Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = generalized Helfrich free energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 698 KiB  
Article
A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes
by Hao Wu and Zhong-Can Ou-Yang
Membranes 2025, 15(6), 182; https://doi.org/10.3390/membranes15060182 - 17 Jun 2025
Viewed by 874
Abstract
Cell membranes contain a variety of biomolecules, especially various kinds of lipids and proteins, which constantly change with fluidity and environmental stimuli. Though Helfrich curvature elastic energy has successfully explained many phenomena for single-component membranes, a new theoretical framework for multicomponent membranes is [...] Read more.
Cell membranes contain a variety of biomolecules, especially various kinds of lipids and proteins, which constantly change with fluidity and environmental stimuli. Though Helfrich curvature elastic energy has successfully explained many phenomena for single-component membranes, a new theoretical framework for multicomponent membranes is still a challenge. In this work, we propose a generalized Helfrich free-energy functional describe equilibrium shapes and phase behaviors related to membrane heterogeneity with via curvature-component coupling in a unified framework. For multicomponent membranes, a new but important Laplace–Beltrami operator is derived from the variational calculation on the integral of Gaussian curvature and applied to explain the spontaneous nanotube formation of an asymmetric glycolipid vesicle. Therefore, our general mathematical framework shows a predictive capabilities beyond the existing multicomponent membrane models. The set of new curvature-component coupling EL equations have been derived for global vesicle shapes associated with the composition redistribution of multicomponent membranes for the first time and specified into several typical geometric shape equations. The equilibrium radii of isotonic vesicles for both spherical and cylindrical geometries are calculated. The analytical solution for isotonic vesicles reveals that membrane stability requires distinct elastic moduli among components (kAkBk¯Ak¯B), which is consistent with experimental observations of coexisting lipid domains. Furthermore, we elucidate the biophysical implications of the derived shape equations, linking them to experimentally observed membrane remodeling processes. Our new free-energy framework provides a baseline for more detailed microscopic membrane models. Full article
Show Figures

Figure 1

Back to TopTop