Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. ADMH Synthesis
2.3. Membrane Surface Modification
2.4. Membrane Characterization
2.5. Fouling Experiments
2.5.1. Static Adhesion Test
2.5.2. Dynamic Adhesion Test
2.6. Membrane Performance Assessment
3. Results and Discussion
3.1. ADMH Characterization
3.2. Membrane Surface Modification and Characterization
3.3. Biofouling Resistance
3.4. Organic and Inorganic Fouling Resistance
3.4.1. Organic Fouling Resistance
3.4.2. Inorganic Fouling Resistance
4. Conclusions
- SEM, FTIR, NMR, and contact angle confirmed ADMH grafting. SEM revealed surface irregularities and a distinct top-layer formation, FTIR showed new peaks, including a C=O bond at 3107 cm−1, and NMR detected characteristic ADMH signals with a ppm shift at 130.4 (═CHCH2). The contact angle analysis showed that grafting reduced surface hydrophobicity, particularly at moderate ADMH concentrations, supporting enhanced water membrane interactions.
- Biofouling tests showed improved mortality ratios against both E. coli (45.23%, 33.76%, 48.48%, and 58.93% for M0.2mol/L–M0.8mol/L) and S. aureus (6.71%, 37.42%, 22.89%, and 2.44% for M0.2mol/L–M0.8mol/L).
- The biofouling resistance test demonstrated improved biofouling resistance properties after the grafting of ADMH on the membrane surface. The M0.2mol/L and M0.6mol/L membranes exhibited the lowest FDR values of 3.72% against S. aureus and 8.91% against E. coli, respectively, with FRR values of 69.23% and 96.88%. The M0.4mol/L showed an FRR value of 94.27% against E. coli bacteria and 59.70% against S. aureus.
- The study reveals the impact of ADMH on improving membranes’ biofouling resistance properties. However, after ADMH grafting, the membrane showed a slight decrease in resistance to both organic and inorganic fouling.
- Despite increasing hydrophilicity with ADMH concentration, fouling resistance peaked at 0.4 mol L−1 and slightly declined at 0.8 mol L−1, indicating that surface heterogeneity can override hydrophilicity in governing foulant adhesion.
Challenges and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tayeh, Y.A.; Alazaiza, M.Y.D.; Alzghoul, T.M.; Bashir, M.J. A Comprehensive Review of RO Membrane Fouling: Mechanisms, Categories, Cleaning Methods and Pretreatment Technologies. J. Hazard. Mater. Adv. 2025, 18, 100684. [Google Scholar] [CrossRef]
- Zouhri, N.; Addar, F.Z.; Tahaikt, M.; Elamrani, M.; ELmidaoui, A.; Taky, M. Techno-Economic Study and Optimization of the Performance of Nanofiltration and Reverse Osmosis Membranes in Reducing the Salinity of M′rirt Water City (Morocco). Desalination Water Treat. 2024, 317, 100042. [Google Scholar] [CrossRef]
- Aziz, M.; Kasongo, G. The Removal of Selected Inorganics from Municipal Membrane Bioreactor Wastewater Using UF/NF/RO Membranes for Water Reuse Application: A Pilot-Scale Study. Membranes 2021, 11, 117. [Google Scholar] [CrossRef]
- Aziz, M.; Kasongo, G. Improving Resistance to Fouling of Aromatic Polyamide Thin-Film Composite Reverse Osmosis Membrane by Surface Grafting of N,N’-Dimethyl Aminoethyl Methacrylate (DMAEMA). J. Water Chem. Technol. 2021, 43, 312–320. [Google Scholar] [CrossRef]
- Wang, J.; Hao, S.; Qi, P.; Wang, W.; Hu, Y. Superior Chlorine-Resistance of Hyperbranched Polyglycerol (HPG) Grafted Polyamide Reverse Osmosis Membrane and Its Chlorine-Resistant Mechanism. J. Membr. Sci. 2024, 709, 123092. [Google Scholar] [CrossRef]
- Morris, B.; Aziz, M.; Kasongo, G. Remediation of laundry wastewater with a low-pressure aromatic polyamide thin-film composite reverse osmosis membrane for membrane fouling minimisation and reuse application. Environ. Prot. Eng. 2022, 48, 43–56. [Google Scholar] [CrossRef]
- Kucera, J. Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. Membranes 2019, 9, 111. [Google Scholar] [CrossRef]
