Microwave Synthesis in Zeolite and MOF Membranes
Abstract
1. Introduction
2. Fundamentals of Microwave Heating Technology
3. Typical Features and Benefits of Microwave Synthesis for Membrane Fabrication
3.1. Reduced Synthesis Time
3.2. Reduced Membrane Thickness
3.3. Suppression of Impurity and Undesired Phases
3.4. Improved Membrane Compactness
4. Latest Developments in Microwave Heating Process Optimization
4.1. Single-Mode Microwave
4.2. Precise Heating Rate Control
5. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Li, L.; Yang, J.; Lu, J.; Wang, J. Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol. Membr. Water Treat. 2019, 10, 353–360. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Wang, X.; Liu, C.; Li, L. Preparation of high-performance zeolite membrane on a macroporous support by novel intermittent hydrothermal synthesis. Microporous Mesoporous Mater. 2023, 360, 112734. [Google Scholar] [CrossRef]
- Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Membrane separation in organic liquid: Technologies, achievements, and opportunities. Adv. Mater. 2019, 31, 1806090. [Google Scholar] [CrossRef]
- Lin, J.Y. Inorganic membranes: Past, present, challenges and future perspective. Sep. Purif. Technol. 2025, 377, 134405. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, Z.; Elgarahy, A.M.; Farghali, M.; Mohamed, I.M.; Priya, A.; Hawash, H.B.; Yap, P.S. Membrane technology for energy saving: Principles, techniques, applications, challenges, and prospects. Adv. Energy Sustain. Res. 2024, 5, 2400011. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Li, J.; Wang, J.; Pan, E.; Lu, J.; Zhang, Y.; Yang, J. Sustainable synthesis of highly water-selective ZSM-5 membrane by wet gel conversion. J. Membr. Sci. 2021, 635, 119431. [Google Scholar] [CrossRef]
- Amy, G.; Ghaffour, N.; Li, Z.; Francis, L.; Linares, R.V.; Missimer, T.; Lattemann, S. Membrane-based seawater desalination: Present and future prospects. Desalination 2017, 401, 16–21. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Li, J.; Wang, J.; Lu, J.; Yin, D.; Zhang, Y. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols. AIChE J. 2016, 62, 2813–2824. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Yang, J.; Lu, J.; Yin, D.; Wang, J. Preparation and characterization of water perm-selectivity ZSM-5 zeolite membrane using fluoride route. J. Inorg. Mater. 2015, 30, 1167–1171. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Li, L.; Li, J.; Lu, J.; Yang, J. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures. Sep. Purif. Technol. 2022, 286, 120311. [Google Scholar] [CrossRef]
- Strathmann, H. Membrane separation processes: Current relevance and future opportunities. AIChE J. 2001, 47, 1077–1087. [Google Scholar] [CrossRef]
- Algieri, C.; Drioli, E. Zeolite membranes: Synthesis and applications. Sep. Purif. Technol. 2021, 278, 119295. [Google Scholar] [CrossRef]
- Caro, J.; Noack, M.; Kölsch, P.; Schäfer, R. Zeolite membranes–state of their development and perspective. Microporous Mesoporous Mater. 2000, 38, 3–24. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Ye, Q.; Wang, K.; Li, L. Preparation of mordenite zeolite membrane by intermittent hydrothermal synthesis and its application in isopropanol dehydration. Chin. J. Inorg. Chem. 2024, 40, 316–324. [Google Scholar]
- Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite membranes–a review and comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128–7154. [Google Scholar] [CrossRef]
- Shahid, M.U.; Najam, T.; Islam, M.; Hassan, A.M.; Assiri, M.A.; Rauf, A.; ur Rehman, A.; Shah, S.S.A.; Nazir, M.A. Engineering of metal organic framework (MOF) membrane for waste water treatment: Synthesis, applications and future challenges. J. Water Process Eng. 2024, 57, 104676. [Google Scholar] [CrossRef]
