Lipid Raft Membrane Interactivity Correlating with Cyclooxygenase-2 Selectivity of Non-Steroidal Anti-Inflammatory Drugs
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Lipid Raft Membranes and Reference Membranes
2.3. Determination of Membrane Interactivity
2.4. Statistical Analysis
2.5. Assessment of Cyclooxygenase Selectivity
3. Results
3.1. Cyclooxygenase-2 Selectivity of Non-Steroidal Anti-Inflammatory Drugs
3.2. Effects of Non-Steroidal Anti-Inflammatory Drugs on Different Membranes
3.3. Relation Between Membrane Interactivity and Cyclooxygenase-2 Selectivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COX | Cyclooxygenase |
DMSO | Dimethyl sulfoxide |
DOPC | 1,2-dioleoylphosphatidylcholine |
DPH | Diphenyl-1,3,5-hexatriene |
DPPC | 1,2-dipalmitoylphosphatidylcholine |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
IC50 | 50% inhibitory concentration |
NSAID | Non-steroidal anti-inflammatory drug |
pKa | Acid dissociation constant |
SM | Sphingomyelin |
References
- Kushner, P.; McCarberg, B.H.; Grange, L.; Kolosov, A.; Haveric, A.L.; Zucal, V.; Petruschke, R.; Bissonnette, S. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19. npj Prim. Care Respir. Med. 2022, 32, 35. [Google Scholar] [CrossRef]
- Conaghan, P.G. A turbulent decade for NSAIDs: Update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol. Int. 2012, 32, 1491–1502. [Google Scholar] [CrossRef]
- Blanca-Lopez, N.; Soriano, V.; Garcia-Martin, E.; Canto, G.; Blanca, M. NSAID-induced reactions: Classification, prevalence, impact, and management strategies. J. Asthma Allergy 2019, 12, 217–233. [Google Scholar] [CrossRef]
- Ahmadi, M.; Bekeschus, S.; Weltmann, K.D.; von Woedtke, T.; Wende, K. Non-steroidal anti-inflammatory drugs: Recent advances in the use of synthetic COX-2 inhibitors. RSC Med. Chem. 2022, 13, 471–496. [Google Scholar] [CrossRef]
- Lichtenberger, L.M.; Zhou, Y.; Jayaraman, V.; Doyen, J.R.; O’Neil, R.G.; Dial, E.J.; Volk, D.E.; Gorenstein, D.G.; Boggara, M.B.; Krishnamoorti, R. Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: Characterization of interaction of NSAIDs with phosphatidylcholine. Biochim. Biophys. Acta 2012, 1821, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Maniewska, J.; Czyżnikowska, Ż.; Szczęśniak-Sięga, B.M.; Michalak, K. Interaction of oxicam derivatives with the artificial models of biological membranes—Calorimetric and fluorescence spectroscopic study. Membranes 2022, 12, 791. [Google Scholar] [CrossRef] [PubMed]
- Mizogami, M.; Tsuchiya, H. Lipid composition-, medium pH-, and drug-concentration-dependent membrane interactions of ibuprofen, diclofenac, and celecoxib: Hypothetical association with their analgesic and gastrointestinal toxic effects. Future Pharmacol. 2024, 4, 437–448. [Google Scholar] [CrossRef]
- Plowman, S.J.; Muncke, C.; Parton, R.G.; Hancock, J.F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 2005, 102, 15500–15505. [Google Scholar] [CrossRef]
- Thomas, C.M.; Smart, E.J. Caveolae structure and function. J. Cell. Mol. Med. 2008, 12, 796–809. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.Y.; Deng, W.G.; Gilroy, D.W.; Shyue, S.K.; Wu, K.K. Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J. Biol. Chem. 2001, 276, 34975–34982. [Google Scholar] [CrossRef]