- Rajendran, D.S.; Devi, E.G.; Subikshaa, V.S.; Sethi, P.; Patil, A.; Chakraborty, A.; Venkataraman, S.; Kumar, V.V. Recent Advances in Various Cleaning Strategies to Control Membrane Fouling: A Comprehensive Review. Clean Technol. Environ. Policy 2025, 27, 649–664. [Google Scholar]
- Ansari, A.; Peña-Bahamonde, J.; Wang, M.; Shaffer, D.L.; Hu, Y.; Rodrigues, D.F. Polyacrylic Acid-Brushes Tethered to Graphene Oxide Membrane Coating for Scaling and Biofouling Mitigation on Reverse Osmosis Membranes. J. Membr. Sci. 2021, 630, 119308. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, Q.; Zhang, D.; Shi, W.; Gong, G.; Hu, Y. Designing High Flux and Antifouling PA RO Membrane Based on the Surface Modification with Glycerol and Dimethyldimethoxysilane. Desalination 2025, 600, 118490. [Google Scholar] [CrossRef]
- Kasongo, G.; Steenberg, C.; Morris, B.; Kapenda, G.; Jacobs, N.; Aziz, M. Surface Grafting of Polyvinyl Alcohol (PVA) Cross-Linked with Glutaraldehyde (GA) to Improve Resistance to Fouling of Aromatic Polyamide Thin Film Composite Reverse Osmosis Membranes Using Municipal Membrane Bioreactor Effluent. Water Pract. Technol. 2019, 14, 614–624. [Google Scholar] [CrossRef]
- Yang, Z.; Saeki, D.; Takagi, R.; Matsuyama, H. Improved Anti-Biofouling Performance of Polyamide Reverse Osmosis Membranes Modified with a Polyampholyte with Effective Carboxyl Anion and Quaternary Ammonium Cation Ratio. J. Membr. Sci. 2020, 595, 117529. [Google Scholar] [CrossRef]
- Wang, T.; Hou, Z.; Yang, H.; Hu, J. A PEGylated PVDF Antifouling Membrane Prepared by Grafting of Methoxypolyethylene Glycol Acrylate in Gama-Irradiated Homogeneous Solution. Materials 2024, 17, 873. [Google Scholar] [CrossRef]
- Zheng, P.; Yuan, S.; Shen, Y.; Wang, D.; Liu, X.; Wang, Z. Superwetting-Assisted Preparation of High-Density Ultra-Short Zwitterion Grafted Membranes with Outstanding Antifouling Performance. Water Res. 2025, 287, 124386. [Google Scholar] [CrossRef]
- Xing, M.; Zhang, H.; Li, Z.; Zhang, L.; Qian, W. Long-Lasting Renewable Antibacterial N-Halamine Coating Enable Dental Unit Waterlines to Prevention and Control of Contamination of Dental Treatment Water. Front. Mater. 2024, 11, 1399597. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Z.; Zhang, Z.; Wang, J.; Wang, S. Surface Modification of Commercial Aromatic Polyamide Reverse Osmosis Membranes by Graft Polymerization of 3-Allyl-5, 5-Dimethylhydantoin. J. Membr. Sci. 2010, 351, 222–233. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Wang, J.; Wang, S. Enhancing Chlorine Resistances and Anti-Biofouling Properties of Commercial Aromatic Polyamide Reverse Osmosis Membranes by Grafting 3-Allyl-5, 5-Dimethylhydantoin and N, N ′ -Methylenebis (Acrylamide). Desalination 2013, 309, 187–196. [Google Scholar] [CrossRef]
- Sisay, E.J.; Al-Tayawi, A.N.; László, Z.; Kertész, S. Recent Advances in Organic Fouling Control and Mitigation Strategies in Membrane Separation Processes: A Review. Sustainability 2023, 15, 13389. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Huhtamäki, T.; Ikkala, O.; Ras, R.H.A. Reliable Measurement of the Receding Contact Angle. Langmuir 2013, 29, 3858–3863. [Google Scholar] [CrossRef]
- Marmur, A.; Volpe, C.D.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact Angles and Wettability: Towards Common and Accurate Terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, J.; Wang, S. Improving the Water Flux and Bio-Fouling Resistance of Reverse Osmosis (RO) Membrane through Surface Modification by Zwitterionic Polymer. J. Membr. Sci. 2015, 493, 188–199. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Chen, Z.; Duan, X.; Yu, Y.; Sun, L. Curing Behavior, Thermal, and Mechanical Properties of N,N′-(4,4′-Diphenylmethane)Bismaleimide/2,2′-Diallylbisphenol A/3-Allyl-5,5-Dimethylhydantoin Resin System. High Perform. Polym. 2020, 32, 631–644. [Google Scholar] [CrossRef]