- Bashir, S.; Gurbanova, L.; Shaaban, I.A.; Javed, M.S.; Karim, M.R.; Shah, S.S.A.; Nazir, M.A. Recent advances in MXene-polymer composites for high performance supercapacitor applications. J. Energy Storage 2025, 132, 117588. [Google Scholar] [CrossRef]
- Gavalas, G.R. Zeolite membranes for gas and liquid separations. Mater. Sci. Membr. Gas Vap. Sep. 2006, 307–336. [Google Scholar] [CrossRef]
- Kang, D.-Y.; Lee, J.S. Challenges in developing MOF-based membranes for gas separation. Langmuir 2023, 39, 2871–2880. [Google Scholar] [CrossRef]
- Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J. Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 2016, 499, 65–79. [Google Scholar] [CrossRef]
- Kyotani, T.; Richter, H. Zeolite membrane: From microstructure to separation performance. Membranes 2022, 12, 176. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Zhang, J.; Wang, Z.; Zhou, L.; Wang, J. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation. Mod. Chem. Ind. 2018, 38, 136–141. [Google Scholar]
- Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Van der Bruggen, B. Metal–organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017, 46, 7124–7144. [Google Scholar] [CrossRef]
- Lin, Y.S. Metal organic framework membranes for separation applications. Curr. Opin. Chem. Eng. 2015, 8, 21–28. [Google Scholar] [CrossRef]
- Qiu, S.; Xue, M.; Zhu, G. Metal–organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Advances in microwave synthesis of nanoporous materials. Adv. Mater. 2021, 33, 2103477. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Kar, K.K. Microwave as a tool for synthesis of carbon-based electrodes for energy storage. ACS Appl. Mater. Interfaces 2021, 14, 20306–20325. [Google Scholar] [CrossRef]
- de Greñu, B.D.; Torres, J.; García-González, J.; Muñoz-Pina, S.; Reyes, R.d.L.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Microwave-assisted synthesis of covalent organic frameworks: A review. ChemSusChem 2021, 14, 208–233. [Google Scholar] [CrossRef] [PubMed]
- Phan, P.T.; Hong, J.; Tran, N.; Le, T.H. The properties of microwave-assisted synthesis of metal–organic frameworks and their applications. Nanomaterials 2023, 13, 352. [Google Scholar] [CrossRef]
- Arafat, A.; Jansen, J.; Ebaid, A.; Van Bekkum, H. Microwave preparation of zeolite Y and ZSM-5. Zeolites 1993, 13, 162–165. [Google Scholar] [CrossRef]
- Girnus, I.; Pohl, M.M.; Richter-Mendau, J.; Schneider, M.; Noack, M.; Venzke, D.; Caro, J. Synthesis of AIPO4-5 aluminumphosphate molecular sieve crystals for membrane applications by microwave heating. Adv. Mater. 1995, 7, 711–714. [Google Scholar] [CrossRef]
- Conner, W.C.; Tompsett, G.; Lee, K.-H.; Yngvesson, K.S. Microwave synthesis of zeolites: 1. Reactor engineering. J. Phys. Chem. B 2004, 108, 13913–13920. [Google Scholar] [CrossRef]
- Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev. 2007, 107, 2563–2591. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.-Y.; Yu, R.; Moskovits, M. Microwave synthesis of zeolites and their related applications. Microporous Mesoporous Mater. 2021, 323, 111262. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Pramada, P. Microwave assisted synthesis of zeolite A from metakaolin. Microporous Mesoporous Mater. 2008, 108, 152–161. [Google Scholar] [CrossRef]
- Cundy, C.S. Microwave techniques in the synthesis and modification of zeolite catalysts. A review. Collect. Czechoslov. Chem. Commun. 1998, 63, 1699–1723. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Li, L. Recent Progress in the Green Synthesis of Zeolite Membranes. Microporous Mesoporous Mater. 2025, 397, 113761. [Google Scholar] [CrossRef]
