Development of Composite Ceramic Membranes for Carbon Dioxide Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of W-LAMOX
2.2. Preparation of Porous Matrices
2.3. Impregnation of Porous Matrices with LNKC
2.4. Characterization Techniques
3. Results
3.1. W-LAMOX Bulk Samples: Structural, Microstructural, and Electrical Analysis
3.2. W-LAMOX by Tape Casting: Structural, Microstructural, and Electrical Analysis
3.3. Voltage–Time Measurements
3.4. Response and Recovery Times of Bulk and Tape-Cast W-LAMOX/LNKC
3.4.1. Bulk (1.0 mm) W-LAMOX/LNKC
3.4.2. Tape-Cast (1 mm) W-LAMOX/LNKC
3.4.3. Diffusional Limitations in Bulk Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagai, T.; Tamura, S.; Imanaka, N. Low Temperature Operable CO2 Gas Sensor Based on Trivalent Aluminum Ion Conducting Solid. Electrochem. Solid-State Lett. 2011, 14, J81–J83. [Google Scholar] [CrossRef]
- Wang, H.; Ren, J.; Zhang, H.; Sun, G.; Jiang, Z. Solid potentiometric CO2 sensor using Li3PO4 film as the electrolyte. IEEE Sensors J. 2012, 12, 2001–2005. [Google Scholar] [CrossRef]
- Lee, H.-K.; Choi, N.-J.; Moon, S.E.; Yang, W.S.; Kim, J. A solid electrolyte potentiometric CO2 gas sensor composed of lithium phosphate as both the reference and the solid electrolyte materials. J. Korean Phys. Soc. 2012, 61, 938–941. [Google Scholar] [CrossRef]
- Mulmi, S.; Thangadurai, V. Preparation, Structure and CO2Sensor Studies of BaCa0.33Nb0.67−xFexO3−δ. J. Electrochem. Soc. 2013, 160, B95–B101. [Google Scholar] [CrossRef]
- Lee, H.-K.; Choi, N.-J.; Moon, S.E.; Heo, J.A.; Yang, W.S.; Kim, J. Durability Improvement of Solid Electrolyte CO2 Sensor Against Humidity Variations. J. Nanosci. Nanotechnol. 2015, 15, 404–407. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; Liu, Z.; Zhang, M. Au thin-film electrodes based potentiometric CO2 sensor using Li3PO4 as both the reference material and the solid electrolyte. Micro Nano Lett. 2016, 11, 545–549. [Google Scholar] [CrossRef]
- Lee, J.; Choi, N.-J.; Lee, H.-K.; Kim, J.; Lim, S.Y.; Kwon, J.Y.; Lee, S.M.; Moon, S.E.; Jong, J.J.; Yoo, D.J. Low power consumption solid electrochemical-type micro CO2 gas sensor. Sens. Actuators B Chem. 2017, 248, 957–960. [Google Scholar] [CrossRef]
- Han, H.J.; Kim, T.W.; Kim, S.; Oh, S.; Park, C.-O. Fast initializing solid state electrochemical carbon dioxide sensor fabricated by a tape casting technique using yttria stabilized zirconia and sodium beta alumina heterojunction. Sens. Actuators B Chem. 2017, 248, 856–861. [Google Scholar] [CrossRef]
- Schwandt, C.; Kumar, R.V.; Hills, M.P. Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide. Sens. Actuators B Chem. 2018, 265, 27–34. [Google Scholar] [CrossRef]
- Haddrell, A.; Oswin, H.; Otero-Fernandez, M.; Robinson, J.F.; Cogan, T.; Alexander, R.; Mann, J.F.S.; Hill, D.; Finn, A.; Davidson, A.D.; et al. Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk. Nat. Commun. 2024, 15, 3487. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, A.; Ren, X.; Wu, C.; Wang, F. A Sensitive Electrochemical Sensor Based on Nano-Zirconium Dioxide/Reduced Graphene Oxide Modified Electrode for Lercanidipine Determination. Russ. J. Electrochem. 2025, 61, 265–273. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H.; Wang, X.; Jiang, X.; Zhang, X.; Jian, J.; Jin, H.; Zou, J. Low carbon deposition on LaCrO3-based high-temperature CO2 sensors. Ceram. Int. 2025, 51, 29098–29107. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Guan, H.; Lei, Y.; Liu, Z.; Wang, Y.; Su, Y.; Tai, H.; Jiang, Y.; Li, W. A compact non-dispersive infrared carbon dioxide gas sensor with high precision and large detection range. Sens. Actuators A Phys. 2025, 384, 116284. [Google Scholar] [CrossRef]