- Kwak, J.O.; Lee, W.K.; Kim, H.W.; Jung, S.M.; Oh, K.J.; Jung, S.Y.; Huh, Y.H.; Cha, S.H. Evidence for cyclooxygenase-2 association with caveolin-3 in primary cultured rat chondrocytes. J. Korean Med. Sci. 2006, 21, 100–106. [Google Scholar] [CrossRef]
- Perrone, G.; Zagami, M.; Altomare, V.; Battista, C.; Morini, S.; Rabitti, C. COX-2 localization within plasma membrane caveolae-like structures in human lobular intraepithelial neoplasia of the breast. Virchows Arch. 2007, 451, 1039–1045. [Google Scholar] [CrossRef]
- Hinz, B.; Ramer, R.; Eichele, K.; Weinzierl, U.; Brune, K. R(+)-methanandamide-induced cyclooxygenase-2 expression in H4 human neuroglioma cells: Possible involvement of membrane lipid rafts. Biochem. Biophys. Res. Commun. 2004, 324, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cho, K.J.; Plowman, S.J.; Hancock, J.F. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J. Biol. Chem. 2012, 287, 16586–16595. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA 1993, 90, 11693–11697. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci. 2008, 11, 81s–110s. [Google Scholar] [CrossRef]
- Tabassum, S.; Naeem, A.; Khawaja, U.A.; Nashwan, A.J. Can nonsteroidal anti-inflammatory drugs lead to first-time heart failure in patients with diabetes mellitus type-2: Is there a link? Pharmacology 2023, 108, 492–494. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Mizogami, M. Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2020, 14, 34–47. [Google Scholar] [CrossRef]
- Mizogami, M.; Tsuchiya, H. Membrane interactivity of capsaicin antagonized by capsazepine. Int. J. Mol. Sci. 2022, 23, 3971. [Google Scholar] [CrossRef]
- Zaborowska, M.; Matyszewska, D.; Bilewicz, R. Model lipid raft membranes for embedding integral membrane proteins: Reconstitution of HMG-CoA reductase and its inhibition by statins. Langmuir 2022, 38, 13888–13897. [Google Scholar] [CrossRef]
- Hazarosova, R.; Momchilova, A.; Vitkova, V.; Yordanova, V.; Kostadinova, A.; Angelova, M.I.; Tessier, C.; Nuss, P.; Staneva, G. Structural changes induced by resveratrol in monounsaturated and polyunsaturated phosphatidylcholine-enriched model membranes. Membranes 2023, 13, 909. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Nunes, C.; Lúcio, M.; Ferreira, H.; Lima, J.L.; Tavares, J.; Cordeiro-da-Silva, A.; Reis, S. Effect of nonsteroidal anti-inflammatory drugs on the cellular membrane fluidity. J. Pharm. Sci. 2008, 97, 3195–3206. [Google Scholar] [CrossRef]
- Kaur, J.; Sanyal, S.N. Alterations in membrane fluidity and dynamics in experimental colon cancer and its chemoprevention by diclofenac. Mol. Cell. Biochem. 2010, 341, 99–108. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102174. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Mizogami, M. Membrane interactivity of charged local anesthetic derivative and stereoselectivity in membrane interaction of local anesthetic enantiomers. Local Reg. Anesth. 2008, 1, 1–9. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Ueno, T.; Mizogami, M.; Takakura, K. Do local anesthetics interact preferentially with membrane lipid rafts? Comparative interactivities with raft-like membranes. J. Anesth. 2010, 24, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Chakraborty, H.; Sarkar, M. Photophysical studies of oxicam group of NSAIDs: Piroxicam, meloxicam and tenoxicam. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Maity, B.; Chatterjee, A.; Ahmed, S.A.; Seth, D. Interaction of the nonsteroidal anti-inflammatory drug indomethacin with micelles and its release. J. Phys. Chem. B 2015, 119, 3776–3785. [Google Scholar] [CrossRef]
