Color change | [92] |
PB22-PEO14 | 1.8 | 1.17 | 0.28 | AQP0 | H2O | ND | 2:1–1:300 | P | MAq & dialysis | [18] | |
PB22-PEO23 | 2.2 | 1.09 | 0.39 | AqpZ | H2O | X | 1:15–1:200 | V | MAq & dialysis | Vesicle size change | [90] |
PB22-PEO23 | 2.2 | 1.09 | 0.39 | SoPIP2;1 | H2O | - | 1:15, 1:200 | V | MAq & dialysis | Vesicle size change | [90] |
PB29-PEO16 | 2.3 | 1.00 | 0.25 | AQP10 | H2O | - | 1:990 | V | PFR & SE | Vesicle size change | - |
PB35-PEO14 | 2.5 | 1.09 | 0.19 | AqpZ | H2O | - | 1:15 | V | MAq & dialysis | Vesicle size change | [90] |
PB35-PEO14 | 2.5 | 1.09 | 0.19 | SoPIP2;1 | H2O | - | 1:15 | V | MAq & dialysis | Vesicle size change | [90] |
PB43-PEO32 | 3.7 | 1.03 | 0.31 | AQP10 | H2O | X | 1:600 | V | PFR & SE | Vesicle size change | [93] |
PB46-PEO30 | 3.8 | 1.04 | 0.28 | AqpZ | H2O | - | 1:50,1:100,1:200 | V | MAq & dialysis | Vesicle size change | [90] |
PB46-PEO32 | 3.9 | 1.00 | 0.30 | AQP10 | H2O | - | 1:580 | V | PFR & SE | Vesicle size change | - |
PB52-PEO29 | 4.1 | <1.1 | 0.25 | Hemolysin | e− | X | NA | P | MAq | Current change | [94] |
PB52-PEO29 | 4.1 | <1.1 | 0.25 | Polymyxin B | X | NA | P | MAq | Current change | [95] | |
PB52-PEO29-LA | 4.1 | <1.1 | 0.25 | Hemolysin | e− | X | NA | P | MAq | Current change | [94] |
PB52-PEO29-LA | 4.1 | <1.1 | 0.25 | Polymyxin B | X | NA | P | MAq | Current change | [95] | |
PB92-PEO78 | 8.4 | 1.08 | 0.34 | AQP10 | H2O | - | 1:270 | V | PFR & SE | Vesicle size change | - |
PB125-PEO80 | 8.9 | <1.1 | 0.28 | Alamethicin | Calcein | - | 1:2-1:8 | V | MAq | Cargo release → Color change | [96] |
PHEMA25-PBMA25-PHEMA25 | 14.3 | 1.30 | 0.83 | AqpZ | - | NA | P | MAq & biobeads | Current change | [97] | |
PHEMA25-PBMA25-PHEMA25 | 14.3 | 1.30 | 0.83 | Hemolysin | X | NA | P | MAq | Current change | [97] | |
PHEMA25-PBMA25-PHEMA25 | 14.3 | 1.30 | 0.83 | OmpF | - | 1:70 | P | MAq & biobeads | Current change | [97] | |
PEE37-PEO40 | 3.9 | <1.1 | 0.39 | Alamethicin | Calcein | X | 1:2–1:8 | V | MAq | Cargo release → Color change | [96] |
PPO34-PGM14 | 6.5 | 1.30 | 0.66 | Strepatividin-BSA | ND | 1:5, 1:15, 1:50 | V | PPFR | [98] | ||
PI93-PEO87 | 10.2 | 1.00 | 0.31 | FhuA | TMB | X | 1:6700. 1:5,300,000 | V | MOr, SI & SEC | Cargo → Encapsulated enzyme activity → Color change | [73] |
PEO136-PIB18-PEO136 | 8.0 | 1.86 | 0.90 | Cecropin A | Calcein | X | 1:30 | V | MAq & SEC | Cargo release → Color change | [99] |
P4MVP21-PS26-P4MVP21 | 13.1 | NA | 0.80 | PR | X | 1:10 | V | MAq & precipitation | Absorbance change in membrane protein | [100] | |
P4MVP21-PS38-P4MVP21 | 14.3 | 1.19 | 0.74 | PR | X | 1:10 | V | MAq & precipitation | Absorbance change in membrane protein | [100] | |
P4MVP29-PS42-P4MVP29 | 18.7 | NA | 0.78 | PR | X | 1:10 | V | MAq & precipitation | Absorbance change in membrane protein | [100] | |
P4MVP22-PB28-P4MVP22 | 15.0 | NA | 0.92 | PR | ND | 1:10 | V | MAq & precipitation | [101] | ||
P4MVP22-PB28-P4MVP22 | 15.0 | NA | 0.92 | RC | e− | X | 1:25 | V | MAq & precipitation | Cargo → Reduction of MP → EPR signal | [102] |
P4VP22-PB28-P4VP22 | 7.1 | NA | 0.82 | PR | ND | 1:10 | V | MAq & precipitation | [101] | ||
P4MVP29-PB56-P4MVP29 | 17.4 | 1.08 | 0.81 | RC | e− | X | 1:25 | V | MAq & precipitation | Cargo → Reduction of MP → EPR signal | [102] |
P4MVP18-PB93-P4MVP18 | 13.9 | 1.06 | 0.62 | PR | ND | 1:10 | V | MAq & precipitation | [101] |
3. Evaluation of AQP Incorporation Characterization Methods
3.1. Stopped-Flow Light Scattering
3.2. Freeze Fracture Transmission Electron Microscopy
3.3. Fluorescence Correlation Spectroscopy
3.4. Small-Angle X-Ray Scattering
4. Recent Developments in AQP Membrane Designs
4.1. Membrane Designs Based on Planar Biomimetic Structures
4.2. Membrane Designs Based on Vesicular Biomimetic Structures
4.3. POSS—A Novel Element in Interfacial Polymerization
5. Perspectives
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations/Nomenclature
ABLM | Aquaporin-based lipidic biomimetic membrane |
ABM | Aquaporin-based biomimetic membrane |
ABPM | Aquaporin-based polymeric biomimetic membrane |
7-ADCA | 7-aminodesacetoxycephalosporanic acid |
AFM | Atomic force microscopy |
AL | Active layer |
AQP | Aquaporin |
AqpZ | Aquaporin Z |
BR | Bacteriorhodopsin |
BSA | Bovine serum albumin |
CA | Cellulose acetate |
CcO | Cytochrome c oxidase |
CNT | Carbon nanotube |
Cr | Planar shape with protein crystals |
DLS | Dynamic light scattering |
DMA | Dimethacrylate |
DOPE | 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine |
DPhPC | 1,2-diphytanoyl-sn-glycero-3-phosphocholine |
DTU | Danish Technical University |
EFTE | Ethylene tetrafluoroethylene |
ELF | Enzyme-labelled fluorescence |
EPR | Electron paramagnetic resonance |
f | Hydrophilic volume ratio |
FCS | Fluorescence correlation spectroscopy |
FE-SEM | Field-emission scanning electron microscopy |
FF-TEM | Freeze-fracture transmission electron microscopy |
