A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes
Abstract
:1. Introduction
2. Generalized Helfrich Free Energy for Multicomponent Heterogeneous Vesicles
2.1. Formulation of Generalized Helfrich Free Energy
2.2. Importances of Two Geometric Constraints
3. Calculation of Euler–Lagrange Equations
3.1. Variation for the Material Concentration on the Membrane:
3.2. Variation for the Deformation on the Membrane:
3.3. Summary of New Helfrich Shape Equations
4. Special Geometric Shapes with Phase Separation
4.1. Spherical Vesicles
4.2. Cylindrical Vesicles
4.3. Vesicles with Constant Mean Curvature
5. Discussion and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46, 13–137. [Google Scholar] [CrossRef]
- Dimova, R.; Marques, C. The Giant Vesicle Book; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 1997, 387, 569. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, L.; Simons, K. Lipid rafts and membrane dynamics. J. Cell Sci. 2005, 118, 1099–1102. [Google Scholar] [CrossRef]
- Jacobson, K.; Dietrich, C. Looking at lipid rafts? Trends Cell Biol. 1999, 9, 87–91. [Google Scholar] [CrossRef]
- Wu, H.; Noguchi, H. Effects of anchored flexible polymers on mechanical properties of model biomembranes. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; Volume 1518, pp. 649–653. [Google Scholar]
- Wu, H.; Shiba, H.; Noguchi, H. Mechanical properties and microdomain separation of fluid membranes with anchored polymers. Soft Matter 2013, 9, 9907–9917. [Google Scholar] [CrossRef]
- McIntosh, T.J.; Vidal, A.; Simon, S.A. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. Biophys. J. 2003, 85, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Needham, D.; Nunn, R.S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 1990, 58, 997–1009. [Google Scholar] [CrossRef]
- Grzybek, M.; Kozubek, A.; Dubielecka, P.; Sikorski, A.F. Rafts-the current picture. Folia Histochem. Cytobiol. 2005, 43, 3–10. [Google Scholar]
- Allende, D.; Vidal, A.; McIntosh, T.J. Jumping to rafts: Gatekeeper role of bilayer elasticity. Trends Biochem. Sci. 2004, 29, 325–330. [Google Scholar] [CrossRef]
- Dietrich, C.; Bagatolli, L.; Volovyk, Z.; Thompson, N.; Levi, M.; Jacobson, K.; Gratton, E. Lipid rafts reconstituted in model membranes. Biophys. J. 2001, 80, 1417–1428. [Google Scholar] [CrossRef]
- Simons, K.; Van Meer, G. Lipid sorting in epithelial cells. Biochemistry 1988, 27, 6197–6202. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.; Tillack, T.W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophys. Biophys. Chem. 1985, 14, 361–386. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.E. Sphingolipid organization in biomembranes: What physical studies of model membranes reveal. J. Cell Sci. 1998, 111, 1–9. [Google Scholar] [CrossRef]
- Baumgart, T.; Hess, S.T.; Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003, 425, 821–824. [Google Scholar] [CrossRef]
- Veatch, S.L.; Keller, S.L. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 2002, 89, 268101. [Google Scholar] [CrossRef] [PubMed]
- Käs, J.; Sackmann, E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J. 1991, 60, 825–844. [Google Scholar] [CrossRef]
- Döbereiner, H.; Käs, J.; Noppl, D.; Sprenger, I.; Sackmann, E. Budding and fission of vesicles. Biophys. J. 1993, 65, 1396–1403. [Google Scholar] [CrossRef]
- Edidin, M. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 1997, 7, 528–532. [Google Scholar] [CrossRef]
- Jacobson, K.; Sheets, E.D.; Simson, R. Revisiting the fluid mosaic model of membranes. Science 1995, 268, 1441. [Google Scholar] [CrossRef]
- Xin, W.; Wu, H.; Grason, G.M.; Santore, M.M. Switchable positioning of plate-like inclusions in lipid membranes: Elastically mediated interactions of planar colloids in 2D fluids. Sci. Adv. 2021, 7, eabf1943. [Google Scholar] [CrossRef]