- Chakraborty, H.; Roy, S.; Sarkar, M. Interaction of oxicam NSAIDs with DMPC vesicles: Differential partitioning of drugs. Chem. Phys. Lipids 2005, 138, 20–28. [Google Scholar] [CrossRef]
- Warner, T.D.; Giuliano, F.; Vojnovic, I.; Bukasa, A.; Mitchell, J.A.; Vane, J.R. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proc. Natl. Acad. Sci. USA 1999, 96, 7563–7568. [Google Scholar] [CrossRef] [PubMed]
- Huntjens, D.R.; Danhof, M.; Della Pasqua, O.E. Pharmacokinetic-pharmacodynamic correlations and biomarkers in the development of COX-2 inhibitors. Rheumatology 2005, 44, 846–859. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C.; Boyce, S.; Brideau, C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Ford-Hutchinson, A.W.; Forrest, M.J.; Gauthier, J.Y.; et al. Rofecoxib [Vioxx, MK-0966; 4-(4′-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: A potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J. Pharmacol. Exp. Ther. 1999, 290, 551–560. [Google Scholar] [CrossRef]
- de Leval, X.; Delarge, J.; Devel, P.; Neven, P.; Michaux, C.; Masereel, B.; Pirotte, B.; David, J.L.; Henrotin, Y.; Dogne, J.M. Evaluation of classical NSAIDs and COX-2 selective inhibitors on purified ovine enzymes and human whole blood. Prostaglandins Leukot. Essent. Fat. Acids 2001, 64, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.; Fellier, H.; Christoph, T.; Grarup, J.; Stimmeder, D. The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. Inflamm. Res. 1999, 48, 369–379. [Google Scholar] [CrossRef]
- Cryer, B.; Feldman, M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am. J. Med. 1998, 104, 413–421. [Google Scholar] [CrossRef]
- Pairet, M.; van Ryn, J.; Schierok, H.; Mauz, A.; Trummlitz, G.; Engelhardt, G. Differential inhibition of cyclooxygenases-1 and -2 by meloxicam and its 4′-isomer. Inflamm. Res. 1998, 47, 270–276. [Google Scholar] [CrossRef]
- Behnen, M.; Möller, S.; Brozek, A.; Klinger, M.; Laskay, T. Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps. Front. Immunol. 2017, 8, 184. [Google Scholar] [CrossRef]
- El Kebir, D.; de Oliveira Lima Dos Santos, E.; Mansouri, S.; Sekheri, M.; Filep, J.G. Mild acidosis delays neutrophil apoptosis via multiple signaling pathways and acts in concert with inflammatory mediators. J. Leukoc. Biol. 2017, 102, 1389–1400. [Google Scholar] [CrossRef]
- Fowler, P.W.; Balali-Mood, K.; Deol, S.; Coveney, P.V.; Sansom, M.S. Monotopic enzymes and lipid bilayers: A comparative study. Biochemistry 2007, 46, 3108–3115. [Google Scholar] [CrossRef]
- Wan, S.; Coveney, P.V. A comparative study of the COX-1 and COX-2 isozymes bound to lipid membranes. J. Comput. Chem. 2009, 30, 1038–1050. [Google Scholar] [CrossRef]
- Sviridov, D.; Mukhamedova, N.; Miller, Y.I. Lipid rafts as a therapeutic target. J. Lipid Res. 2020, 61, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Giraud, M.N.; Motta, C.; Romero, J.J.; Bommelaer, G.; Lichtenberger, L.M. Interaction of indomethacin and naproxen with gastric surface-active phospholipids: A possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). Biochem. Pharmacol. 1999, 57, 247–254. [Google Scholar] [CrossRef]