FhuA | Ferric hydroxamate uptake protein |
FI | Functional incorporation |
FO | Forward osmosis |
FTIR | Fourier-transformed infrared spectroscopy |
FR | Film rehydration |
Js | Membrane reverse salt flux |
Jv | Membrane water flux |
LA | Lipoic acid |
LamB | Phage lambda receptor |
LbL | Layer-by-layer |
Mn | Number-averaged molecular weight |
Mw | Weight-averaged molecular weight |
MAq | Mixing in aqueous phase |
Mc | Micellar shape |
MF | Microfiltration |
MloK1 | Potassium channel from Mesorhizobium loti |
MPD | m-phenyl diamine |
MPEG | Methyl polyethyleneglycol |
mPAR | Molecular amphiphile-to-protein-ratio |
MOr | Mixing in organic phase |
PVL | Polyvalerolactone |
NA | Not announced |
NAD | β-nicotinamide adenine dinucleotide |
NADH | Hydrogenated β-nicotinamide adenine dinucleotide |
ND | Not determined |
NF | Nanofiltration |
NtAQP1 | Tobacco plasma membrane intrinsic protein 1 |
NtPIP2;1 | Tobacco plasma membrane intrinsic protein 2 |
NUS | National University of Singapore |
OG | n-Octyl-β-D-Glucopyranoside |
OmpF | Outer membrane protein F |
OmpG | Outer membrane protein G |
P | Planar shape |
P2VP | Poly-2-vinyl pyridine |
P4MVP | Poly-4-vinyl methylpyridine iodide |
P4VP | Poly-4-vinyl pyridine iodide |
PA | Polyamide |
PAA | Polyacrylic acid |
PAI | Polyamide imide |
PAH | Polyallylamine hydrochloride |
PAN | Polyacrylonitrile |
PB | Polybutadiene |
PBR | Polymer bulk rehydration |
PBMA | Polybutyl methacrylate |
PCTE | Polycarbonate track-etched |
PDA | Polydopamine |
PDA | Polydopamine |
P DI | Polydispersity index |
PDMS | Polydimethylsiloxane |
PEE | Polyethylethylene |
PEOXA | Polyethylene oxazoline |
PEO | Polyethylene oxide |
PES | Polyethersulfone |
PFR | Polymer film rehydration |
PGM | Polyglycerol monomethacrylate |
PGME | Phenylglycine methyl ester |
PHEMA | Polyhydroxyethyl methacrylate |
PI | Polyisoprene |
PIB | Polyisobutylene |
PMOXA | Polymethyloxazoline |
POSS | Polyhedral oligomeric silsesquioxane |
PPFR | Protein/polymer film rehydration |
PPO | Polypropylene oxide |
PR | Proteorhodopsin |
PRO | Pressure retarded osmosis |
PS | Polystyrene |
PSf | Polysulfone |
PSS | Sulfonate polysulfone |
QCM-D | Quartz crystal microbalance with dissipation |
RC | Reaction centre |
RO | Reverse osmosis |
S | Shape |
SFLS | Stopped-flow light scattering |
SAXS | Small-angle X-ray scattering |
SDU | Southern Danish University |
SE | Solvent evaporation |
SEC | Size exclusion chromatography |
SEM | Scanning electron microscopy |
SI | Solvent injection |
SMTC | Singapore Membrane technology Centre |
SoPIP2;1 | Spinach plasma membrane intrinsic protein 2;1 |
TFC | Thin film composite |
TMB | 3,3,5,5-tetramethyl-benzidine |
TMC | Trimesoyl chloride |
UF | Ultrafiltration |
V | Vesicular shape |
References
- Zhao, Y.; Qiu, C.; Li, X.; Vararattanavech, A.; Shen, W.; Torres, J.; Hélix-Nielsen, C.; Wang, R.; Hu, X.; Fane, A.G.; et al. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci. 2012, 423–424, 422–428. [Google Scholar] [CrossRef]
- Sun, G.; Chung, T.S.; Jeyaseelan, K.; Armugam, A. A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv. 2013, 3, 473. [Google Scholar] [CrossRef]
- Wang, H.L.; Chung, T.S.; Tong, Y.W.; Jeyaseelan, K.; Armugam, A.; Duong, H.H.P.; Fu, F.; Seah, H.; Yang, J.; Hong, M. Mechanically robust and highly permeable AquaporinZ biomimetic membranes. J. Membr. Sci. 2013, 434, 130–136. [Google Scholar] [CrossRef]
- Tang, C.Y.; Wang, Z.; Petrinic´, I.; Fane, A.G.; Hélix-Nielsen, C. Biomimetic aquaporin membranes coming of age. Desalination 2015, 368, 89–105. [Google Scholar] [CrossRef]
- Tang, C.Y.; Zhao, Y.; Wang, R.; Hélix-Nielsen, C.; Fane, A.G. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination 2013, 308, 34–40. [Google Scholar] [CrossRef]
- Hélix-Nielsen, C. Biomimetic Membranes for Sensor and Separation Applications; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Kita-Tokarczyk, K.; Meier, W. Biomimetic block copolymer membranes. CHIMIA 2008, 62, 820–825. [Google Scholar] [CrossRef]
- Raaijmakers, M.J.T.; Hempenius, M.A.; Schön, P.M.; Vancso, G.J.; Nijmeijer, A.; Wessling, M.; Benes, N.E. Sieving of Hot Gases by Hyper-Cross-Linked Nanoscale-Hybrid Membranes. J. Am. Chem. Soc. 2014, 136, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Ajit Walter, P.; Muthukumar, T.; Reddy, B. Assessment of antifouling efficacy of polyhedral oligomeric silsesquioxane based poly (urea-urethane-imide) hybrid membranes. Lett. Appl. Microbiol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Benes, N.E.; Lammertink, R.G.H. Visualization and characterization of interfacial polymerization layer formation. Lab Chip 2015, 15, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, Y.; Racker, E. Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation. J. Biol. Chem. 1971, 246, 5477–5487. [Google Scholar]