- Meng, X.; Xiao, F.-S. Green routes for synthesis of zeolites. Chem. Rev. 2014, 114, 1521–1543. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem. Commun. 2013, 49, 3854–3856. [Google Scholar] [CrossRef]
- Sebastian, V.; Mallada, R.; Coronas, J.; Julbe, A.; Terpstra, R.A.; Dirrix, R.W. Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite–ceramic membranes for pervaporation application. J. Membr. Sci. 2010, 355, 28–35. [Google Scholar] [CrossRef]
- Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Adv. Mater. 2000, 12, 195–198. [Google Scholar] [CrossRef]
- Mendes, R.F.; Rocha, J.; Paz, F.A.A. Microwave synthesis of metal-organic frameworks. In Metal-Organic Frameworks for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 159–176. [Google Scholar]
- Li, Y.; Yang, W. Microwave synthesis of zeolite membranes: A review. J. Membr. Sci. 2008, 316, 3–17. [Google Scholar] [CrossRef]
- Ramu, G.; Jeong, H.-K. Recent progress on metal-organic framework membranes for gas separations: Conventional synthesis vs. microwave-assisted synthesis. Membr. J. 2017, 27, 1–42. [Google Scholar] [CrossRef]
- Thomas-Hillman, I.; Laybourn, A.; Dodds, C.; Kingman, S.W. Realising the environmental benefits of metal–organic frameworks: Recent advances in microwave synthesis. J. Mater. Chem. A 2018, 6, 11564–11581. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, W. Microwave-assisted inorganic syntheses. In Modern Inorganic Synthetic Chemistry; Elsevier: Amsterdam, The Netherlands, 2011; pp. 173–195. [Google Scholar]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave material processing—A review. AIChE J. 2012, 58, 330–363. [Google Scholar] [CrossRef]
- Vasudev, H.; Singh, G.; Bansal, A.; Vardhan, S.; Thakur, L. Microwave heating and its applications in surface engineering: A review. Mater. Res. Express 2019, 6, 102001. [Google Scholar] [CrossRef]
- Norgard, J.; Best, G.L. The electromagnetic spectrum. In National Association of Broadcasters Engineering Handbook; Routledge: Abingdon, UK, 2017; pp. 3–10. [Google Scholar]
- Ray, K. Introduction to Important Concepts of RF, Microwaves, and mm Waves Technologies. In RF, Microwave and Millimeter Wave Technologies; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–15. [Google Scholar]
- Abramovitch, R.A. Applications of microwave energy in organic chemistry. A review. Org. Prep. Proced. Int. 1991, 23, 683–711. [Google Scholar] [CrossRef]
- de la Hoz, A.; Loupy, A. Microwaves in Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Meda, V.; Orsat, V.; Raghavan, V. Microwave heating and the dielectric properties of foods. In The Microwave Processing of Foods; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–43. [Google Scholar]
- Mingos, D.M.P. Theoretical aspects of microwave dielectric heating. In Microwave Assisted Organic Synthesis; Blackwell Publishing Ltd.: Oxford, UK, 2009; pp. 1–21. [Google Scholar] [CrossRef]
- Mello, P.A.; Barin, J.S.; Guarnieri, R.A. Microwave heating. In Microwave-Assisted Sample Preparation for Trace Element Analysis; Elsevier: Amsterdam, The Netherlands, 2014; pp. 59–75. [Google Scholar]
- Horikoshi, S.; Schiffmann, R.F.; Fukushima, J.; Serpone, N. Microwave chemical and materials processing. Microw. Chem. Mater. Process. 2018, 1, 33–45. [Google Scholar]
- Yoshikawa, N. Mechanism of microwave heating of matter. In RF Power Semiconductor Generator Application in Heating and Energy Utilization; Springer: Berlin/Heidelberg, Germany, 2020; pp. 71–89. [Google Scholar]
- Mantiply, E.D.; Pohl, K.R.; Poppell, S.W.; Murphy, J.A. Summary of measured radiofrequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 1997, 18, 563–577. [Google Scholar] [CrossRef]