- Tomisato, W.; Tanaka, K.; Katsu, T.; Kakuta, H.; Sasaki, K.; Tsutsumi, S.; Hoshino, T.; Aburaya, M.; Li, D.; Tsuchiya, T.; et al. Membrane permeabilization by non-steroidal anti-inflammatory drugs. Biochem. Biophys. Res. Commun. 2004, 323, 1032–1039. [Google Scholar] [CrossRef]
- Sade, A.; Banerjee, S.; Severcan, F. Effects of the non-steroidal anti-inflammatory drug celecoxib on cholesterol containing distearoyl phosphatidylcholine membranes. Spectroscopy 2011, 25, 177–185. [Google Scholar] [CrossRef]
- Sade, A.; Tunçay, S.; Cimen, I.; Severcan, F.; Banerjee, S. Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Biosci. Rep. 2012, 32, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, M.; Ferreira, H.; Lima, J.L.; Reis, S. Interactions between oxicams and membrane bilayers: An explanation for their different COX selectivity. Med. Chem. 2006, 2, 447–456. [Google Scholar] [CrossRef]
- Majumdar, A.; Kundu, D.; Sarkar, M. Differential effect of oxicam non-steroidal anti-inflammatory drugs on membranes and their consequence on membrane fusion. J. Phys. Chem. B 2015, 119, 9627–9639. [Google Scholar] [CrossRef]
- Pereira-Leite, C.; Figueiredo, M.; Burdach, K.; Nunes, C.; Reis, S. Unraveling the role of drug-lipid interactions in NSAIDs-induced cardiotoxicity. Membranes 2020, 11, 24. [Google Scholar] [CrossRef]
- Aloi, E.; Rizzuti, B.; Guzzi, R.; Bartucci, R. Association of ibuprofen at the polar/apolar interface of lipid membranes. Arch. Biochem. Biophys. 2018, 654, 77–84. [Google Scholar] [CrossRef]
- Alsop, R.J.; Toppozini, L.; Marquardt, D.; Kučerka, N.; Harroun, T.A.; Rheinstädter, M.C. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes. Biochim. Biophys. Acta 2015, 1848, 805–812. [Google Scholar] [CrossRef]
- Pereira-Leite, C.; Nunes, C.; Lima, J.L.; Reis, S.; Lúcio, M. Interaction of celecoxib with membranes: The role of membrane biophysics on its therapeutic and toxic effects. J. Phys. Chem. B 2012, 116, 13608–13617. [Google Scholar] [CrossRef] [PubMed]
- Kyrikou, I.; Hadjikakou, S.K.; Kovala-Demertzi, D.; Viras, K.; Mavromoustakos, T. Effects of non-steroid anti-inflammatory drugs in membrane bilayers. Chem. Phys. Lipids 2004, 132, 157–169. [Google Scholar] [CrossRef]
- Mondal Roy, S.; Sarkar, M. Effect of lipid molecule headgroup mismatch on non steroidal anti-inflammatory drugs induced membrane fusion. Langmuir 2011, 27, 15054–15064. [Google Scholar] [CrossRef]
- Liou, Y.B.; Ho, H.O.; Yang, C.J.; Lin, Y.K.; Sheu, M.T. Construction of a quantitative structure-permeability relationship (QSPR) for the transdermal delivery of NSAIDs. J. Control. Release 2009, 138, 260–267. [Google Scholar] [CrossRef]
- Seedher, N.; Bhatia, S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003, 4, E33. [Google Scholar] [CrossRef]
- Starek, M.; Plenis, A.; Zagrobelna, M.; Dąbrowska, M. Assessment of lipophilicity descriptors of selected NSAIDs obtained at different TLC stationary phases. Pharmaceutics 2021, 13, 440. [Google Scholar] [CrossRef]
- Wright, A.J.; Husson, Z.M.A.; Hu, D.E.; Callejo, G.; Brindle, K.M.; Smith, E.S.J. Increased hyperpolarized [1-13C] lactate production in a model of joint inflammation is not accompanied by tissue acidosis as assessed using hyperpolarized 13C-labelled bicarbonate. NMR Biomed. 2018, 31, e3892. [Google Scholar] [CrossRef]