- Nardin, C.; Thoeni, S.; Widmer, J.; Winterhalter, M.; Meier, W. Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem. Commun. 2000, 1433–1434. [Google Scholar] [CrossRef]
- Zhang, X.; Tanner, P.; Graff, A.; Palivan, C.G.; Meier, W. Mimicking the cell membrane with block copolymer membranes. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 2293–2318. [Google Scholar] [CrossRef]
- Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Acc. Chem. Res. 2011, 44, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Montemagno, C. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 2005, 5, 2538–2542. [Google Scholar] [CrossRef] [PubMed]
- Vriezema, D.M.; Garcia, P.M.L.; Sancho Oltra, N.; Hatzakis, N.S.; Kuiper, S.M.; Nolte, R.J.M.; Rowan, A.E.; van Hest, J.C.M. Positional Assembly of Enzymes in Polymersome Nanoreactors for Cascade Reactions. Angew. Chem. Int. Ed. 2007, 46, 7378–7382. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Grzelakowski, M.; Zilles, J.; Meier, W.P. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. USA 2007, 104, 20719–20724. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Habel, J.; Shen, Y.x.; Meier, W.; Walz, T. High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes. J. Am. Chem. Soc. 2012, 134, 18631–18637. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O. Bilayer thickness and membrane protein function: An energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 107–130. [Google Scholar] [CrossRef] [PubMed]
- Pata, V.; Dan, N. The Effect of Chain Length on Protein Solubilization in Polymer-Based Vesicles (Polymersomes). Biophys. J. 2003, 85, 2111–2118. [Google Scholar] [CrossRef]
- Srinivas, G.; Discher, D.; Klein, M. Key Roles for Chain Flexibility in Block Copolymer Membranes that Contain Pores or Make Tubes. Nano Lett. 2005, 5, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Discher, D.E.; Ortiz, V.; Srinivas, G.; Klein, M.L.; Kim, Y.; Christian, D.; Cai, S.; Photos, P.; Ahmed, F. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Prog. Polym. Sci. 2007, 32, 838–857. [Google Scholar] [CrossRef] [PubMed]
- </b>Aponte-Santamaría, C.; Briones, R.; Schenk, A.; Walz, T.; de Groot, B. Molecular driving forces defining lipid positions around aquaporin-0. Proc. Natl. Acad. Sci. USA 2012, 109, 9887–9892. [Google Scholar]
- Hansen, J.S.; Vararattanavech, A.; Plasencia, I.; Greisen, P.J.; Bomholt, J.; Torres, J.; Emnéus, J.; Hélix-Nielsen, C. Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ. Biochim. Biophys. Acta (BBA)—Biomembr. 2011, 1808, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Stoenescu, R.; Graff, A.; Meier, W. Asymmetric ABC-Triblock Copolymer Membranes Induce a Directed Insertion of Membrane Proteins. Macromol. Biosci. 2004, 4, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Hite, R.K.; Li, Z.; Walz, T. Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals. EMBO J. 2010, 29, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Nehring, R.; Palivan, C.G.; Casse, O.; Tanner, P.; Tüxen, J.; Meier, W. Amphiphilic Diblock Copolymers for Molecular Recognition: Metal-Nitrilotriacetic Acid Functionalized Vesicles. Langmuir 2009, 25, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Abeyrathne, P.; Dukovski, D. The Affinity Grid: A pre-fabricated EM grid for monolayer purification. J. Mol. Boil. 2008, 382, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M. Biomimetic Membranes as New Materials for Applications in Environmental engineering and Biology. Ph.D. Thesis, University Illinois, Champaign, IL, USA, 2010. [Google Scholar]
- Kumar, M.; Meier, W. Highly Permeable Polymeric Membranes. Patent WO 2009/078174, 18 June 2009. [Google Scholar]
- Gonen, T.; Sliz, P.; Kistler, J.; Cheng, Y.; Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 2004, 429, 193–197. [Google Scholar] [CrossRef] [PubMed]
- </b>Chandy, G.; Zampighi, G.; Kreman, M.; Hall, J. Comparison of the Water Transporting Properties of MIP and AQP1. J. Membr. Biol. 1997, 159, 29–39. [Google Scholar]
- Kumar, M.; Walz, T. High Density Membrane Protein Membranes. Patent WO 2014/028923, 20 February 2014. [Google Scholar]
- Habel, J. Structural and Functional Characterization of Aquaporin 0 Incorporated in Block Copolymers and Their Resulting Aggregate Morphologies. Master Thesis, Universität Basel, Basel, Switzerland, 2011. [Google Scholar]
- Hélix-Nielsen, C. Biomimetic membranes for sensor and separation applications. Anal. Bioanal. Chem. 2009, 395, 697–718. [Google Scholar] [CrossRef] [PubMed]
- Pszon-Bartosz, K.; Hansen, J.S.; Stibius, K.B.; Groth, J.S.; Emnéus, J.; Geschke, O.; Hélix-Nielsen, C. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter. Biochem. Biophys. Res. Commun. 2011, 406, 96–100. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, A.; Stibius, K.; Vissing, T. Biomimetic triblock copolymer membrane arrays: A stable template for functional membrane proteins. Langmuir 2009, 25, 10447–10450. [Google Scholar] [CrossRef] [PubMed]