- Curto, S.; Taj-Eldin, M.; Fairchild, D.; Prakash, P. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Med. Phys. 2015, 42, 6152–6161. [Google Scholar] [CrossRef]
- Anwar, J.; Shafique, U.; Rehman, R.; Salman, M.; Dar, A.; Anzano, J.M.; Ashraf, U.; Ashraf, S. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arab. J. Chem. 2015, 8, 100–104. [Google Scholar] [CrossRef]
- Johnson, B.R.; Hirschfelder, J.O.; Yang, K.-H. Interaction of atoms, molecules, and ions with constant electric and magnetic fields. Rev. Mod. Phys. 1983, 55, 109. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Gao, X. Microwave encounters ionic liquid: Synergistic mechanism, synthesis and emerging applications. Chem. Rev. 2023, 124, 2651–2698. [Google Scholar] [CrossRef] [PubMed]
- Thostenson, E.; Chou, T.-W. Microwave processing: Fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Grant, E.; Halstead, B.J. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998, 27, 213–224. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Chen, G.; He, A. Microwave absorption properties of steelmaking dusts: Effects of temperature on the dielectric constant (ε′) and loss factor (ε′′) at 1064 MHz and 2423 MHz. RSC Adv. 2019, 9, 6859–6870. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef]
- Mishra, R.R.; Sharma, A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Part A Appl. Sci. Manuf. 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Nandihalli, N. Microwave-driven synthesis and modification of nanocarbons and hybrids in liquid and solid phases. J. Energy Storage 2025, 111, 115315. [Google Scholar] [CrossRef]
- Onimisi, M.; Ikyumbur, J. Computation of dielectric constant and loss factor of water and dimethylsulphoxide from 0.1 to 13 GHz. Sci. Rev. 2015, 1, 79–85. [Google Scholar]
- Tanaka, D.; Yamazaki, J.; Furukawa, M.; Tsukada, T. High power characteristics of (Ca, Ba) TiO3 piezoelectric ceramics with high mechanical quality factor. Jpn. J. Appl. Phys. 2010, 49, 09MD03. [Google Scholar] [CrossRef]
- Nandihalli, N.; Gregory, D.H.; Mori, T. Energy-saving pathways for thermoelectric nanomaterial synthesis: Hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing. Adv. Sci. 2022, 9, 2106052. [Google Scholar] [CrossRef]
- Liao, X.; Raghavan, G.; Yaylayan, V. Dielectric properties of alcohols (C1–C5) at 2450 MHz and 915 MHz. J. Mol. Liq. 2001, 94, 51–60. [Google Scholar] [CrossRef]
- Xu, X.; Yang, W.; Liu, J.; Lin, L. Fast formation of NaA zeolite membrane in the microwave field. Chin. Sci. Bull. 2000, 45, 1179–1181. [Google Scholar] [CrossRef]
- Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of NaA zeolite membrane by microwave heating. Sep. Purif. Technol. 2001, 25, 241–249. [Google Scholar] [CrossRef]
- Sun, K.; Liu, B.; Zhong, S.; Wu, A.; Wang, B.; Zhou, R.; Kita, H. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation. Sep. Purif. Technol. 2019, 219, 90–99. [Google Scholar] [CrossRef]
- Ng, T.Y.S.; Viriya, V.; Chew, T.L.; Yeong, Y.F.; Ahmad, A.L.; Ho, C.-D.; Jawad, Z.A. Optimization of CO2/H2 Separation over Ba-SAPO-34 Zeolite Membrane Synthesized by Microwave Heating. Membranes 2022, 12, 850. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.; Jeong, H.-K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 2008, 2441–2443. [Google Scholar] [CrossRef]
- Yoo, Y.; Lai, Z.; Jeong, H.-K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater. 2009, 123, 100–106. [Google Scholar] [CrossRef]
- Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001. [Google Scholar] [CrossRef]