- Parton, R.G. Caveolae and caveolins. Curr. Opin. Cell Biol. 1996, 8, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Perez, Y.Q.; Lamaze, C.; Blouin, C.M. Lipid nanodomains and receptor signaling: From actin-based organization to membrane mechanics. Curr. Opin. Cell Biol. 2024, 86, 102308. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. für Naturforschung C 1973, 28, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Iglič, A. A possible mechanism determining the stability of spiculated red blood cells. J. Biomech. 1997, 30, 35–40. [Google Scholar] [CrossRef]
- Wu, H.; De León, M.A.P.; Othmer, H.G. Getting in shape and swimming: The role of cortical forces and membrane heterogeneity in eukaryotic cells. J. Math. Biol. 2018, 77, 595–626. [Google Scholar] [CrossRef]
- Illya, G.; Lipowsky, R.; Shillcock, J. Two-component membrane material properties and domain formation from dissipative particle dynamics. J. Chem. Phys. 2006, 125, 114710. [Google Scholar] [CrossRef]
- Taniguchi, T. Shape deformation and phase separation dynamics of two-component vesicles. Phys. Rev. Lett. 1996, 76, 4444. [Google Scholar] [CrossRef]
- Jiang, Y.; Lookman, T.; Saxena, A. Phase separation and shape deformation of two-phase membranes. Phys. Rev. E 2000, 61, R57. [Google Scholar] [CrossRef]
- Jiang, H.; Powers, T.R. Curvature-driven lipid sorting in a membrane tubule. Phys. Rev. Lett. 2008, 101, 018103. [Google Scholar] [CrossRef]
- Rautu, S.A.; Rowlands, G.; Turner, M.S. Membrane composition variation and underdamped mechanics near transmembrane proteins and coats. Phys. Rev. Lett. 2015, 114, 098101. [Google Scholar] [CrossRef]
- Dharmavaram, S.; She, S.B.; Lázaro, G.; Hagan, M.F.; Bruinsma, R. Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput. Biol. 2019, 15, e1006602. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.; Liese, S.; Al-Izzi, S.C.; Carlson, A. Stability of a biomembrane tube covered with proteins. Phys. Rev. E 2024, 109, 044403. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, Z.C.; Helfrich, W. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 1989, 39, 5280. [Google Scholar]
- Bray, A.J. Theory of phase-ordering kinetics. Adv. Phys. 2002, 51, 481–587. [Google Scholar] [CrossRef]
- Takiue, T. Heterogeneity and deformation behavior of lipid vesicles. Curr. Opin. Colloid Interface Sci. 2022, 62, 101646. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979. [Google Scholar]
- Jülicher, F.; Lipowsky, R. Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 1996, 53, 2670. [Google Scholar] [CrossRef]
- Qin, R.; Bhadeshia, H. Phase field method. Mater. Sci. Technol. 2010, 26, 803–811. [Google Scholar] [CrossRef]
- Simons, K.; Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Investig. 2002, 110, 597–603. [Google Scholar] [CrossRef]
- Capovilla, R.; Guven, J. Stresses in lipid membranes. J. Phys. A Math. Gen. 2002, 35, 6233. [Google Scholar] [CrossRef]
- Miao, L.; Lomholt, M.A.; Kleis, J. Dynamics of shape fluctuations of quasi-spherical vesicles revisited. Eur. Phys. J. E 2002, 9, 143–160. [Google Scholar] [CrossRef]
- Müller, M.M.; Deserno, M.; Guven, J. Geometry of surface-mediated interactions. EPL (Europhys. Lett.) 2005, 69, 482. [Google Scholar] [CrossRef]
- Capovilla, R.; Guven, J.; Santiago, J. Deformations of the geometry of lipid vesicles. J. Phys. A Math. Gen. 2003, 36, 6281. [Google Scholar] [CrossRef]
- Tu, Z.; Ou-Yang, Z.C. A geometric theory on the elasticity of bio-membranes. J. Phys. A Math. Gen. 2004, 37, 11407. [Google Scholar] [CrossRef]
- Wu, H.; Tu, Z. Theoretical and numerical investigations on shapes of planar lipid monolayer domains. J. Chem. Phys. 2009, 130, 045103. [Google Scholar] [CrossRef]