- Andreasson-Ochsner, M.; Fu, Z.; May, S.; Ying Xiu, L.; Nallani, M.; Sinner, E.K. Selective Deposition and Self-Assembly of Triblock Copolymers into Matrix Arrays for Membrane Protein Production. Langmuir 2012, 28, 2044–2048. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Jamshad, M.; Knowles, T.J.; Morrison, K.A.; Downing, R.; Cant, N.; Collins, R.; Koenderink, J.B.; Ford, R.C.; Overduin, M.; et al. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 2014, 461, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.J.; Finka, R.; Smith, C.; Lin, Y.P.; Dafforn, T.; Overduin, M. Membrane Proteins Solubilized Intact in Lipid Containing Nanoparticles Bounded by Styrene Maleic Acid Copolymer. J. Am. Chem. Soc. 2009, 131, 7484–7485. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.R.; Scott, A.; Rotem, D.; Mehta, K.K.; Bayley, H.; Dekker, C. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 2010, 5, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Balme, S.; Janot, J.M.; Berardo, L.; Henn, F.; Bonhenry, D.; Kraszewski, S.; Picaud, F.; Ramseyer, C. New Bioinspired Membrane Made of a Biological Ion Channel Confined into the Cylindrical Nanopore of a Solid-State Polymer. Nano Lett. 2011, 11, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Bodor, S.; Zook, J.M.; Lindner, E.; Tóth, K.; Gyurcsányi, R.E. Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore-ion complexes in plasticized PVC membranes. Analyst 2008, 133, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Ibragimova, S. Supporting and stabilizing biomimetic membranes. Ph.D. Thesis, Danish Technical University, Kgs. Lyngby, Denmark, 2011. [Google Scholar]
- Mech-Dorosz, A.; Heiskanen, A.; Bäckström, S.; Perry, M.; Muhammad, H.B.; Hélix-Nielsen, C.; Emnéus, J. A reusable device for electrochemical applications of hydrogel supported black lipid membranes. Biomed. Microdevices 2015, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Discher, D.E. Polymer Vesicles. Science 2002, 297, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Nardin, C.; Hirt, T.; Leukel, J.; Meier, W. Polymerized ABA Triblock Copolymer Vesicles. Langmuir 2000, 16, 1035–1041. [Google Scholar] [CrossRef]
- Erbakan, M.; Shen, Y.X.; Grzelakowski, M.; Butler, P.J.; Kumar, M.; Curtis, W.R. Molecular Cloning, Overexpression and Characterization of a Novel Water Channel Protein from Rhodobacter sphaeroides. PLoS ONE 2014, 9, e86830. [Google Scholar] [CrossRef] [PubMed]
- Graff, A. Amphiphilic Copolymer Membranes Promote NADH: Ubiquinone Oxidoreductase Activity: Towards an Electron-Transfer Nanodevice. Macromol. Chem. Phys. 2010, 211, 229–238. [Google Scholar] [CrossRef]
- Wong, D.; Jeon, T.J.; Schmidt, J. Single molecule measurements of channel proteins incorporated into biomimetic polymer membranes. Nanotechnology 2006, 17, 3710–3717. [Google Scholar] [CrossRef]
- Uehlein, N.; Otto, B.; Eilingsfeld, A.; Itel, F.; Meier, W.; Kaldenhoff, R. Gas-tight triblock-copolymer membranes are converted to CO2 permeable by insertion of plant aquaporins. Sci. Rep. 2012, 2, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chung, T.S.; Tong, Y.W. Study on water transport through a mechanically robust Aquaporin Z biomimetic membrane. J. Membr. Sci. 2013, 445, 47–52. [Google Scholar] [CrossRef]
- Wang, H.; Chung, T.S.; Tong, Y.W.; Jeyaseelan, K.; Armugam, A.; Chen, Z.; Hong, M.; Meier, W. Highly Permeable and Selective Pore-Spanning Biomimetic Membrane Embedded with Aquaporin Z. Small 2012, 8, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.S.; Chung, T.S.; Jeyaseelan, K.; Armugam, A. Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci. 2012, 407–408, 27–33. [Google Scholar] [CrossRef]
- De Vocht, C.; Ranquin, A.; Willaert, R.; Van Ginderachter, J.A.; Vanhaecke, T.; Rogiers, V.; Versées, W.; Van Gelder, P.; Steyaert, J. Assessment of stability, toxicity and immunogenicity of new polymeric nanoreactors for use in enzyme replacement therapy of MNGIE. J. Control. Release 2009, 137, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Grzelakowski, M.; Cherenet, M.F.; Shen, Y.x.; Kumar, M. A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. J. Membr. Sci. 2015, 1–32. [Google Scholar] [CrossRef]
- Grzelakowski, M.; Onaca, O.; Rigler, P.; Kumar, M.; Meier, W. Immobilized Protein-Polymer Nanoreactors. Small 2009, 5, 2545–2548. [Google Scholar] [CrossRef] [PubMed]
- Ihle, S.; Onaca, O.; Rigler, P.; Hauer, B.; Rodríguez-Ropero, F.; Fioroni, M.; Schwaneberg, U. Nanocompartments with a pH release system based on an engineered OmpF channel protein. Soft Matter 2011, 7, 532–539. [Google Scholar] [CrossRef]
