Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process
Abstract
:1. Introduction
2. Materials and methods
2.1. Orange Press Liquor
2.2. UF Experimental Set-Up and Procedures
Type | DCQ III-006 |
---|---|
Configuration | Hollow fiber |
Membrane material | Polysulfone |
Module dimension (mm) | 90 × 522 |
Operating pressure (bar) | 1–1.5 |
Operating temperature (°C) | 0–40 |
Operating pH | 2–13 |
Inner fiber diameter (mm) | 2.1 |
Membrane surface area (m2) | 1.2 |
Nominal molecular weight cut-off (kDa) | 100 |
2.3. NF Experimental Set-Up and Procedures
Type | Nadir NF-PES 10 |
---|---|
Configuration | Spiral wound |
Membrane material | Polyethersulfone |
Maximum operating pressure (bar) | 40 |
Maximum operating temperature (°C) | 50 |
Operating pH | 2–9 |
Membrane surface area (m2) | 1.6 |
Na2SO4 rejection (%) | 25–50 |
NaCl rejection (%) | 5–15 |
2.4. OD Experimental Set-Up and Procedures
Fibers Characteristics | Fiber Type Celgard® Microporous Polypropylene Hollow Fiber |
---|---|
Cartridge Operating Limits | |
Maximum Transmembrane Differential Pressure | 4.11 kg/cm2 |
Maximum Operating Temperature Range | 40 °C |
Cartridge Characteristics | |
Cartridge Dimensions (D × L) | 8 cm × 28 cm |
Effective Surface Area | 1.4 m2 |
Effective Area/Volume | 29.3 cm2 |
Fiber Potting Material | Polyethylene |
2.5. Analytical Measurements
2.5.1. TSS and Suspended Solids Measurement
2.5.2. Determination of Flavanones
2.5.3. Determination of Total Anthocyanins
2.5.4. HPLC Determination of Individual Anthocyanic Compounds
3. Results and Discussion
3.1. Ultrafiltration
3.2. Nanofiltration
3.3. Osmotic Distillationmol
3.4. Retention of Flavonoids
Sample | Suspended Solids (%) | TSS (g·100 g−1) | Total Flavanones (g·HE·L−1) | Total Anthocyanins (g·L−1) |
---|---|---|---|---|
Feed UF | 7.13 | 10.1 | 22.850 | 3.160 |
Permeate UF | 0 | 10.0 | 22.801 | 3.065 |
Retentate UF | 93.6 | 10.2 | 22.900 | 3.380 |
Sample | TSS | Total Anthocyanins | Total Flavanones |
---|---|---|---|
(g·100 g−1) | (g·L−1) | (g·HE·L−1) | |
Feed NF | 10.0 | 3.065 | 22.801 |
Retentate NF | 32.0 | 15.425 | 72.160 |
Retentate OD | 47.0 | 20.978 | 98.250 |
Sample | Cyanin Chloride | Cyanidin-3-glucoside Chloride | Myrtillin Chloride | Peonidin-3-glucoside Chloride |
---|---|---|---|---|
(ppm) | (ppm) | (ppm) | (ppm) | |
Feed NF | 84.83 | 255.6 | 55.23 | 53.04 |
Retentate NF | – | 1304.34 | 300.51 | 213.20 |
Retentate OD | 639.19 | 1787.70 | 400.63 | 399.67 |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- FAOSTAT Data. Available online: http://faostat.fao.org (accessed on 1 January 2014).
- Goodrich, R.M.; Braddock, R.J. Major By-Products of the Florida Citrus Processing Industry. Document FSHN05-22. Series of the Food Science and Human Nutrition Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, 2006. Available online: http://edis.ifas.ufl.edu (accessed on 3 June 2008).
