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Abstract: 4-Nitroaniline (4NA) is a common organic pollutant that is released into the environment
during the manufacture and processing of a wide variety of industrial products. This article describes
the use of an emulsion liquid membrane process to remove 4NA from aqueous solutions using a type
1 facilitated transport mechanism. Optimization of the removal process was carried out by analyzing
the efficiency of 4NA removal from the feed phase and the initial apparent feed/membrane fluxes
and permeabilities under different experimental conditions. The kinetics of the removal process was
analyzed using a simplified mass transfer model involving an empirical mass transfer coefficient
calculated from experimental data, assuming that the concentrations of 4NA in the external aqueous
phase and in the internal w/o emulsion are uniform. The results show that there is a very good fit
between the experimental and model data and that the variation in the values of the overall mass
transfer coefficients with the experimental conditions coincides with that of the removal efficiency
mentioned above. The transport mechanism was studied by identifying the rate-controlling step of
the removal process, using models described for adsorption processes, due to the strong parallelism
between the transport mechanisms in adsorption and emulsion liquid membrane processes.

Keywords: 4-nitroaniline; emulsion liquid membranes; efficiency; kinetics; transport mechanism

1. Introduction

The generation of potentially hazardous industrial effluents is an issue of growing
concern today. Increasingly stringent environmental regulations require the development
of technologies for the effective treatment of these industrial wastewaters containing
hazardous pollutants. An investigation showed that 80% of streams in the USA contained
organic pollutants [1]. Among these organic pollutants, nitroanilines constitute a group of
compounds that have toxic effects on the environment and on human health [2].

4-Nitroaniline (4NA) is an aromatic amine widely used as an intermediate or precursor
in the syntheses of azo dyes, pharmaceuticals, antioxidants, fuel additives, pesticides,
corrosion inhibitors and oxidizing agents [2–4], being also present in some commonly
used biosolid fertilizers [5,6]. Consequently, 4NA is discharged into the environment both
directly in industrial effluents and through the application of such fertilizers, and indirectly,
as a result of the degradation of some of the above mentioned compounds [7]. It is toxic
through ingestion, inhalation, and contact with the skin, with a threshold limit value
(TLV) of 0.001 kg/m3 [4]. Due to its non-biodegradability and environmental persistence,
toxicity, carcinogenicity and mutagenesis, 4NA is considered as a toxic chemical by the
USA Environmental Protection Agency and as a top-priority pollutant in China [8].

Therefore, the study of new technologies for the treatment of 4NA-contaminated water
is a topic of great scientific interest. Several processes have been described for the removal of
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4NA from water sources, including biodegradation [6–9], oxidation [10], reduction [11,12],
adsorption [13–15], advanced oxidation processes [16–19] and pressure-driven membrane
processes [20,21].

Liquid membrane separation processes have been applied as an effective tool for the
removal of a wide variety of organic and inorganic compounds from aqueous solutions due
to their ease of operation, high selectivity, combination of removal and recovery processes
in a single step, low energy costs and simplicity of design [22]. A liquid membrane system
consists of two miscible phases (feed and product phases) separated by a third immiscible
phase (the membrane phase) [23]. According to their configuration, three groups of liquid
membranes are usually considered: bulk, supported and emulsified. Emulsion liquid
membranes are prepared by emulsifying the membrane and product phases and dispersing
this emulsion in the feed phase, so that the membrane phase separates the product phase
(encapsulated internal droplets) from the external feed phase [23].

To improve the effectiveness of the separation process, so-called facilitated trans-
ports are used to maximize the rate of extraction of the species to be separated and its
release into the product phase, allowing the transport of the species against its concen-
tration gradient [24]. In type 1 facilitation, a substance (stripping agent) is added to
the product phase which reacts quantitatively with the diffusing species to produce a
membrane-insoluble product, thereby reducing the concentration of that species to zero
at the membrane/product interface and achieving a high concentration gradient of that
species across the membrane phase [24].