- Calatayud, S.; Esplugues, J.V. Chemistry, Pharmacodynamics, and Pharmacokinetics of NSAIDs. In NSAIDs and Aspirin; Lanas, A., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Rodríguez-Barrientos, D.; Rojas-Hernández, A.; Gutiérrez, A.; Moya-Hernández, R.; Gómez-Balderas, R.; Ramírez-Silva, M.T. Determination of pKa values of tenoxicam from 1H NMR chemical shifts and of oxicams from electrophoretic mobilities (CZE) with the aid of programs SQUAD and HYPNMR. Talanta 2009, 80, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.I.; Navia-Pelaez, J.M.; Corr, M.; Yaksh, T.L. Lipid rafts in glial cells: Role in neuroinflammation and pain processing. J. Lipid Res. 2020, 61, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.N.; Rehana, T.; Ramakrishna, S.; Chowdhary, K.P.; Diwan, P.V. β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies. AAPS PharmSci. 2004, 6, E7. [Google Scholar] [CrossRef]
- Pawlędzio, S.; Ziemniak, M.; Wang, X.; Woźniak, K.; Malinska, M. Understanding the selectivity of nonsteroidal anti-inflammatory drugs for cyclooxygenases using quantum crystallography and electrostatic interaction energy. IUCrJ 2025, 12, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Barbato, F.; La Rotonda, M.I.; Quaglia, F. Interactions of nonsteroidal antiinflammatory drugs with phospholipids: Comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes. J. Pharm. Sci. 1997, 86, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Horváth, Á.; Erostyák, J.; Szőke, É. Effect of lipid raft disruptors on cell membrane fluidity studied by fluorescence spectroscopy. Int. J. Mol. Sci. 2022, 23, 13729. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhu, W.; Peng, J.; Li, K.; Li, C. Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Crit. Rev. Food Sci. Nutr. 2022, 62, 311–324. [Google Scholar] [CrossRef]
- Tsuchiya, H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules 2015, 20, 18923–18966. [Google Scholar] [CrossRef]
- Zhu, W.; Deng, X.; Peng, J.; Zou, B.; Li, C. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts. J. Nutr. Biochem. 2017, 48, 62–73. [Google Scholar] [CrossRef]
- Paba, C.; Dorigo, V.; Senigagliesi, B.; Tormena, N.; Parisse, P.; Voitchovsky, K.; Casalis, L. Lipid bilayer fluidity and degree of order regulates small EVs adsorption on model cell membrane. J. Colloid Interface Sci. 2023, 652 Pt B, 1937–1943. [Google Scholar] [CrossRef]
- Hamed, A.M.R.; Abdel-Shafi, I.R.; Elsayed, M.D.A.; Mahfoz, A.M.; Tawfeek, S.E.; Abdeltawab, M.S.A. Investigation of the effect of curcumin on oxidative stress, local inflammatory response, COX-2 expression, and microvessel density in Trichinella spiralis induced enteritis, myositis and myocarditis in mice. Helminthologia 2022, 59, 18–36. [Google Scholar] [CrossRef]
- Murai, T.; Masaki, Y.; Yasuhara, K. Curcumin modulates the membrane raft integrity via phase separation and induces CD44 shedding in tumor cells. Biochemistry, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Pande, A.H.; Qin, S.; Tatulian, S.A. Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys. J. 2005, 88, 4084–4094. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Plowman, S.J.; Lichtenberger, L.M.; Hancock, J.F. The anti-inflammatory drug indomethacin alters nanoclustering in synthetic and cell plasma membranes. J. Biol. Chem. 2010, 285, 35188–35195. [Google Scholar] [CrossRef] [PubMed]