- Tanner, P.; Balasubramanian, V.; Palivan, C.G. Aiding Nature’s Organelles: Artificial Peroxisomes Play Their Role. Nano Lett. 2013, 13, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Tanner, P.; Onaca, O.; Balasubramanian, V.; Meier, W.; Palivan, C.G. Enzymatic Cascade Reactions inside Polymeric Nanocontainers: A Means to Combat Oxidative Stress. Chem. Eur. J. 2011, 17, 4552–4560. [Google Scholar] [CrossRef] [PubMed]
- Kowal, J.Ł.; Kowal, J.K.; Wu, D.; Stahlberg, H.; Palivan, C.G.; Meier, W.P. Functional surface engineering by nucleotide-modulated potassium channel insertion into polymer membranes attached to solid supports. Biomaterials 2014, 35, 7286–7294. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, M.; Hilty, C.; Bezrukov, S.M.; Nardin, C.; Meier, W.; Fournier, D. Controlling membrane permeability with bacterial porins: Application to encapsulated enzymes. Talanta 2001, 55, 965–971. [Google Scholar] [CrossRef]
- Xie, W.; He, F.; Wang, B.; Chung, T.S.; Jeyaseelan, K.; Armugam, A.; Tong, Y.W. An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J. Mater. Chem. A 2013, 1, 7592–7600. [Google Scholar] [CrossRef]
- Heinisch, T.; Langowska, K.; Tanner, P.; Reymond, J.L.; Meier, W.; Palivan, C.; Ward, T.R. Fluorescence-Based Assay for the Optimization of the Activity of Artificial Transfer Hydrogenase within a Biocompatible Compartment. ChemCatChem 2013, 5, 720–723. [Google Scholar] [CrossRef]
- Broz, P.; Driamov, S.; Ziegler, J.; Ben-Haim, N.; Marsch, S.; Meier, W.; Hunziker, P. Toward Intelligent Nanosize Bioreactors: A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer. Nano Lett. 2006, 6, 2349–2353. [Google Scholar] [CrossRef] [PubMed]
- Langowska, K.; Palivan, C.G.; Meier, W. Polymer nanoreactors shown to produce and release antibiotics locally. Chem. Commun. 2013, 49, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Graff, A.; Sauer, M.; Meier, W. Virus-assisted loading of polymer nanocontainer. Proc. Natl. Acad. Sci. USA 2002, 99, 5064–5068. [Google Scholar] [CrossRef] [PubMed]
- Ranquin, A.; Versées, W.; Meier, W.; Steyaert, J.; Van Gelder, P. Therapeutic Nanoreactors: Combining Chemistry and Biology in a Novel Triblock Copolymer Drug Delivery System. Nano Lett. 2005, 5, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.; Haefele, T.; Graff, A.; Nardin, C.; Meier, W. Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. Chem. Commun. 2001, 7, 2452–2453. [Google Scholar] [CrossRef]
- Haefele, T.; Kita-Tokarczyk, K.; Meier, W. Phase Behavior of Mixed Langmuir Monolayers from Amphiphilic Block Copolymers and an Antimicrobial Peptide. Langmuir 2006, 22, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Nallani, M.; Benito, S.; Onaca, O.; Graff, A.; Lindemann, M.; Winterhalter, M.; Meier, W.; Schwaneberg, U. A nanocompartment system (Synthosome) designed for biotechnological applications. J. Biotechnol. 2006, 123, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Nallani, M. A Novel Nanocompartment System Named Synthosome for Biotechnological Applications. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2005. [Google Scholar]
- Onaca, O. Functionalized polymer vesicles and interactions with Polymyxin B and derivates. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2007. [Google Scholar]
- Graff, A. Insertion of Membrane Proteins in Artificial Polymer Membranes. Ph.D. Thesis, Universität Basel, Basel, Switzerland, 2006. [Google Scholar]
- Meier, W.; Nardin, C.; Winterhalter, M. Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew. Chem. Int. Ed. 2000, 39, 4599–4602. [Google Scholar] [CrossRef]
- Nardin, C.; Widmer, J.; Winterhalter, M.; Meier, W. Amphiphilic block copolymer nanocontainers as bioreactors. Eur. Phys. J. E 2001, 4, 403–410. [Google Scholar] [CrossRef]
- Duong, P.H.H.; Chung, T.S.; Jeyaseelan, K.; Armugam, A.; Chen, Z.; Yang, J.; Hong, M. Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci. 2012, 409-410, 34–43. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, H.; Montemagno, C.D. Toward hybrid proteo-polymeric vesicles generating a photoinduced proton gradient for biofuel cells. Nanotechnology 2005, 16, 1589–1597. [Google Scholar] [CrossRef]
- Lee, H.; Ho, D.; Kuo, K.; Montemagno, C.D. Vectorial insertion of bacteriorhodopsin for directed orientation assays in various polymeric biomembranes. Polymer 2006, 47, 2935–2941. [Google Scholar] [CrossRef]
- Choi, H.J.; Germain, J. Effects of different reconstitution procedures on membrane protein activities in proteopolymersomes. Nanotechnology 2006, 17, 1825–1830. [Google Scholar] [CrossRef]
- Choi, H.J.; Montemagno, C.D. Biosynthesis within a bubble architecture. Nanotechnology 2006, 17, 2198–2202. [Google Scholar] [CrossRef]
- Choi, H.J.; Montemagno, C. Light-Driven Hybrid Bioreactor Based on Protein-Incorporated Polymer Vesicles. IEEE Trans. Nanotechnol. 2007, 6, 171–176. [Google Scholar] [CrossRef]
- Dobrunz, D.; Toma, A.C.; Tanner, P.; Pfohl, T.; Palivan, C.G. Polymer Nanoreactors with Dual Functionality: Simultaneous Detoxification of Peroxynitrite and Oxygen Transport. Langmuir 2012, 28, 15889–15899. [Google Scholar] [CrossRef] [PubMed]