- Garcia-Castello, M.E.; McCutcheon, J.R. Dewatering press liquor derived from orange production by forward osmosis. J. Membr. Sci. 2011, 372, 97–101. [Google Scholar]
- Imeh, U.; Khokhar, S. Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. J. Agric. Food Chem. 2002, 50, 6301–6306. [Google Scholar] [CrossRef] [PubMed]
- Zand, R.S.R.; Jenkins, D.J.A.; Diamandis, E.P. Flavonoids and steroid hormone-dependent cancers. J. Chromatogr. B 2002, 777, 219–232. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Food Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels. I. Solvent extraction method. Sep. Purif. Technol. 2006, 48, 182–188. [Google Scholar]
- Ma, Y.Q.; Chen, J.C.; Liu, D.H.; Ye, X.Q. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason. Sonochem. 2009, 16, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels. II. Enzyme-assisted extraction method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar]
- Giannuzzo, A.N.; Boggetti, H.J.; Nazareno, M.A.; Mishima, H.T. Supercritical fluid extraction of naringin from the peel of Citrus paradise. Phytochem. Anal. 2003, 14, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, A.; Fallico, B.; Passerini, A.; Maccarone, E. Waste water from Citrus processing as a source of hesperidin by concentration on styrene-divinylbenzene resin. J. Agric. Food Chem. 2000, 48, 2291–2295. [Google Scholar]
- Bocco, A.; Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus peel and seed extract. J. Agric. Food Chem. 1998, 46, 2123–2129. [Google Scholar] [CrossRef]
- Li, J.; Chase, H.A. Applications of membrane technique for purification of natural products. Biotechnol. Lett. 2010, 32, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Drioli, E.; Romano, M. Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth. Ind. Eng. Chem. Res. 2001, 40, 1277–1300. [Google Scholar] [CrossRef]
- Gilewicz-Łukasik, B.; Koter, S.; Kurzawa, J. Concentration of anthocyanins by the membrane filtration. Sep. Purif. Technol. 2007, 57, 418–424. [Google Scholar]
- Cissé, M.; Vaillant, F.; Pallet, D.; Dornier, M. Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res. Int. 2011, 44, 2607–2614. [Google Scholar]
- Santamaria, B.; Salazar, G.; Beltrán, S.; Cabezas, J.L. Membrane sequences for fractionation of polyphenolic extracts from defatted milled grape seeds. Desalination 2002, 148, 103–109. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Drioli, E. A membrane-based study for the recovery of polyphenols from bergamot juice. J. Membr. Sci. 2011, 375, 182–190. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Giorno, L.; Drioli, E. Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 2013, 248–249, 185–193. [Google Scholar]
- Paraskeva, C.A.; Papadakis, V.G.; Tsarouchi, E.; Kanellopoulou, D.G.; Koutsoukos, P.G. Membrane processing for olive mill wastewater fractionation. Desalination 2007, 213, 218–229. [Google Scholar] [CrossRef]
- Russo, C. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 2007, 288, 239–246. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Garcia-Castello, E. Valorization of artichoke wastewaters by integrated membrane process. Water Res. 2014, 48, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, D.C.; Li, X.; Sun, C.; Zhang, W.; Zhou, C.; Chen, K. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 2007, 104, 1338–1344. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Mondello, L.; Cotroneo, A.; Errante, G.; Dugo, G.; Dugo, P. Determination of anthocyanins in blood orange juices by HPLC analysis. J. Pharm. Biomed. Anal. 2000, 23, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Destani, F.; Cassano, A.; Fazio, A.; Vincken, J.P.; Gabriele, B. Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. J. Food Eng. 2013, 117, 263–271. [Google Scholar] [CrossRef]
- Susanto, H.; Feng, Y.; Ulbricht, M. Fouling behavior during ultrafiltration of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng. 2009, 91, 333–340. [Google Scholar] [CrossRef]
- Cartalade, D.; Vernhet, A. Polar interactions in flavan-3-ol adsorption on solid surfaces. J. Agric. Food Chem. 2006, 54, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, M.; Ansorge, W.; Danielzik, I.; König, M.; Schuster, O. Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Sep. Purif. Technol. 2009, 68, 335–342. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Drioli, E. Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 2012, 90, 867–874. [Google Scholar] [CrossRef]
- Bailey, A.F.G.; Barbe, A.M.; Hogan, P.A.; Johnson, R.A.; Sheng, J. The effect of ultrafiltration on the subsequent concentration of grape juice by osmotic distillation. J. Membr. Sci. 2000, 164, 195–204. [Google Scholar] [CrossRef]
- Courel, M.; Dornier, M.; Herry, J.M.; Rios, G.M.; Reynes, M. Effect of operating conditions on water transport during the concentration of sucrose solutions by osmotic distillation. J. Membr. Sci. 2000, 170, 281–289. [Google Scholar] [CrossRef]
- Vaillant, F.; Jeanton, E.; Dornier, M.; O’Brien, G.M.; Reynes, M.; Decloux, M. Concentration of passion fruit juice on an industrial pilot scale using osmotic evaporation. J. Food Eng. 2001, 47, 195–202. [Google Scholar] [CrossRef]
- Boussu, K.; Vandecasteele, C.; van der Bruggen, B. Relation between membrane characteristics and performance in nanofiltration. J. Membr. Sci. 2008, 310, 51–65. [Google Scholar] [CrossRef]
- Chen, S.S.; Taylor, J.S.; Mulford, L.A.; Norris, C.D. Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes. Desalination 2004, 160, 103–111. [Google Scholar] [CrossRef]
- Benitez, F.J.; Acero, J.L.; Real, F.J.; Roldán, G.; Rodriguez, E. Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. J. Chem. Technol. Biotechnol. 2011, 86, 858–866. [Google Scholar] [CrossRef]
- Vergili, I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 2013, 127, 177–187. [Google Scholar] [CrossRef]
- Orak, H.H. Evaluation of antioxidant activity colour and some nutritional characteristics of pomegranate (Punica granatum L.) juice and its sour concentrate processed by conventional evaporation. Int. J. Food Sci. Nutr. 2009, 60, 1–11. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process. Membranes 2014, 4, 509-524. https://doi.org/10.3390/membranes4030509
Cassano A, Conidi C, Ruby-Figueroa R. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process. Membranes. 2014; 4(3):509-524. https://doi.org/10.3390/membranes4030509
Chicago/Turabian StyleCassano, Alfredo, Carmela Conidi, and René Ruby-Figueroa. 2014. "Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process" Membranes 4, no. 3: 509-524. https://doi.org/10.3390/membranes4030509
APA StyleCassano, A., Conidi, C., & Ruby-Figueroa, R. (2014). Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process. Membranes, 4(3), 509-524. https://doi.org/10.3390/membranes4030509