This paper analyzes the efficiency, kinetics and mechanism of 4NA removal from
aqueous solutions by emulsion liquid membranes using a type 1 facilitated transport
mechanism occurring in a water-in-oil-in-water (w/o/w) emulsion consisting of an external
feed aqueous phase containing 4NA, an internal aqueous product phase containing HCl as
a stripping agent and a membrane phase composed of a solution of the surfactant Span 80
in kerosene as a solvent (Figure 1).
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Figure 1. Type 1 facilitated transport of 4NA through emulsion liquid membranes.

2. Materials and Methods
2.1. Reagents

Kerosene and sorbitan monooleate (Span 80) were supplied by Sigma Aldrich, Stein-
heim (Germany). 4-Nitroaniline (98%) and HCl (37%) were obtained from Panreac, Darm-
stadt (Germany). All chemicals were used without any further purification. Deionized
water was used for making all the aqueous solutions.

2.2. Procedure

The removal process involves four successive steps: 1—preparation of the primary
water in oil emulsion, 2—removal of 4NA by contacting feed and primary emulsion to
form the secondary emulsion (water-in-oil-in-water emulsion), 3—on samples taken for
analysis, separation by decantation of the feed phase from the primary emulsion phase
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and 4—analysis of 4NA concentration in the feed phase to establish the efficiency of the
removal process (Figure 2).
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Figure 2. Schematic representation of steps involved in 4NA removal by emulsion liquid membranes.

The feed phase was formed by 0.1 g/L aqueous solution of 4-nitroaniline, the mem-
brane phase consisted of solutions of the surfactant Span 80 in kerosene, at concentrations
ranging from 0.5% to 5.0%, and the product phase comprised aqueous solutions of hy-
drochloric acid ranging from 0.05 M to 0.50 M.

The primary water in oil emulsion (w/o) was prepared by mixing different volumes
of the product phase (Vp) and of the membrane phase (Vm) by using a high-speed OMNI
MIXER homogenizer (Omni International, Kennesaw, GA, USA), at 2700 rpm during
5 min. To prepare the water-in-oil-in-water emulsion (w/o/w) a volume of this primary
emulsion (Vemul) was then gradually added to a volume of the external feed phase (Vf) in a
glass cell equipped with a variable-speed propeller, stirring the mixture at a stirring rate
ranging from 50 to 200 rpm. Vp/Vm volume ratios ranging from 0.7 to 1.0 were analyzed at
a constant Vf/Vemul volume ratio of 2, while Vf/Vemul volume ratios ranging from 1 to 8
were analyzed at a constant Vp/Vm volume ratio of 1.

The duration of the experiments was 15 min, to ensure that in none of the studied
experimental conditions there was a significant breakage of the emulsion globules; this
should lead to an increase in the concentration of 4NA in the feed phase with time.

Samples of the secondary w/o/w emulsion were periodically taken and allowed to
settle for 5 min to achieve separation of the feed phase and the primary w/o emulsion.
A quantity of 1 mL of the feed phase was then analyzed, after the addition of 2 mL of
1 M HCl solution, by means of UV spectrophotometry at a wavelength of 243 nm using a
UNICAM UV2 spectrophotometer (Unicam Limited, Cambridge, UK). The concentration
of 4NA in the unknown sample was determined from the 4NA calibration curve. All the
experiments were performed at room temperature and in duplicate. The results obtained
showed a maximum deviation of 5%.

The typical experimental condition was: membrane phase 5% Span 80 in kerosene,
product phase 0.5 M hydrochloric acid, stirring rate 200 rpm, Vf/Vemul volume ratio 2 and
Vp/Vm volume ratio 1.

3. Results
3.1. Removal Efficiency

Removal percentage (RP), apparent initial flux (J) and apparent initial permeability (P)
were used to study the efficiency of the 4NA removal process.

Percentage of 4NA removal from the feed phase (RP) was determined according to
the Equation (1)

RP =
Cf,0 − Cf,t

Cf,0
× 100 (1)
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where Cf,0 and Cf,t are the initial and final (15 min) concentrations of 4NA in the external
feed phase.

