Efficiency, Kinetics and Mechanism of 4-Nitroaniline Removal from Aqueous Solutions by Emulsion Liquid Membranes Using Type 1 Facilitated Transport
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Procedure
3. Results
3.1. Removal Efficiency
3.2. Removal Process Kinetics
3.3. Transport Mechanism
- 4NA diffusion through the stagnant film of the feed aqueous phase at feed/membrane interface.
- 4NA solubilization into the membrane phase.
- 4NA diffusion through the membrane phase to the membrane/product interface.
- At the membrane/product interface, reaction of 4NA with the striping agent (HCl) present in the product phase to form a membrane phase insoluble product (4NAH+Cl−].
- External diffusion (film diffusion), transport of the adsorbate (4NA) from the bulk phase to the external surface of the adsorbent.
- Intraparticle diffusion (pore diffusion), transport of the adsorbate (4NA) from the external surface into the pores.
- Surface reaction, which is the attachment of the adsorbate to the internal surface of the adsorbent.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kolpin, D.; Furlong, E.; Meyer, M.; Thurman, E.M.; Zaugg, S.; Barber, L.; Buxton, H. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Naghash-Hamed, S.; Arsalani, N.; Mousavi, S.B. Facile fabrication of CuFe2O4 coated with carbon quantum dots nanocomposite as an efficient heterogeneous catalyst toward the reduction of nitroaniline compounds for management of aquatic resources. J. Photochem. Photobiol. A 2023, 443, 114822. [Google Scholar] [CrossRef]
- Sun, J.H.; Sun, S.P.; Fan, M.H.; Guo, H.Q.; Qiao, L.P.; Sun, R.X. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J. Hazard. Mater. 2007, 148, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, M.; Pu, C.; Zhang, J.; Zhao, S.; Yao, S.; Xiong, T. Transient and steady-state photolysis of p-nitroaniline in aqueous solution. J. Hazard. Mater. 2009, 165, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 4005–4041. [Google Scholar] [CrossRef] [PubMed]
- Silambarasan, S.; Vangnai, A.S. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. J. Hazard. Mater. 2016, 302, 426–436. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Crowley, D.E. Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Res. 2009, 43, 1110–1116. [Google Scholar] [CrossRef]
- Mei, X.; Wang, Y.; Yang, Y.; Xu, L.; Wang, Y.; Guo, Z.; Shen, W.; Zhang, Z.; Ma, M.; Ding, Y.; et al. Enhanced treatment of nitroaniline-containing wastewater by a membrane aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal. Sep. Purif. Technol. 2020, 248, 117078. [Google Scholar] [CrossRef]
- Silambarasan, S.; Cornejo, P.; Vangnai, A.S. Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides. Environ. Pollut. 2022, 306, 119453. [Google Scholar] [CrossRef]
- Lee, D.S.; Park, K.S.; Nam, Y.W.; Kim, Y.C.; Lee, C.H. Hydrothermal decomposition and oxidation of p-nitroaniline in supercritical water. J. Hazard. Mater. 1997, 56, 247–256. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Seleim, S.M.; Abouelanwar, M.E. Behavior of surface coated zirconium silicate-nanopolyaniline with nano zerovalent copper (ZrSiO4@NPANI@nZVCu) toward catalytic reduction of nitroanilines. Mater. Chem. Phys. 2021, 258, 123890. [Google Scholar] [CrossRef]
- Yulizar, Y.; Apriandanu, D.O.B.; Zahra, Z.A. SiO2/NiFe2O4 nanocomposites: Synthesis, characterization and their catalytic activity for 4-nitroaniline reduction. Mater. Chem. Phys. 2021, 261, 124243. [Google Scholar] [CrossRef]
- Xiao, G.; Wen, R.; Wei, D.; Wu, D. Effects of the steric hindrance of micropores in the hyper-cross-linked polymeric adsorbent on the adsorption of p-nitroaniline in aqueous solution. J. Hazard. Mater. 2014, 280, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A. Adsorption of nitroaniline onto high surface area nanographene. J. Ind. Eng. Chem. 2015, 28, 67–72. [Google Scholar] [CrossRef]
- Senlik, K.; Gezici, O.; Guven, I.; Pekacar, A.I. Adsorption of nitroaniline positional isomers on humic acid-incorporated monolithic cryogel discs: Application of ligand-exchange concept. J. Environ. Chem. Eng. 2017, 5, 2836–2844. [Google Scholar] [CrossRef]
- Jayachandrabal, B.; Tikker, P.; Preis, S. Oxidation of Aqueous p-Nitroaniline by Pulsed Corona Discharge. Sep. Purif. Technol. 2022, 297, 121473. [Google Scholar] [CrossRef]
- Subbulekshmi, N.L.; Subramanian, E. Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline. J. Environ. Chem. Eng. 2017, 5, 1360–1371. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Sun, C.; Sun, J.Q.; Zhou, R. Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4 nanoparticles process. Sep. Purif. Technol. 2015, 142, 182–188. [Google Scholar] [CrossRef]