- Villanueva, M.E.; Bar, L.; Redondo-Morata, L.; Namdar, P.; Ruysschaert, J.M.; Pabst, G.; Vandier, C.; Bouchet, A.M.; Losada-Pérez, P. Spontaneous nanotube formation of an asymmetric glycolipid. J. Colloid Interface Sci. 2024, 671, 410–422. [Google Scholar] [CrossRef]
- Roux, A.; Cuvelier, D.; Nassoy, P.; Prost, J.; Bassereau, P.; Goud, B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 2005, 24, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Bouvrais, H.; Méléard, P.; Pott, T.; Jensen, K.J.; Brask, J.; Ipsen, J.H. Softening of POPC membranes by magainin. Biophys. Chem. 2008, 137, 7–12. [Google Scholar] [CrossRef]
- Capraro, B.R.; Yoon, Y.; Cho, W.; Baumgart, T. Curvature sensing by the epsin N-terminal homology domain measured on cylindrical lipid membrane tethers. J. Am. Chem. Soc. 2010, 132, 1200–1201. [Google Scholar] [CrossRef]
- Otten, D.; Brown, M.F.; Beyer, K. Softening of membrane bilayers by detergents elucidated by deuterium NMR spectroscopy. J. Phys. Chem. B 2000, 104, 12119–12129. [Google Scholar] [CrossRef]
- Pan, J.; Tieleman, D.P.; Nagle, J.F.; Kučerka, N.; Tristram-Nagle, S. Alamethicin in lipid bilayers: Combined use of X-ray scattering and MD simulations. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 1387–1397. [Google Scholar] [CrossRef]
- Henriksen, J.R.; Andresen, T.L.; Feldborg, L.N.; Duelund, L.; Ipsen, J.H. Understanding detergent effects on lipid membranes: A model study of lysolipids. Biophys. J. 2010, 98, 2199–2205. [Google Scholar] [CrossRef] [PubMed]
- Melero, A.; Chiaruttini, N.; Karashima, T.; Riezman, I.; Funato, K.; Barlowe, C.; Riezman, H.; Roux, A. Lysophospholipids facilitate COPII vesicle formation. Curr. Biol. 2018, 28, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Bashkirov, P.V.; Kuzmin, P.I.; Vera Lillo, J.; Frolov, V.A. Molecular shape solution for mesoscopic remodeling of cellular membranes. Annu. Rev. Biophys. 2022, 51, 473–497. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Santore, M.M. Large effect of membrane tension on the fluid–solid phase transitions of two-component phosphatidylcholine vesicles. Proc. Natl. Acad. Sci. USA 2014, 111, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.T. The isolation of purified neurosecretory vesicles from bovine neurohypophysis using isoosmolar density gradients. Anal. Biochem. 1981, 113, 229–238. [Google Scholar] [CrossRef]
- Hallett, F.R.; Marsh, J.; Nickel, B.G.; Wood, J.M. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys. J. 1993, 64, 435–442. [Google Scholar] [CrossRef]
- Yang, P.; Lipowsky, R.; Dimova, R. Nanoparticle formation in giant vesicles: Synthesis in biomimetic compartments. Small 2009, 5, 2033–2037. [Google Scholar] [CrossRef]
- Yang, P.; Du, Q.; Tu, Z. General neck condition for the limit shape of budding vesicles. Phys. Rev. E 2017, 95, 042403. [Google Scholar] [CrossRef]
- Li, Y.; Lipowsky, R.; Dimova, R. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proc. Natl. Acad. Sci. USA 2011, 108, 4731–4736. [Google Scholar] [CrossRef]
- Gaus, K.; Gratton, E.; Kable, E.P.; Jones, A.S.; Gelissen, I.; Kritharides, L.; Jessup, W. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. USA 2003, 100, 15554–15559. [Google Scholar] [CrossRef]
- Heijnen, H.; Van Lier, M.; Waaijenborg, S.; Ohno-Iwashita, Y.; Waheed, A.; Inomata, M.; Gorter, G.; Möbius, W.; Akkerman, J.; Slot, J. Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J. Thromb. Haemost. 2003, 1, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Gaus, K.; Le Lay, S.; Balasubramanian, N.; Schwartz, M.A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 2006, 174, 725–734. [Google Scholar] [CrossRef]
- Epand, R.M.; Epand, R.F. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 289–294. [Google Scholar] [CrossRef]