Initial apparent fluxes (J) and permeabilities (P) of 4NA through the feed/membrane
interface were calculated from the slopes of the straight lines obtained when plotting,
respectively, Cf and ln[Cf,t/(Cf,0] against time, during the first 3 minutes of the experiments,
according to Equations (2) and (3) [25].

J =− Vf × dCf
Vemul × dt

(2)

ln
Cf,t

Cf,0
= −Vemul × P × t

Vf
(3)

where Vemul is the volume of the primary emulsion, internal phase volume plus membrane
volume, Vf in the volume of the external feed phase and t is the contact time. These
equations are used assuming that the membrane area is proportional to the emulsion
volume, that the release reaction, which takes place at the membrane/product interface, is
very fast preventing the accumulation of solute in the membrane phase and that there is
uniformity in the size of the emulsion droplets when the membrane preparation conditions
are the same [25].

Figure 3 shows the values of the 4NA removal percentage, apparent initial flux and
apparent initial permeability under the different experimental conditions studied.
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The increase in HCl concentration in the product phase from 0.05 M to 0.50 M leads
to an increase in 4NA removal as a consequence of the increase in the stripping driv-
ing force, which favors the diffusion of 4NA from the feed/membrane interface to the
membrane/product interface leading to an increase in 4NA transport from the feed to the
membrane phase [26].

The 4NA removal increases as a surfactant concentration in the membrane phase
increases from 0.5% to 5.0% due to the reduction in the interfacial tension between the
phases resulting in smaller emulsion droplets that provide a larger mass transfer area,
leading to an increase in 4NA transport [27].
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The increase in the stirring speed from 50 to 200 rpm leads to an increase in 4NA
removal due to the formation of smaller emulsion droplets, which provides a higher mass
transfer area between the feed phase and the membrane phase, leading to an increase in
the mass transfer rate [28].

The effect of the Vf/Vemul ratio on the 4NA removal was studied at a constant Vp/Vm
ratio (Vp/Vm = 1). Increasing the Vf/Vemul ratio leads to an increase in the amount of 4NA
that can be removed from the feed phase, but with no change in the amount of stripping
agent in the product phase. This leads to an increase in the 4NA transport from the feed
phase to the membrane phase that is manifested by an increase in flux and permeability
(which is especially significant when the volume ratio increases from 1 to 2) and to a
decrease in the removal percentage (the percentage of 4NA removed from the total 4NA
present in the feed), which is especially significant at a volume ratio greater than 2, due to
the significant increase in the number of 4NA molecules to be removed from the feed phase
in comparison to the total number of 4NA molecules that can be effectively transported by
a constant number of stripping agent molecules [29].

The effect of the Vp/Vm ratio on 4NA elimination was analyzed at a constant Vf/Vemul
ratio (Vf/Vemul = 2). The increase in the internal volume of the aqueous phase produces
two opposite effects. On the one hand, it generates an increase in emulsion viscosity, which
leads to an increase in the emulsion droplet size which decreases the mass transfer area and
results in a decrease in removal efficiency [30]. On the other hand, it produces an increased
ratio between the amount of stripping agent in the permeate phase and the amount of 4NA
in the feed phase, which increases the stripping driving force, delaying the accumulation of
4NA in the membrane phase, and resulting in an increase in the removal efficiency [26].
The total result of these two effects is a slight increase in 4NP flux, permeability and
removal efficiency.

3.2. Removal Process Kinetics

Among the different models that have been proposed to describe the kinetics of the
transport process in emulsion liquid membranes [31–34], we selected in this study the
model of Lin et al. [34] because of its simplicity and ease of calculation. This model assumes
that the 4NA concentrations are uniform in both the external aqueous phase and the
primary water in oil emulsion and is represented by Equation (4) [34], which is valid for
times shorter than the final time.

ln
Cemul,tf

Cemul,tf − Cemul,t
= k × t Y = k × t (4)

where Cemul,t and Cemul,tf are 4NA concentrations (mg/L) in the emulsion droplets at
any time and at the final time (15 min), respectively, and k is the overall mass transfer
coefficient (min−1).