- Hillman, F.; Brito, J.; Jeong, H.-K. Rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework membranes for tunable gas separations. ACS Appl. Mater. Interfaces 2018, 10, 5586–5593. [Google Scholar] [CrossRef] [PubMed]
- Suhaimi, N.H.; Yeong, Y.F.; Aziz, H.N.A.; Lai, L.S. Synthesis of ZIF-8 tubular membrane via solvent evaporation seeding coupled with microwave assisted heating method for separation of small molecule gases. Chemosphere 2022, 308, 136167. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, S.; Yan, J.; Ji, T.; Liu, L.; Wu, M.; Guo, X.; Liu, Y. Oriented ultrathin π-complexation MOF membrane for ethylene/ethane and flue gas separations. Angew. Chem. 2023, 135, e202311336. [Google Scholar] [CrossRef]
- Mushtaq, Q.M. Investigation of Synthesis Methods of ZIF-8 Membranes for CO2/CH4 Separation. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2022. [Google Scholar]
- Li, Z.; Zhang, J.; Zou, X.; Zuo, J.; Li, J.; Liu, Y.; Pui, D.Y. Synthesis and Gas Separation of Chabazite Zeolite Membranes. Wuji Cailiao Xuebao/J. Inorg. Mater. 2021, 36, 579–591. [Google Scholar] [CrossRef]
- Hu, N.; Li, Y.; Zhong, S.; Wang, B.; Zhang, F.; Wu, T.; Yang, Z.; Zhou, R.; Chen, X. Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performance in absence of organic structure directing agents. Microporous Mesoporous Mater. 2016, 228, 22–29. [Google Scholar] [CrossRef]
- Chew, T.L.; Ahmad, A.L.; Bhatia, S. Rapid synthesis of thin SAPO-34 membranes using microwave heating. J. Porous Mater. 2011, 18, 355–360. [Google Scholar] [CrossRef]
- Fan, J.; Wu, W.; Lu, Z.; Wei, Y. Rapid synthesis strategy of ultrathin UiO-66 separation membranes: Ultrasonic-assisted nucleation followed with microwave-assisted growth. J. Membr. Sci. 2022, 664, 121085. [Google Scholar] [CrossRef]
- Coutinho, D.; Losilla, J.A.; Balkus Jr, K.J. Microwave synthesis of ETS-4 and ETS-4 thin films. Microporous Mesoporous Mater. 2006, 90, 229–236. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Song, C.; Yang, W.; Liu, J.; Lin, L. Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mesoporous Mater. 2004, 75, 173–181. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Cai, R.; Yang, W. Suppression of twins in b-oriented MFI molecular sieve films under microwave irradiation. Chem. Commun. 2012, 48, 6782–6784. [Google Scholar] [CrossRef]
- García Márquez, A.; Demessence, A.; Platero-Prats, A.E.; Heurtaux, D.; Horcajada, P.; Serre, C.; Chang, J.S.; Férey, G.; de la Peña-O'Shea, V.A.; Boissière, C. Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur. J. Inorg. Chem. 2012, 2012, 5165–5174. [Google Scholar] [CrossRef]
- Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354, 48–54. [Google Scholar] [CrossRef]
- Li, Y.-S.; Liang, F.-Y.; Bux, H.; Feldhoff, A.; Yang, W.-S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem. (Int. Ed. Engl.) 2010, 49, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Bux, H.; Feldhoff, A.; Li, G.L.; Yang, W.S.; Caro, J. Controllable synthesis of metal–organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 2010, 22, 3322–3326. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z. Preparation of b-oriented MFI zeolite films by microwave heating. Acta Pet. Sin. Pet. Process. Sect. 2009, 25 (Suppl. S2), 65–69. [Google Scholar]
- Yanshuo, L.; Jie, L.; Hongliang, C.; Weishen, Y.; Liwu, L. Preparation of LTA zeolite membranes with few non-zeolite pores using microwave heating. Chin. J. Catal. 2006, 27, 544. [Google Scholar]