- Vatanpour, V.; Zoqi, N. Surface Modification of Commercial Seawater Reverse Osmosis Membranes by Grafting of Hydrophilic Monomer Blended with Carboxylated Multiwalled Carbon Nanotubes. Appl. Surf. Sci. 2017, 396, 1478–1489. [Google Scholar] [CrossRef]
- Bromberg, L.; Magariños, B.; Concheiro, A.; Hatton, T.A.; Alvarez-Lorenzo, C. Nonleaching Biocidal N-Halamine-Functionalized Polyamine-, Guanidine-, and Hydantoin-Based Coatings. Ind. Eng. Chem. Res. 2024, 63, 6268–6278. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Hao, S.; Qin, Y.; Qi, P.; Zhang, Z.; Hu, Y. Fouling-Resistant Reverse Osmosis Membranes Grafted with 2-Aminoethanethiol Having a Low Interaction Energy with Charged Foulants. npj Clean Water 2024, 7, 33. [Google Scholar] [CrossRef]
- Hong Anh Ngo, T.; Tran, D.T.; Hung Dinh, C. Surface Photochemical Graft Polymerization of Acrylic Acid onto Polyamide Thin Film Composite Membranes. J. Appl. Polym. Sci. 2017, 5, 134. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Hilal, N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. Membranes 2021, 11, 832. [Google Scholar] [CrossRef]
- AlQasas, N.; Johnson, D. Combined Effects of Surface Roughness, Solubility Parameters, and Hydrophilicity on Biofouling of Reverse Osmosis Membranes. Membranes 2024, 14, 235. [Google Scholar] [CrossRef]
- Da’na, D.A.; Nawi, N.S.M.; Sangor, F.I.; Ashfaq, M.Y.; Lau, W.J.; Al-Ghouti, M.A. Strategies for the Use and Interpretation of Functionalized Reverse Osmosis Membranes with Improved Antifouling and Anti-Scaling Properties for the Desalination Process. Desalination 2025, 600, 118508. [Google Scholar] [CrossRef]
- Mallah, N.B.; Shah, A.A.; Pirzada, A.M.; Ali, I.; Ullman, J.L.; Mahar, R.B.; Khan, M.I. Development of Antifouling Polyvinylidene Fluoride and Cellulose Acetate Nanocomposite Membranes for Wastewater Treatment Using a Membrane Bioreactor. Water 2025, 17, 1767. [Google Scholar] [CrossRef]
Test Type | Model Solution/Foulant | Concentration |
---|---|---|
Permeability | Deionized water | ≈5 μS m−1 |
Salt rejection | Sodium chloride | 500 ppm |
Organic fouling | Humic acid | 100 mg L−1 |
Inorganic fouling | Sodium bicarbonate | 100 mg L−1 |
Biofouling | Escherichia coli | ≈1.5 × 108 CFU mL−1 |
Biofouling | Staphylococcus aureus | ≈8.1 × 108 CFU mL−1 |
Salt Rejection (%) | Permeability (L/m2 h Bar) | FDR (%) | FRR (%) | |||
---|---|---|---|---|---|---|
E. coli | S. aureus | E. coli | S. aureus | |||
M0 | 76 ± 1.27% | 7.26 ± 0.15 | 11.29 ± 0.72% | 26.53 ± 1.12% | 82.26 ± 0.89 | 48.39 ± 1.41% |
M0.2mol/L | 81 ± 0.58% | 9.52 ± 0.98 | 12.24 ± 0.53% | 3.72 ± 2.03% | 96.88 ± 1.38 | 69.23 ± 1.66% |
M0.4mol/L | 82 ± 1.01% | 9.51 ± 0.56 | 12.68 ± 0.81% | 30.21 ± 0.93% | 94.27 ± 1.77 | 59.70 ± 1.99% |
M0.6mol/L | 81 ± 0.91% | 9.18 ± 0.44 | 8.91 ± 0.89% | 23.79 ± 1.51% | 96.88 ± 1.26 | 70.15 ± 1.82% |
M0.8mol/L | 80% ± 0.43 | 9.51 ± 0.67 | 11.74 ± 0.13% | 17.03 ± 1.69% | 88.40 ± 2.46 | 65.67 + 1.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasongo, G.; Nkombe, A.M.; Aziz, M. Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin. Membranes 2025, 15, 314. https://doi.org/10.3390/membranes15100314
Kasongo G, Nkombe AM, Aziz M. Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin. Membranes. 2025; 15(10):314. https://doi.org/10.3390/membranes15100314
Chicago/Turabian StyleKasongo, Godwill, Aude Minang Nkombe, and Mujahid Aziz. 2025. "Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin" Membranes 15, no. 10: 314. https://doi.org/10.3390/membranes15100314
APA StyleKasongo, G., Nkombe, A. M., & Aziz, M. (2025). Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin. Membranes, 15(10), 314. https://doi.org/10.3390/membranes15100314