- Thoma, J.; Belegrinou, S.; Rossbach, P.; Grzelakowski, M.; Kita-Tokarczyk, K.; Meier, W. Membrane protein distribution in composite polymer-lipid thin films. Chem. Commun. 2012, 48, 8811–8813. [Google Scholar] [CrossRef] [PubMed]
- Onaca, O.; Sarkar, P.; Roccatano, D.; Friedrich, T.; Hauer, B.; Grzelakowski, M.; Güven, A.; Fioroni, M.; Schwaneberg, U. Functionalized Nanocompartments (Synthosomes) with a Reduction-Triggered Release System. Angew. Chem. Int. Ed. 2008, 47, 7029–7031. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Chu, B.; Lee, H.; Montemagno, C. Protein-driven energy transduction across polymeric biomembranes. Nanotechnology 2004. [Google Scholar] [CrossRef]
- Ho, D.; Chu, B.; Lee, H.; Brooks, E.K.; Kuo, K.; Montemagno, C.D. Fabrication of biomolecule–copolymer hybrid nanovesicles as energy conversion systems. Nanotechnology 2005, 16, 3120–3132. [Google Scholar] [CrossRef]
- Xi, J.Z.; Ho, D.; Chu, B.; Montemagno, C.D. Lessons Learned from Engineering Biologically Active Hybrid Nano/Micro Devices. Adv. Funct. Mater. 2005, 15, 1233–1240. [Google Scholar] [CrossRef]
- Ho, D.; Chu, B.; Schmidt, J.J.; Brooks, E.K.; Montemagno, C.D. Hybrid Protein-Polymer Biomimetic Membranes. IEEE Trans. Nanotechnol. 2004, 3, 256–263. [Google Scholar] [CrossRef]
- Habel, J. Functional and Chemical Characterization of Vesicular Diblock Copolymer Bilayers with Aquaporin Included; Technical Report; Aquaporin A/S: Copenhagen, Denmark, 2011. [Google Scholar]
- Espina, M. Barrier Properties of Biomimetic Membranes. Master Thesis, Danish Technical University (DTU), Kgs. Lyngby, Denmark, 2012. [Google Scholar]
- Nallani, M.; Andreasson-Ochsner, M.; Tan, C.W.D.; Sinner, E.K.; Wisantoso, Y.; Geifman-Shochat, S.; Hunziker, W. Proteopolymersomes: In vitro production of a membrane protein in polymersome membranes. Biointerfaces 2011, 6, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Bomholt, J. Human Aquaporins—From in vivo detection to industrial scale production. Ph.D. Thesis, University Copenhagen, Copenhagen, Denmark, 2014. [Google Scholar]
- Zhang, X.; Fu, W.; Palivan, C.G.; Meier, W. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorn, J.; Belegrinou, S.; Kreiter, M.; Sinner, E.K.; Meier, W. Planar Block Copolymer Membranes by Vesicle Spreading. Macromol. Biosci. 2011, 11, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, K.; Discher, D.E.; Lal, J.; Janmey, P.; Goulian, M. Interactions of Membrane-Active Peptides with Thick, Neutral, Nonzwitterionic Bilayers. J. Phys. Chem. B 2005, 109, 14356–14364. [Google Scholar] [CrossRef] [PubMed]
- Toughrai, S. Functional Surfaces through Biomimetic block Copolymer Membranes. Ph.D. Thesis, Universität Basel, Basel, Switzerland, 2014. [Google Scholar]
- Amado, E.; Schöps, R.; Brandt, W.; Kressler, J. Spontaneous Formation of Giant Bioactive Protein-Block Copolymer Vesicles in Water. ACS Macro Lett. 2012, 1, 1016–1019. [Google Scholar] [CrossRef]
- Noor, M.; Dworeck, T.; Schenk, A.; Shinde, P.; Fioroni, M.; Schwaneberg, U. Polymersome surface decoration by an EGFP fusion protein employing Cecropin A as peptide “anchor”. J. Biotechnol. 2012, 157, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Fernandes, D.A.; O’Halloran, M.; Zheng, W.; Jiang, Y.; Ladizhansky, V.; Brown, L.S.; Liang, H. “Frozen” Block Copolymer Nanomembranes with Light-Driven Proton Pumping Performance. ACS Nano 2014, 8, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Kuang, L.; Liang, H. Self-Directed Reconstitution of Proteorhodopsin with Amphiphilic Block Copolymers Induces the Formation of Hierarchically Ordered Proteopolymer Membrane Arrays. J. Am. Chem. Soc. 2011, 133, 2354–2357. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Olson, T.L.; Lin, S.; Flores, M.; Jiang, Y.; Zheng, W.; Williams, J.C.; Allen, J.P.; Liang, H. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes across Block Copolymer Membranes. J. Phys. Chem. Lett. 2014, 5, 787–791. [Google Scholar] [CrossRef]
- Ibata, K.; Takimoto, S.; Morisaku, T.; Miyawaki, A.; Yasui, M. Analysis of Aquaporin-Mediated Diffusional Water Permeability byCoherent Anti-Stokes Raman Scattering Microscopy. Biophys. J. 2011, 101, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Mamonov, A.B.; Coalson, R.D.; Zeidel, M.L.; Mathai, J.C. Water and Deuterium Oxide Permeability through Aquaporin 1: MD Predictions and Experimental Verification. J. Gen. Physiol. 2007, 130, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Itel, F.; Al-Samir, S.; Oberg, F.; Chami, M.; Kumar, M.; Supuran, C.T.; Deen, P.M.T.; Meier, W.; Hedfalk, K.; Gros, G.; Endeward, V. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J. 2012, 26, 5182–5191. [Google Scholar] [CrossRef] [PubMed]
- GFP-Lifetime. Available online: http://www.iss.com/ (accessed on 7 July 2015).
