Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Filtration Protocol
2.3. Microplastics Isolation and Quantification Protocol
2.4. Water Recovery Monitoring Indicator
3. Results and Discussion
3.1. Membrane Assessment
3.2. Membrane Validation
3.3. Microplastics Isolation and Quantification
3.4. Circularity Indicator Assessment and Comparative Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COD | Chemical oxygen demand |
MF | Microfiltration |
MPs | Microplastics |
PP | Polypropylene |
PVDF | Polyvinylidene fluoride |
UVC | Ultraviolet C |
WWTP | Wastewater treatment plant |
References
- Monira, S.; Roychand, R.; Hai, F.I.; Bhuiyan, M.; Dhar, B.R.; Pramanik, B.K. Nano and microplastics occurrence in wastewater treatment plants: A comprehensive understanding of microplastics fragmentation and their removal. Chemosphere 2023, 334, 139011. [Google Scholar] [CrossRef] [PubMed]
- Ayankunle, A.Y.; Buhhalko, N.; Pachel, K.; Lember, E.; Kõrgmaa, V.; Mishra, A.; Lind, K. Estimating Microplastics related to Laundry Wash and Personal Care Products released to Wastewater in Major Estonian Cities: A comparison of calculated and measured microplastics. J. Environ. Health Sci. Eng. 2023, 21, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Klinkhammer, K.; Kolbe, S.; Brandt, S.; Meyer, J.; Ratovo, K.; Bendt, E.; Rabe, M. Release of fibrous microplastics from functional polyester garments through household washing. Front. Environ. Sci. 2024, 12, 1330922. [Google Scholar] [CrossRef]
- Akter, M.S.; Chakraborty, T.K.; Ghosh, G.C.; Nice, M.S.; Zaman, S.; Khan, A.S. Microplastics and heavy metals in freshwater fish species in the southwestern region of Bangladesh: An emerging concern for public health. Emerg. Contam. 2024, 10, 100325. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- Thacharodi, A.; Hassan, S.; Meenatchi, R.; Bhat, M.A.; Hussain, N.; Arockiaraj, J.; Ngo, H.H.; Sharma, A.; Nguyen, H.T.; Pugazhendhi, A. Mitigating microplastic pollution: A critical review on the effects, remediation, and utilization strategies of microplastics. J. Environ. Manag. 2024, 351, 119988. [Google Scholar] [CrossRef]
- Jachimowicz, P.; Cydzik-Kwiatkowska, A. Coagulation and Flocculation before Primary Clarification as Efficient Solutions for Low-Density Microplastic Removal from Wastewater. Int. J. Environ. Res. Public Health 2022, 19, 13013. [Google Scholar] [CrossRef]
- Li, J.; Dagnew, M.; Ray, M.B. Effect of coagulation on microfibers in laundry wastewater. Environ. Res. 2022, 212, 113401. [Google Scholar] [CrossRef]
- Bayo, J.; López-Castellanos, J.; Olmos, S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar. Pollut. Bull. 2020, 156, 111211. [Google Scholar] [CrossRef]
- Koyuncuoğlu, P.; Erden, G. Sampling, pre-treatment, and identification methods of microplastics in sewage sludge and their effects in agricultural soils: A review. Environ. Monit. Assess. 2021, 193, 175. [Google Scholar] [CrossRef]
- Easton, T.; Koutsos, V.; Chatzisymeon, E. Removal of polyester fibre microplastics from wastewater using a UV/H2O2 oxidation process. J. Environ. Chem. Eng. 2023, 11, 109057. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Q.-S.; Luo, T.-Y.; Wu, R.-L.; Wei, W.; Ni, B.-J. Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem. Eng. J. 2021, 416, 129123. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced oxidation processes (AOPs) based wastewater treatment—Unexpected nitration side reactions—A serious environmental issue: A review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Sturm, M.T.; Horn, H.; Schuhen, K. Removal of Microplastics from Waters through Agglomeration-Fixation Using Organosilanes—Effects of Polymer Types, Water Composition and Temperature. Water 2021, 13, 675. [Google Scholar] [CrossRef]
- Akarsu, C.; Kumbur, H.; Kideys, A.E. Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci. Technol. 2021, 84, 1648–1662. [Google Scholar] [CrossRef]
- Zhao, H.; Helgason, A.; Leng, R.; Chowdhury, S.; Clermont, N.; Dinh, J.; Aldebasi, R.; Zhang, X.; Gattrell, M.; Lockhart, J. Removal of Microplastics/Microfibers and Detergents from Laundry Wastewater by Microbubble Flotation. ACS EST Water 2024, 4, 1819–1833. [Google Scholar] [CrossRef]