- Malakootian, M.; Gharaghani, M.A.; Dehdarirad, A.; Khatami, M.; Ahmadian, M.; Heidari, M.R.; Mahdizadeh, H. ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O3). J. Mol. Struct. 2019, 1176, 766–776. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; León, G.; Gómez, M.; Murcia, M.D.; Gómez, E.; Giner, C. Behaviour of RO90 membrane on the removal of 4-nitrophenol and4-nitroaniline by low pressure reverse osmosis. J. Water Process Eng. 2015, 7, 169–175. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Gómez, M.; Murcia, M.D.; Gómez, E.; León, G.; Cascales, E. Influence of Physicochemical Parameters of Organic Solutes on the Retention and Flux in a Nanofiltration Process. Chem. Eng. Technol. 2016, 39, 1177–1184. [Google Scholar] [CrossRef]
- Vafaei, F.; Torkaman, R.; Moosavian, M.A.; Zaheri, P. Optimization of extraction conditions using central composite design for the removal of Co (II) from chloride solution by supported liquid membrane. Chem. Eng. Res. Des. 2018, 133, 126–136. [Google Scholar] [CrossRef]
- Kislik, V.S. Introduction, General Description, Definitions and Classification. Overview. In Liquid Membranes. Principles and Applications in Chemical Separation and Wastewater Treatment, 1st ed.; Kislik, V.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–15. [Google Scholar]
- León, G. Facilitated transport. In Encyclopedia of Membranes, 1st ed.; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 763–764. [Google Scholar]
- Kedari, C.S.; Pandit, S.S.; Parikh, K.J.; Tripathi, S.C. Removal of 241Am from aqueous nitrate solutions by liquid surfactant membrane containing 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester as ion carrier. Chemosphere 2010, 80, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Bhattacharya, P.K.; Verma, N. Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. J. Membr. Sci. 2003, 226, 185–201. [Google Scholar] [CrossRef]
- Simsek, I.; Altas, L. A fast and effective method for ammonium removal: Emulsion Liquid Membrane. Process Saf. Environ. Prot. 2022, 167, 1–11. [Google Scholar] [CrossRef]
- Tahmasebizadeh, P.; Javanshir, S.; Ahmadi, A. Zinc extraction from a bioleaching solution by emulsion liquid membrane technique. Sep. Purif. Technol. 2021, 276, 119394. [Google Scholar] [CrossRef]
- Kulkarni, P.S.; Mahajani, V.V. Application of liquid emulsion membrane (LEM) process for enrichment of Molybdenum from aqueous solutions. J. Membr. Sci. 2002, 201, 123–135. [Google Scholar] [CrossRef]
- Hussein, M.A.; Mohammed, A.A.; Atiya, M.A. Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: An overview. Environ. Sci. Pollut. Res. 2019, 26, 36184–36204. [Google Scholar] [CrossRef]
- Ma, G.; Jiang, Y.; Kun, S.C. A general mass transfer model for liquid surfactant membrane. Chem. Eng. Sci. 1997, 52, 433–441. [Google Scholar] [CrossRef]
- Ho, W.S.; Hatton, T.A.; Lightfoot, E.N.; Li, N.N. Batch extraction with liquid surfactant membranes: A diffusion controlled model. AIChE J. 1982, 28, 662–671. [Google Scholar] [CrossRef]
- Teramoto, M.; Sakai, T.; Yamagawa, K.; Ohsuga, M.; Miyake, Y. Extraction of phenol and cresol by liquid surfactant membrane. Sep. Sci. Technol. 1983, 18, 397–406. [Google Scholar] [CrossRef]
- Lin, S.H.; Pan, C.L.; Leu, H.G. Equilibrium and mass transfer characteristics of 2-chlorophenol ramoval from aqueous solutions by liquid membrane. Chem. Eng. J. 2002, 87, 163–169. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- León, G.; Gómez, E.; Miguel, B.; Hidalgo, A.M.; Gómez, M.; Murcia, M.D.; Guzmán, M.A. Feasibility of Adsorption Kinetic Models to Study Carrier-Mediated Transport of Heavy Metal Ions in Emulsion Liquid Membranes. Membranes 2022, 12, 66. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
León, G.; Hidalgo, A.M.; Gómez, M.; Gómez, E.; Miguel, B. Efficiency, Kinetics and Mechanism of 4-Nitroaniline Removal from Aqueous Solutions by Emulsion Liquid Membranes Using Type 1 Facilitated Transport. Membranes 2024, 14, 13. https://doi.org/10.3390/membranes14010013
León G, Hidalgo AM, Gómez M, Gómez E, Miguel B. Efficiency, Kinetics and Mechanism of 4-Nitroaniline Removal from Aqueous Solutions by Emulsion Liquid Membranes Using Type 1 Facilitated Transport. Membranes. 2024; 14(1):13. https://doi.org/10.3390/membranes14010013
Chicago/Turabian StyleLeón, Gerardo, Asunción María Hidalgo, María Gómez, Elisa Gómez, and Beatriz Miguel. 2024. "Efficiency, Kinetics and Mechanism of 4-Nitroaniline Removal from Aqueous Solutions by Emulsion Liquid Membranes Using Type 1 Facilitated Transport" Membranes 14, no. 1: 13. https://doi.org/10.3390/membranes14010013
APA StyleLeón, G., Hidalgo, A. M., Gómez, M., Gómez, E., & Miguel, B. (2024). Efficiency, Kinetics and Mechanism of 4-Nitroaniline Removal from Aqueous Solutions by Emulsion Liquid Membranes Using Type 1 Facilitated Transport. Membranes, 14(1), 13. https://doi.org/10.3390/membranes14010013