- Choi, H.J.; Montemagno, C. Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications. Materials 2013, 6, 5821–5856. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef]
- Aquaporin Home Page. Available online: www.aquaporin.dk (accessed on 6 July 2015).
- MEMBAQ Home Page. Available online: www.membaq.eu (accessed on 6 July 2015).
- Montemagno, C.; Schmidt, J.; Tozzi, S. Biomimetic Membranes. Patent WO 2004/011600, 5 February 2004. [Google Scholar]
- Hansen, J.S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C.R.; Geschke, O.; Emnéus, J.; Hélix-Nielsen, C. Development of an automation technique for the establishment of functional lipid bilayer arrays. J. Micromech. Microeng. 2009, 19. [Google Scholar] [CrossRef]
- Hansen, J.S. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications. Ph.D. Thesis, Danish Technical University, Kgs. Lyngby, Denmark, 2010. [Google Scholar]
- Rein, C.; Pszon-Bartosz, K.; Stibius, K.B.; Bjørnholm, T.; Hélix-Nielsen, C. Free-Standing Biomimetic Polymer Membrane Imaged with Atomic Force Microscopy. Langmuir 2011, 27, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Ibragimova, S.; Stibius, K.; Szewczykowski, P.; Perry, M.; Bohr, H.; Hélix-Nielsen, C. Hydrogels for in situ encapsulation of biomimetic membrane arrays. Polym. Adv. Technol. 2010, 23, 182–189. [Google Scholar] [CrossRef]
- Perry, M.; Hansenz, J.; Stibius, K. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays. J. Membr. Sci. Technol. 2011. [Google Scholar] [CrossRef]
- Rein, C. Stabilization and characterization of 2D and 3D biomimetic membranes. Ph.D. thesis, University of Copenhagen, Copenhagen, Denmark, 2011. [Google Scholar]
- Aquaporin A/S. Biomimetic Membranes and Uses Thereof. Patent WO 2010/146365, 23 December 2010. [Google Scholar]
- Aquaporin A/S. Membrane for Filtering of Water. Patent WO 2006/122566, 23 November 2006. [Google Scholar]
- Aquaporin A/S. Biomimetic Water Membrane Comprising Aquaporins Used in the Production of Salinity Power. Patent WO 2007/033675, 29 March 2007. [Google Scholar]
- Aquaporin A/S. Scaffold for Composite Biomimetic Membrane. Patent WO 2009/074155, 18 June 2009. [Google Scholar]
- Aquaporin A/S. Assays Relating to Biomimetic Membranes and Their Uses. Patent WO 2010/146366, 23 December 2010. [Google Scholar]
- Montemagno, C.; Aquaz; Danfoss. Nanofabricated Membrane Using Polymerized Proteoliposomes. Patent WO 2010/091078, 12 August 2010. [Google Scholar]
- Wang, H.; Chung, T.S.; Tong, Y.W.; Meier, W.; Chen, Z.; Hong, M.; Jeyaseelan, K.; Armugam, A. Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter 2011, 7, 7274. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, H.; Li, Y.; Jeyaseelan, K.; Armugam, A.; Chung, T.S. A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers. Colloids Surf. B: Biointerfaces 2012, 89, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.; Grinberg, S.; Linder, C.; Heldman, E.; Gilron, J.; Freger, V. Fusion of Bolaamphiphile Micelles: A Method to Prepare Stable Supported Biomimetic Membranes. Langmuir 2013, 29, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Wicaksana, F.; Zhao, Y.; Tang, C.Y.; Torres, J.; Fane, A.G. Fusion behaviour of aquaporin Z incorporated proteoliposomes investigated by quartz crystal microbalance with dissipation (QCM-D). Colloids Surf. B: Biointerfaces 2013, 111, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.; Berman, A. Supported lipid bilayer membranes for water purification by reverse osmosis. Langmuir 2010, 26, 7388–7395. [Google Scholar] [CrossRef] [PubMed]
- Freger, V.; Kaufman, Y. Biomimetic Membranes, Their Production and Uses Thereof in Water Purification. Patent US 2011/0084026, 14 April 2011. [Google Scholar]
- Li, X.; Wang, R.; Tang, C.Y.; Vararattanavech, A.; Zhao, Y.; Torres, J.; Fane, A.G. Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf. B: Biointerfaces 2012, 94, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Aquaporin AS.; NTU. Aquaporin Based Thin Film Composite Membranes. Patent WO 2013/043118, 28 March 2013. [Google Scholar]
- Aquaporin AS. Systems for Water Extraction. Patent WO 2014/128293, 28 August 2014. [Google Scholar]
- Zhao, Y.; Vararattanavech, A.; Li, X.; Hélix-Nielsen, C.; Vissing, T.; Torres, J.; Wang, R.; Fane, A.G.; Tang, C.Y. Effects of Proteoliposome Composition and Draw Solution Types on Separation Performance of Aquaporin-Based Proteoliposomes: Implications for Seawater Desalination Using Aquaporin-Based Biomimetic Membranes. Environ. Sci. Technol. 2013, 5, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Wicaksana, F.; Tang, C.Y.; Torres, J.; Fane, A.G. Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J. Membr. Sci. 2014, 450, 181–188. [Google Scholar] [CrossRef]
- Tanner, P. Design and Development of Protein-Polymer Assemblies to Engineer Artificial organelles. Ph.D. Thesis, Universität Basel, Basel, Switzerland, 2013. [Google Scholar]
- Pawar, P.V.; Gohil, S.V.; Jain, J.P.; Kumar, N. Functionalized polymersomes for biomedical applications. Polym. Chem. 2013, 4, 3160–3176. [Google Scholar] [CrossRef]
- Jesorka, A.; Orwar, O. Liposomes: Technologies and Analytical Applications. Annu. Rev. Anal. Chem. 2008, 1, 801–832. [Google Scholar] [CrossRef] [PubMed]