- Bu, T.; Mesa, D.; Pukkella, A.K.; Brito-Parada, P.R. Optimising miniaturised hydrocyclones for enhanced separation of microplastics. Chem. Eng. J. 2024, 496, 153718. [Google Scholar] [CrossRef]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Ujević Bošnjak, M.; Markić, M.; Bolanča, T.; Cvetnić, M.; Kučić Grgić, D.; Ukić, Š. The Potential of AOP Pretreatment in the Biodegradation of PS and PVC Microplastics by Candida parapsilosis. Water 2024, 16, 1389. [Google Scholar] [CrossRef]
- Dey, T.K.; Fan, L.; Bhuiyan, M.; Pramanik, B.K. Evaluating the performance of the metal organic framework-based ultrafiltration membrane for nanoplastics removal. Sep. Purif. Technol. 2025, 353, 128658. [Google Scholar] [CrossRef]
- Tadsuwan, K.; Babel, S. Microplastic abundance and removal via an ultrafiltration system coupled to a conventional municipal wastewater treatment plant in Thailand. J. Environ. Chem. Eng. 2022, 10, 107142. [Google Scholar] [CrossRef]
- Luogo, B.D.P.; Salim, T.; Zhang, W.; Hartmann, N.B.; Malpei, F.; Candelario, V.M. Reuse of Water in Laundry Applications with Micro- and Ultrafiltration Ceramic Membrane. Membranes 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Tanaka, S.; Koyuncu, C.Z.; Nakada, N. Removal of microplastics in wastewater by ceramic microfiltration. J. Water Process Eng. 2023, 54, 104010. [Google Scholar] [CrossRef]
- Yahyanezhad, N.; Bardi, M.J.; Aminirad, H. An evaluation of microplastics fate in the wastewater treatment plants: Frequency and removal of microplastics by microfiltration membrane. Water Pract. Technol. 2021, 16, 782–792. [Google Scholar] [CrossRef]
- Pizzichetti, A.R.P.; Pablos, C.; Álvarez-Fernández, C.; Reynolds, K.; Stanley, S.; Marugán, J. Evaluation of membranes performance for microplastic removal in a simple and low-cost filtration system. Case Stud. Chem. Environ. Eng. 2021, 3, 100075. [Google Scholar] [CrossRef]
- Hartinger, M.; Napiwotzki, J.; Schmid, E.-M.; Hoffmann, D.; Kurz, F.; Kulozik, U. Influence of Spacer Design and Module Geometry on the Filtration Performance during Skim Milk Microfiltration with Flat Sheet and Spiral-Wound Membranes. Membranes 2020, 10, 57. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Hilal, N. Enhancing ultrafiltration membrane permeability and antifouling performance through surface patterning with features resembling feed spacers. NPJ Clean Water 2023, 6, 60. [Google Scholar] [CrossRef]
- Golgoli, M.; Khiadani, M.; Shafieian, A.; Sen, T.K.; Hartanto, Y.; Johns, M.L.; Zargar, M. Microplastics fouling and interaction with polymeric membranes: A review. Chemosphere 2021, 283, 131185. [Google Scholar] [CrossRef]
- Sturm, M.T.; Myers, E.; Schober, D.; Korzin, A.; Schuhen, K. Development of an Inexpensive and Comparable Microplastic Detection Method Using Fluorescent Staining with Novel Nile Red Derivatives. Analytica 2023, 4, 27–44. [Google Scholar] [CrossRef]
- Tagg, A.S.; Harrison, J.P.; Ju-Nam, Y.; Sapp, M.; Bradley, E.L.; Sinclaird, C.J.; Ojeda, J.J. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem. Commun. 2017, 53, 372–375. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar] [CrossRef] [PubMed]
- Ormaniec, P.; Mikosz, O.J. A review of methods for the isolation of microplastics in municipal wastewater treatment. Tech. Trans. 2022, 2022, e2022010. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, Q.; Zhong, X.; Hu, X. Rhodamine B dye staining for visualizing microplastics in laboratory-based studies. Environ. Sci. Pollut. Res. 2021, 28, 4209–4215. [Google Scholar] [CrossRef] [PubMed]
- Tse, Y.-T.; Lo, H.-S.; Tsang, C.-W.; Han, J.; Fang, J.K.-H.; Chan, S.M.-N.; Sze, E.T.-P. Quantitative analysis and risk assessment to full-size microplastics pollution in the coastal marine waters of Hong Kong. Sci. Total Environ. 2023, 879, 163006. [Google Scholar] [CrossRef]
- Pistocchi, A.; Aloe, A.; Dorati, C.; Alcalde Sanz, L.; Bouraoui, F.; Gawlik, B.; Grizzetti, B.; Pastori, M.; Vigiak, O. The Potential of Water Reuse for Agricultural Irrigation in the EU: A Hydro Economic Analysis; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Park, H.-G.; Cho, S.-G.; Kim, K.-J.; Kwon, Y.-N. Effect of feed spacer thickness on the fouling behavior in reverse osmosis process—A pilot scale study. Desalination 2016, 379, 155–163. [Google Scholar] [CrossRef]