4NA concentrations in the emulsion droplets (Cemul) and in the external feed aqueous
solution (Cf) are related by the following material balance:

Vf × (C f,0 − Cf,t

)
= Vemul × Cemul,t (5)

where Cf,0 and Cf,t are, respectively, the initial and time t concentrations of 4NA in the feed
phase (mg/L), and Vf and Vemul are the volumes (mL) of the feed and the emulsion phases,
respectively. 4NA concentrations (mg/L) in the emulsion droplets at the final time Cemul,tf
were determined using Equation (5), Cf,t being the feed 4NA concentration at the final time
(15 min).

Figure 4 shows the values of the representation against time of the experimental values
of Y, ln[Cemul,tf/(Cemul,tf − Cemul,t)], and of those obtained by means of the model, under
the different experimental conditions studied. A very good similarity between experimental
and model values can be appreciated, which points to a good validity of the model.
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In another way, Figure 5 shows the values of the overall mass transfer coefficient under
those different experimental conditions. It can be observed that the variation in the overall
mass transfer coefficients with the variation in different experimental conditions studied
coincides with that of the 4NA removal efficiency analyzed above. That is, the increase in
HCl concentration in the product, surfactant concentration in the membrane phase, stirring
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rate of the secondary w/o/w emulsion, and Vp/Vm ratio lead to an increase in the value of
the overall mass transfer coefficient, while the increase in the Vf/Vemul leads to its decrease.
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3.3. Transport Mechanism

The mechanism of 4NA transport through an emulsion liquid membrane by a type 1
facilitated transport includes four steps (Figure 6a) [31]:

1. 4NA diffusion through the stagnant film of the feed aqueous phase at feed/membrane
interface.

2. 4NA solubilization into the membrane phase.
3. 4NA diffusion through the membrane phase to the membrane/product interface.
4. At the membrane/product interface, reaction of 4NA with the striping agent (HCl)

present in the product phase to form a membrane phase insoluble product (4NAH+Cl−].
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As the solubilization and reaction steps are much faster than those of the diffusion,
the transport in a type 1-facilitated emulsion liquid membrane process will be governed
by diffusion through the stagnant film of the feed aqueous phase at the membrane/phase
interface or by diffusion through the membrane phase.

This elementary transport mechanism is very similar to that of the adsorption of an
adsorbate (we will refer to the 4NA) onto an adsorbent, which includes three basic steps
(Figure 6b) [35]:

1. External diffusion (film diffusion), transport of the adsorbate (4NA) from the bulk
phase to the external surface of the adsorbent.

2. Intraparticle diffusion (pore diffusion), transport of the adsorbate (4NA) from the
external surface into the pores.

3. Surface reaction, which is the attachment of the adsorbate to the internal surface of
the adsorbent.

As indicated above, the reaction step is much faster than the diffusion steps, so trans-
port in an adsorption process will be governed by either external diffusion or intraparticle
diffusion.

This great parallelism between the mechanisms associated with the transport in both
adsorption and type 1 emulsion liquid membrane processes makes it possible to assimilate
the external diffusion and the intraparticle diffusion of the adsorption process with the dif-
fusion through the stagnant film of the feed aqueous phase at the feed/membrane interface
and the membrane–phase diffusion, respectively, of the emulsion liquid membrane process.

In order to establish the extent of an adsorption process, the parameter adsorption
capacity is often used, which is usually defined, for both at any time t (qt) or at the final
time or equilibrium (qe), as the amount of adsorbate retained per unit mass of adsorbent
(mg/g) [35], according to Equations (6) and (7).

qe =
(C 0 − Ce)× V

m
(6)

qt =
(C 0 − Ct)× V

m
(7)

where C0, Ct and Ce were, respectively, the initial, time t and equilibrium adsorbate
concentrations in the solution (mg/L), V the volume of the adsorbate solution (L) and m
the mass of the adsorbent (g).