- Kalyakin, A.S.; Volkov, A.N. An electrochemical sensor for determination of the methane and carbon dioxide concentrations in biogas. J. Taiwan Inst. Chem. Eng. 2025, 169, 105940. [Google Scholar] [CrossRef]
- Gond, R.; Shukla, P.; Rawat, B. TiO2-Decorated MoS2 Nanocomposite for CO2 Sensing At Room Temperature. IEEE Sensors Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Starostin, G.; Volkov, A.N.; Kalyakin, A.S.; Medvedev, D.A. High-temperature gas sensors based on proton-conducting ceramic oxides. A brief review. Ceram. Int. 2024, 50, 37449–37459. [Google Scholar] [CrossRef]
- Mo, X.; Zhu, C.; Zhang, Z.; Yan, X.; Han, C.; Li, J.; Attfield, J.P.; Yang, M. Nitrogen-Doped Indium Oxide Electrochemical Sensor for Stable and Selective NO2 Detection. Adv. Mater. 2024, 36, 2409294. [Google Scholar] [CrossRef]
- Medina, M.S.; Carvalho, S.G.M.; Tabuti, F.N.; Muccillo, E.N.S.; Fonseca, F.C.; Muccillo, R. W-doped Lanthanum Molybdenum Oxide/Lithium-Sodium-Potassium Carbonate Composite Membranes for Carbon Dioxide Permeation. Materials 2023, 16, 5128. [Google Scholar] [CrossRef] [PubMed]
- Frangini, S.; Masi, A. Molten carbonates for advanced and sustainable energy applications: Part I. Revisiting molten carbonate properties from a sustainable viewpoint. Int. J. Hydrogen Energy 2016, 41, 18739–18746. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- ImageJ; Version 1.34N; Wayne Rasband, National Institute of Health: Saint Petersburg, FL, USA, 2021. Available online: https://imagej.nih.gov/ij/ (accessed on 2 January 2025).
- Carvalho, S.G.M.; Muccillo, E.N.S.; Muccillo, R. Design and Validation of an Experimental Setup for Evaluation of Gas Permeation in Ceramic Membranes. Membranes 2023, 13, 246. [Google Scholar] [CrossRef]
- Corbel, G.; Durand, P.; Lacorre, P. Comprehensive survey of Nd3+ substitution In La2Mo2O9 oxide-ion conductor. J. Solid State Chem. 2009, 182, 1009–1016. [Google Scholar] [CrossRef]
- Paul, T.; Tsur, Y. Influence of Isovalent ‘W’ Substitutions on the Structure and Electrical Properties of La2Mo2O9 Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells. Ceramics 2021, 4, 502–515. [Google Scholar] [CrossRef]
- Bodén, A.; Di, J.; Lagergren, C.; Lindbergh, G.; Wang, C.Y. Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidizing atmospheres. J. Power Sources 2007, 172, 520–529. [Google Scholar] [CrossRef]
- Xie, F.; Wang, C.; Mao, Z.; Zhan, Z. Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O2.85–(Li/Na)2CO3 composite electrolytes. Int. J. Hydrogen Energy 2013, 38, 11085–11089. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sena Medina, M.; Muccillo, E.N.d.S.; Muccillo, R. Development of Composite Ceramic Membranes for Carbon Dioxide Detection. Membranes 2025, 15, 315. https://doi.org/10.3390/membranes15100315
Sena Medina M, Muccillo ENdS, Muccillo R. Development of Composite Ceramic Membranes for Carbon Dioxide Detection. Membranes. 2025; 15(10):315. https://doi.org/10.3390/membranes15100315
Chicago/Turabian StyleSena Medina, Midilane, Eliana Navarro dos Santos Muccillo, and Reginaldo Muccillo. 2025. "Development of Composite Ceramic Membranes for Carbon Dioxide Detection" Membranes 15, no. 10: 315. https://doi.org/10.3390/membranes15100315
APA StyleSena Medina, M., Muccillo, E. N. d. S., & Muccillo, R. (2025). Development of Composite Ceramic Membranes for Carbon Dioxide Detection. Membranes, 15(10), 315. https://doi.org/10.3390/membranes15100315