- Nasir, M.S.; Tahir, I.; Ali, A.; Ayub, I.; Nasir, A.; Abbas, N.; Sajjad, U.; Hamid, K. Innovative technologies for removal of micro plastic: A review of recent advances. Heliyon 2024, 10, e25883. [Google Scholar] [CrossRef]
Parameter | Unit | V0.2-5CB-1812F | V0.2-5B-1812F | V0.2-3B-1812F | Turboclean 1812-MV020-31 |
---|---|---|---|---|---|
Code | - | C-80 | D-80 | D-46 | D-31 |
Provider | - | Synder | Synder | Synder | MANN + HUMMEL |
Membrane material | - | PVDF | PVDF | PVDF | PVDF |
Spacer material | - | PP | PP | PP | PP |
Membrane area | m2 | 0.167 (1.80 ft2) | 0.167 (1.80 ft2) | 0.269 (2.90 ft2) | 0.230 (2.50 ft2) |
Spacer size | Mil | 80 | 80 | 46 | 31 |
Pore size | µm | 0.20 | 0.20 | 0.20 | 0.20 |
Max temperature | °C | 55 (131°F) | 55 (131 °F) | 55 (131 °F) | 50 (122 °F) |
Max pressure | bar | 8.30 (120 psi) | 8.30 (120 psi) | 8.30 (120 psi) | 10.00 (145 psi) |
pH range | - | 2–10 | 2–10 | 2–10 | 2–10 |
Spacer type | - | Corrugated | Diamond | Diamond | Diamond |
Parameter | Unit | First Synthetic Sample | Second Synthetic Sample | Third Synthetic Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C-80 | D-80 | D-46 | D-31 | C-80 | D-80 | D-46 | D-31 | C-80 | D-31 | |||
Feed | Fragment | Particles L−1 | 41,004 ± 3280 | 12,446 ± 1247 | 2370 ± 47 | |||||||
Fibre | Particles L−1 | 11,124 ± 556 | 5486 ± 219 | 2319 ± 82 | ||||||||
Retentate | Fragment | Particles L−1 | 56,082 ± 2243 | 58,162 ± 4653 | 61,204 ± 42,384 | 62,961 ± 37,778 | 22,969 ± 411 | 20,569 ± 1850 | 24,084 ± 481 | 25,635 ± 256 | 9821 ± 687 | 12,346 ± 370 |
Fibre | Particles L−1 | 11,525 ± 1037 | 9129 ± 730 | 10,961 ± 219 | 12,562 ± 126 | 3683 ± 64 | 3222 ± 320 | 4244 ± 424 | 4803 ± 48 | 1729 ± 172 | 2829 ± 169 | |
Permeate | Fragment | Particles L−1 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Fibre | Particles L−1 | 88 ± 3 | 83 ± 7 | 92 ± 8 | 78 ± 2 | 73 ± 3 | 70 ± 4 | 82 ± 4 | 102 ± 6 | 72 ± 7 | 34 ± 0 | |
MP recovery * | % | 99.9 | 99.9 | 99.9 | 99.9 | 99.7 | 99.7 | 99.7 | 99.7 | 99.4 | 99.8 |
Effluent | Technology | Mechanism | Efficiency (%) | Reference |
---|---|---|---|---|
Synthetic wastewater | Microfiltration | Retention | >99.0 | This study |
WWTP | Microfiltration | Retention | >72.0 | [22] |
WWTP | Microfiltration | Retention | <98.0 | [23] |
Laundry wastewater | Microfiltration | Retention | 98.6 | [21] |
WWTP | Ultrafiltration | Retention | 96.9 | [20] |
WWTP | Membrane bioreactor | Retention | 79.0 | [9] |
WWTP | Coagulation/sedimentation | Retention | 90.0 | [7] |
Laundry wastewater | Coagulation/sedimentation | Retention | 98.0 | [8] |
WWTP | Electrocoagulation | Retention | 90.0 | [12] |
Laundry wastewater | Electrocoagulation | Retention | 98.0 | [15] |
Laundry wastewater | Microbubble flotation | Retention | 98.0 | [16] |
WWTP | Photocatalysis | Degradation | 44.7 | [12] |
Laundry wastewater | UVC/H2O2 | Degradation | 57.7 | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Alegre, R.; Durán-Videra, S.; Pérez Megías, L.; Pérez-Moya, M.; García-Montaño, J.; Andecochea Saiz, C.; You, X. Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent. Membranes 2025, 15, 137. https://doi.org/10.3390/membranes15050137
Rodríguez-Alegre R, Durán-Videra S, Pérez Megías L, Pérez-Moya M, García-Montaño J, Andecochea Saiz C, You X. Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent. Membranes. 2025; 15(5):137. https://doi.org/10.3390/membranes15050137
Chicago/Turabian StyleRodríguez-Alegre, Rubén, Sergi Durán-Videra, Laura Pérez Megías, Montserrat Pérez-Moya, Julia García-Montaño, Carlos Andecochea Saiz, and Xialei You. 2025. "Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent" Membranes 15, no. 5: 137. https://doi.org/10.3390/membranes15050137
APA StyleRodríguez-Alegre, R., Durán-Videra, S., Pérez Megías, L., Pérez-Moya, M., García-Montaño, J., Andecochea Saiz, C., & You, X. (2025). Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent. Membranes, 15(5), 137. https://doi.org/10.3390/membranes15050137