These parameters have been defined in the case of emulsion liquid membranes [36] as
the amount of compound removed from the feed phase per volume unit of emulsion phase
(mg/L), according to Equations (8) and (9).

qe,ELM =
(C f,0 − Cf,e

)
× Vf

Vemul
(8)

qt,ELM =
(C f,0 − Cf,t

)
× Vf

Vemul
(9)

where Cf,e is the equilibrium concentration (at 15 min) of 4NA in the feed phase (mg/L).
Accordingly, the amounts of 4NA removed from the feed phase per volume unit of

the emulsion phase, at any time t (qt), and at 15 min (qe), were estimated from
Equations (8) and (9).

Therefore, the mechanism of type 1-facilitated transport of 4NA through an emul-
sion liquid membrane was analyzed by means of two models developed for adsorption
processes, the Weber and Morris intraparticle diffusion model and the Boyd model.

The Weber and Morris intraparticle diffusion model [37] is usually expressed according
to Equation (10):

qt = kintp × t1/2 + Ci (10)
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where kintp (mg/g·h1/2) is the rate constant of the intraparticle diffusion (membrane diffu-
sion in the case of ELM)) and Ci represents the effect of the external diffusion (diffusion
through the stagnant film of the feed phase in the case of ELM). The value of these pa-
rameters is obtained from the slope and the intercept when qt plotted against t1/2. If this
representation is linear and passes through the origin, intraparticle diffusion is the only
step that controls the rate of the process, but if the representation shows multilinearity,
both external diffusion and intraparticle diffusion are involved in controlling the rate of
the process.

When the latter occurs, the Boyd kinetic model [38] allows us to establish which of the
two steps is the one that mainly controls the rate of the process. This model is described by
the equation:

B × t =− 0.4977 − ln
(

1 −
qt
qe

)
(11)

If the plot of B·t versus time is a straight line passing through the origin, the transport
process is mainly controlled by intraparticle diffusion; otherwise, it is mainly controlled by
external diffusion.

The results are presented in Figure 7. As this figure shows that Weber–Morris model
representations are not linear over the entire time range, 4NA transport from the feed
phase to the product phase is controlled by both the diffusion through the stagnant film
of the feed aqueous phase at the feed/membrane interface and the diffusion through the
membrane phase.
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As Boyd model representations are not fully linear and they do not pass through
the origin, it can be concluded that the rate of 4NA type 1-facilitated transport through
emulsion liquid membranes is mainly controlled by 4NA diffusion through the stagnant
film of the feed aqueous phase at the feed/membrane interface.

4. Conclusions

The removal of 4NA from aqueous solutions by emulsion liquid membranes using a
type 1-facilitated transport mechanism was studied in this paper. In order to optimize the
removal process, the efficiency of 4NA removal from the feed phase and the initial appar-
ent feed/membrane fluxes and permeabilities were studied under different experimental
conditions. The removal of 4NA increased by increasing the HCl concentration in the
internal aqueous phase from 0.05 M to 0.50 M, by increasing the surfactant concentration
in the membrane phase from 0.5% to 5.0%, by increasing the stirring speed from 50 to
200 rpm, by increasing the permeate/membrane volume ratio from 0.7 to 1, and by decreas-
ing the feed/emulsion volume ratio from 8 to 1.

The kinetics of the removal process were analyzed using a simplified mass transfer
model involving an empirical mass transfer coefficient calculated from experimental data.
The results show a very good fit between the experimental and model data and that the
values of the overall mass transfer coefficient with the experimental conditions coincide
with those of the removal efficiency mentioned above.

Due to the great parallelism between the transport mechanisms of adsorption and
emulsion liquid membrane processes, the mechanism of the type 1-facilitated transport of
4NA through ELM was studied by identifying the rate-controlling step of the process using
models described for adsorption processes. The results show that there is more than one
rate-controlling step in the removal process, with diffusion through the boundary layer at
the feed/membrane interface being the main rate-controlling step in the removal of 4NA
from aqueous solutions by type 1-facilitated transport.
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