- Gordina, N.; Rumyantsev, R.; Borisova, T.; Kolobkova, A.; Tsvetova, E.; Afanas’eva, E.E.; Severgina, E.; Prokof’ev, V.Y. Use of combinations of ultrasonic treatment and microwave crystallization to intensify the synthesis of LTA zeolite membranes. Pet. Chem. 2021, 61, 292–298. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Q.; Huang, A. Microwave synthesis of tubular zeolitic imidazolate framework ZIF-8 membranes for CO2/CH4 separation. Sep. Sci. Technol. 2016, 51, 883–891. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, J.; Liu, Y. Single-Mode Microwave Heating-Induced Concurrent Out-of-Plane Twin Growth Suppression and In-Plane Epitaxial Growth Promotion of b-Oriented MFI Film Under Mild Reaction Conditions. Chem. Asian J. 2020, 15, 1277–1280. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Caro, J.; Guo, X.; Song, C.; Liu, Y. In-plane epitaxial growth of highly c-oriented NH2-MIL-125 (Ti) membranes with superior H2/CO2 selectivity. Angew. Chem. Int. Ed. 2018, 57, 16088–16093. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, Y.; Li, L.; Krishna, R.; Ji, T.; Chen, S.; Yan, J.; Liu, Y. Titanium-Oxo Cluster Assisted Fabrication of a Defect-Rich Ti-MOF Membrane Showing Versatile Gas-Separation Performance. Angew. Chem. 2022, 134, e202203663. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, J.; Wu, M.; Jiang, J.; Liu, Y. NH2-MIL-125 nanosheets prepared via crystallization kinetics modulation for ultrathin membrane fabrication. Chem Bio Eng. 2024, 1, 855–862. [Google Scholar] [CrossRef]
- Wang, C.; Yan, J.; Meng, S.; Wu, Y.; Chen, S.; Sun, Y.; Li, X.; Sun, B.; He, G.; Liu, Y. Fabrication of highly c-oriented defect-rich MIL-125 membrane from nanosheets towards exceptional CO2/N2 separation. J. Membr. Sci. 2024, 711, 123185. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, S.; Fan, X.; Ding, K.; Yan, J.; Wu, M.; Yang, S.; Lu, J.; Liu, Y. Mild Fabrication of Highly (h0 h)-Oriented MFI Zeolite Membrane from Self-Pillared Nanosheets Toward Superior Butane Isomer and Ammonia Separation. Adv. Funct. Mater. 2025, 2506949. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Cheng, L.; Wang, J.; Yang, J. Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure. J. Membr. Sci. 2020, 612, 118479. [Google Scholar] [CrossRef]
- Grand, J.; Awala, H.; Mintova, S. Mechanism of zeolites crystal growth: New findings and open questions. CrystEngComm 2016, 18, 650–664. [Google Scholar] [CrossRef]
- Nandihalli, N.; Liang, R.; Wijethunge, D.; Zhou, N.; Kleinke, H. Thermoelectric properties of Ni0.05Mo3Sb5.4Te1.6 composites with NiSb nanocoating. AIP Adv. 2018, 8, 125304. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Li, J.; Han, P.; Wang, J.; Zhao, Y.; Wang, J.; Lu, J.; Yin, D.; Zhang, Y. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating. J. Membr. Sci. 2016, 512, 83–92. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Li, L. Method for Synthesizing High-Quality Inorganic Film by Microwave Heating. U.S. Patent Application Publication No. US 2022/0274067 A1, 1 September 2022. [Google Scholar]
No. | Solvent | Dielectric Loss Factors (εr″) | Reference |
---|---|---|---|
1 | Water (H2O) | ~12 | [71] |
2 | Dimethyl sulfoxide (DMSO) | ~12.5 | [71] |
3 | Ethanol (EtOH) | 6.46 | [66] |
4 | Methanol (MeOH) | 11.77 | [66] |
5 | Propanol (PrOH) | 3.41 | [66] |
6 | n-Butanol (n-BuOH) | 1.45 | [66] |
7 | 1-Pentanol (1-PentOH) | ~1.1 | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L. Microwave Synthesis in Zeolite and MOF Membranes. Membranes 2025, 15, 275. https://doi.org/10.3390/membranes15090275
Li L. Microwave Synthesis in Zeolite and MOF Membranes. Membranes. 2025; 15(9):275. https://doi.org/10.3390/membranes15090275
Chicago/Turabian StyleLi, Liangqing. 2025. "Microwave Synthesis in Zeolite and MOF Membranes" Membranes 15, no. 9: 275. https://doi.org/10.3390/membranes15090275
APA StyleLi, L. (2025). Microwave Synthesis in Zeolite and MOF Membranes. Membranes, 15(9), 275. https://doi.org/10.3390/membranes15090275