- Wu, H.; Ou-Yang, Z.C.; Podgornik, R. A Note on Vestigial Osmotic Pressure. Membranes 2023, 13, 332. [Google Scholar] [CrossRef]
- Bibissidis, N.; Betlem, K.; Cordoyiannis, G.; Prista-von Bonhorst, F.; Goole, J.; Raval, J.; Daniel, M.; Góźdź, W.; Iglič, A.; Losada-Pérez, P. Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes. J. Mol. Liq. 2020, 320, 114492. [Google Scholar] [CrossRef]
- Wu, H.; Thiébaud, M.; Hu, W.F.; Farutin, A.; Rafai, S.; Lai, M.C.; Peyla, P.; Misbah, C. Amoeboid motion in confined geometry. Phys. Rev. E 2015, 92, 050701. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Farutin, A.; Hu, W.F.; Thiébaud, M.; Rafaï, S.; Peyla, P.; Lai, M.C.; Misbah, C. Amoeboid swimming in a channel. Soft Matter 2016, 12, 7470–7484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wu, H. Mathematical modeling of chemotaxis guided amoeboid cell swimming. Phys. Biol. 2021, 18, 045001. [Google Scholar] [CrossRef]
- Farutin, A.; Wu, H.; Hu, W.F.; Rafaï, S.; Peyla, P.; Lai, M.C.; Misbah, C. Analytical study for swimmers in a channel. J. Fluid Mech. 2019, 881, 365–383. [Google Scholar] [CrossRef]
- Wu, H.; Ou-Yang, Z.C.; Podgornik, R. Electrostatic-elastic coupling in colloidal crystals. Europhys. Lett. 2024, 148, 47001. [Google Scholar] [CrossRef]
- Wu, H.; Ou-Yang, Z.C.; Podgornik, R. Continuum theory of electrostatic-elastic coupling interactions in colloidal crystals. Commun. Theor. Phys. 2025, 77, 055602. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Li, Y.; Yang, L.; Wu, H.; He, Q. Rotary biomolecular motor-powered supramolecular colloidal motor. Sci. Adv. 2023, 9, eabg3015. [Google Scholar] [CrossRef]
- Pantazatos, D.; MacDonald, R. Directly observed membrane fusion between oppositely charged phospholipid bilayers. J. Membr. Biol. 1999, 170, 27–38. [Google Scholar] [CrossRef]
- Deng, Y.X.; Liu, Y.; Shu, Y.G.; Ou-Yang, Z.C. Deformation theory of polymersome magneto-valves. Europhys. Lett. 2018, 123, 68002. [Google Scholar] [CrossRef]
- Capovilla, R.; Guven, J.; Santiago, J. Lipid membranes with an edge. Phys. Rev. E 2002, 66, 021607. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Ou-Yang, Z. Lipid membranes with free edges. Phys. Rev. E 2003, 68, 061915. [Google Scholar] [CrossRef]
- Nitsche, J.C. Periodic surfaces that are extremal for energy functionals containing curvature functions. In Statistical Thermodynamics and Differential Geometry of Microstructured Materials; Springer: Berlin/Heidelberg, Germany, 1993; pp. 69–98. [Google Scholar]
- Kuwert, E.; Schätzle, R. Gradient flow for the Willmore functional. Commun. Anal. Geom. 2002, 10, 307–339. [Google Scholar] [CrossRef]
- Kuwert, E.; Schätzle, R. Removability of point singularities of Willmore surfaces. Ann. Math. 2004, 160, 315–357. [Google Scholar] [CrossRef]
- Tu, Z. Challenges in the theoretical investigations of lipid membrane configurations. Chin. Phys. B 2013, 22, 028701. [Google Scholar] [CrossRef]
- Tu, Z.; Ou-Yang, Z. Recent theoretical advances in elasticity of membranes following Helfrich’s spontaneous curvature model. Adv. Colloid Interface Sci. 2014, 208, 66–75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Ou-Yang, Z.-C. A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes. Membranes 2025, 15, 182. https://doi.org/10.3390/membranes15060182
Wu H, Ou-Yang Z-C. A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes. Membranes. 2025; 15(6):182. https://doi.org/10.3390/membranes15060182
Chicago/Turabian StyleWu, Hao, and Zhong-Can Ou-Yang. 2025. "A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes" Membranes 15, no. 6: 182. https://doi.org/10.3390/membranes15060182
APA StyleWu, H., & Ou-Yang, Z.-C. (2025). A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes. Membranes, 15(6), 182. https://doi.org/10.3390/membranes15060182