- Montemagno, C. Biomimetic membrane formed from a vesicle-thread conjugate. Patent WO 2010/040353, 15 April 2010. [Google Scholar]
- Sun, G.; Chung, T.S.; Jeyaseelan, K.; Armugam, A. Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids Surf. B: Biointerfaces 2012, 102, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.; Grinberg, S.; Linder, C.; Heldman, E.; Gilron, J.; Shen, Y.X.; Kumar, M.; Lammertink, R.G.H.; Freger, V. Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate. J. Membr. Sci. 2014, 457, 50–61. [Google Scholar] [CrossRef]
- Sun, G.; Chung, T.S.; Chen, N.; Lu, X.; Zhao, Q. Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Adv. 2013, 3, 9178–9184. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Wang, X.; Wang, S.; Ding, W.; Gao, C. Layer-by-Layer Assembly of Aquaporin Z-Incorporated Biomimetic Membranes for Water Purification. Environ. Sci. Technol. 2015, 49, 3761–3768. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.x.; Saboe, P.O.; Sines, I.T.; Erbakan, M.; Kumar, M. Biomimetic membranes: A review. J. Membr. Sci. 2014, 454, 359–381. [Google Scholar] [CrossRef]
- Thomas, J.A.; McGaughey, A.J.H. Reassessing Fast Water Transport through Carbon Nanotubes. Nano Lett. 2008, 8, 2788–2793. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.; Park, H.; Wang, Y.; Stadermann, M.; Artyukhin, A.; Grigoropoulos, C.; Noy, A.; Bakajin, O. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes. Science 2006, 312, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Zhao, D.; Geldbach, T.J.; Scopelliti, R.; Dyson, P.J.; Antonijevic, S.; Bodenhausen, G. A Synthetic Zwitterionic Water Channel: Characterization in the Solid State by X-ray Crystallography and NMR Spectroscopy. Angew. Chem. Int. Ed. 2005, 44, 5720–5725. [Google Scholar] [CrossRef] [PubMed]
- Percec, V.; Dulcey, A.E.; Balagurusamy, V.S.K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S.D.; Heiney, P.A.; Duan, H.; Magonov, S.N.; Vinogradov, S.A. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 2004, 430, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Barboiu, M. Artificial Water Channels. Angew. Chem. Int. Ed. 2012, 51, 11674–11676. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, G.; Yamato, K.; Shen, Y.; Cheng, R.; Wei, X.; Bai, W.; Gao, Y.; Li, H.; Liu, Y.; et al. Self-assembling subnanometer pores with unusual mass-transport properties. Nat. Commun. 2012, 3. [Google Scholar] [CrossRef] [PubMed]
- Alsvik, I.; Hägg, M.B. Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods. Polymers 2013, 5, 303–327. [Google Scholar] [CrossRef]
- Wittbecker, E.L.; Morgan, P.W. Interfacial polycondensation. I. J. Polym. Sci. 1959, 40, 289–297. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Jeong, B.H.; Huang, X.; Hoek, E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311, 34–45. [Google Scholar] [CrossRef]
- Dalwani, M.; Zheng, J.; Hempenius, M.; Raaijmakers, M.J.T.; Doherty, C.M.; Hill, A.J.; Wessling, M.; Benes, N.E. Ultra-thin hybrid polyhedral silsesquioxane-polyamide films with potentially unlimited 2D dimensions. J. Mater. Chem. 2012, 22, 14835–14838. [Google Scholar] [CrossRef]
- Habel, J.; Ogbonna, A.; Skaarup, N.; Schulte, L.; Almdal, K.; Hélix-Nielsen, C. How molecular internal-geometric parameters affect PB-PEO polymersome size in aqueous solution. Phys. Chem. Chem. Phys. 2015. To be submitted. [Google Scholar]
- PB-FTIR-Spectrum. Available online: http://webbook.nist.gov/cgi/cbook.cgi?ID=B6002924Mask=80 (accessed on 6 July 2015).
- PEO-FTIR-Spectrum. Available online: http://webbook.nist.gov/cgi/cbook.cgi?ID=B6002924Mask=80 (accessed on 6 July 2015).
- Germic, L.; Ebert, K.; Bouma, R.H.B.; Borneman, Z.; Mulder, M.H.V.; Strathmann, H. Characterization of polyacrylonitrile ultrafiltration membranes. J. Membr. Sci. 1997, 132, 131–145. [Google Scholar] [CrossRef]
- Lee, K.P.; Zheng, J.; Bargeman, G.; Kemperman, A.J.B.; Benes, N.E. pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation. J. Membr. Sci. 2015, 478, 75–84. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habel, J.; Hansen, M.; Kynde, S.; Larsen, N.; Midtgaard, S.R.; Jensen, G.V.; Bomholt, J.; Ogbonna, A.; Almdal, K.; Schulz, A.; et al. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. Membranes 2015, 5, 307-351. https://doi.org/10.3390/membranes5030307
Habel J, Hansen M, Kynde S, Larsen N, Midtgaard SR, Jensen GV, Bomholt J, Ogbonna A, Almdal K, Schulz A, et al. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. Membranes. 2015; 5(3):307-351. https://doi.org/10.3390/membranes5030307
Chicago/Turabian StyleHabel, Joachim, Michael Hansen, Søren Kynde, Nanna Larsen, Søren Roi Midtgaard, Grethe Vestergaard Jensen, Julie Bomholt, Anayo Ogbonna, Kristoffer Almdal, Alexander Schulz, and et al. 2015. "Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges" Membranes 5, no. 3: 307-351. https://doi.org/10.3390/membranes5030307
APA StyleHabel, J., Hansen, M., Kynde, S., Larsen, N., Midtgaard, S. R., Jensen, G. V., Bomholt, J., Ogbonna, A., Almdal, K., Schulz, A., & Hélix-Nielsen, C. (2015). Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. Membranes, 5(3), 307-351. https://doi.org/10.3390/membranes5030307