Polarization Change | |||||
---|---|---|---|---|---|
Concentration (μM) | Interaction with Lipid Raft Membrane at pH 7.4 | ||||
Diclofenac | Ibuprofen | Indomethacin | Aspirin | Flurbiprofen | |
50 | 0.0156 ± 0.0014 ** | 0.0062 ± 0.0007 ** | 0.0046 ± 0.0007 ** | 0.0058 ± 0.0007 ** | 0.0012 ± 0.0012 |
10 | 0.0047 ± 0.0009 ** | 0.0009 ± 0.0009 | 0.0019 ± 0.0011 * | 0.0004 ± 0.0013 | 0.0004 ± 0.0016 |
2 | 0.0005 ± 0.0013 | 0.0003 ± 0.0014 | 0.0000 ± 0.0012 | 0.0000 ± 0.0007 | 0.0002 ± 0.0012 |
Lumiracoxib | Etoricoxib | Celecoxib | Valdecoxib | Rofecoxib | |
50 | 0.0304 ± 0.0008 ** | 0.0257 ± 0.0005 ** | 0.0243 ± 0.0014 ** | 0.0122 ± 0.0010 ** | 0.0096 ± 0.0011 ** |
10 | 0.0193 ± 0.0012 ** | 0.0130 ± 0.0010 ** | 0.0127 ± 0.0007 ** | 0.0043 ± 0.0009 ** | 0.0026 ± 0.0005 ** |
2 | 0.0145 ± 0.0009 ** | 0.0035 ± 0.0010 ** | 0.0019 ± 0.0009 * | 0.0005 ± 0.0009 | 0.0000 ± 0.0013 |
Meloxicam | Piroxicam | Tenoxicam | Lornoxicam | ||
50 | –0.0584 ± 0.0007 ** | –0.0421 ± 0.0012 ** | –0.0282 ± 0.0014 ** | –0.0241 ± 0.0006 ** | |
10 | –0.0147 ± 0.0009 ** | –0.0040 ± 0.0007 ** | –0.0058 ± 0.0009 ** | –0.0055 ± 0.0008 ** | |
2 | –0.0024 ± 0.0019 * | –0.0004 ± 0.0012 | –0.0004 ± 0.0010 | –0.0006 ± 0.0011 | |
Interaction with Lipid Raft Membrane at pH 5.5 | |||||
Diclofenac | Ibuprofen | Indomethacin | Aspirin | Flurbiprofen | |
50 | 0.0238 ± 0.0009 ** | 0.0086 ± 0.0010 ** | 0.0055 ± 0.0015 ** | 0.0083 ± 0.0013 ** | 0.0025 ± 0.0008 ** |
Lumiracoxib | Etoricoxib | Celecoxib | Valdecoxib | Rofecoxib | |
50 | 0.0270 ± 0.0014 ** | 0.0259 ± 0.0005 ** | 0.0316 ± 0.0012 ** | 0.0140 ± 0.0007 ** | 0.0087 ± 0.0008 ** |
Meloxicam | Piroxicam | Tenoxicam | Lornoxicam | ||
50 | –0.0411 ± 0.0011 ** | –0.0213 ± 0.0019 ** | –0.0174 ± 0.0008 ** | –0.0098 ± 0.0012 ** | |
Interaction with DPPC Membrane at pH 7.4 | |||||
Diclofenac | Ibuprofen | Indomethacin | Aspirin | Flurbiprofen | |
50 | 0.0010 ± 0.0002 * | 0.0010 ± 0.0005 * | 0.0252 ± 0.0020 ** | 0.0000 ± 0.0004 | –0.0006 ± 0.0007 |
Lumiracoxib | Etoricoxib | Celecoxib | Valdecoxib | Rofecoxib | |
50 | 0.0304 ± 0.0006 ** | 0.0194 ± 0.0012 ** | 0.0283 ± 0.0009 ** | 0.0092 ± 0.0011 ** | 0.0044 ± 0.0007 ** |
Meloxicam | Piroxicam | Tenoxicam | Lornoxicam | ||
50 | –0.0144 ± 0.0027 ** | –0.0050 ± 0.0025 ** | –0.0153 ± 0.0011 ** | –0.0197 ± 0.0015 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizogami, M.; Iida, H.; Tsuchiya, H. Lipid Raft Membrane Interactivity Correlating with Cyclooxygenase-2 Selectivity of Non-Steroidal Anti-Inflammatory Drugs. Membranes 2025, 15, 284. https://doi.org/10.3390/membranes15090284
Mizogami M, Iida H, Tsuchiya H. Lipid Raft Membrane Interactivity Correlating with Cyclooxygenase-2 Selectivity of Non-Steroidal Anti-Inflammatory Drugs. Membranes. 2025; 15(9):284. https://doi.org/10.3390/membranes15090284
Chicago/Turabian StyleMizogami, Maki, Hiroki Iida, and Hironori Tsuchiya. 2025. "Lipid Raft Membrane Interactivity Correlating with Cyclooxygenase-2 Selectivity of Non-Steroidal Anti-Inflammatory Drugs" Membranes 15, no. 9: 284. https://doi.org/10.3390/membranes15090284
APA StyleMizogami, M., Iida, H., & Tsuchiya, H. (2025). Lipid Raft Membrane Interactivity Correlating with Cyclooxygenase-2 Selectivity of Non-Steroidal Anti-Inflammatory Drugs. Membranes, 15(9), 284. https://doi.org/10.3390/membranes15090284