Scale Design of Dual-Layer Polyphenylsulfone/Sulfonated Polyphenylsulfone Hollow Fiber Membranes for Nanofiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Sulfonated Polyphenylsulfone
2.3. Fabrication of DLHF Nanocomposite Membrane and Module
2.4. Rheological Properties of Dope Solution
2.5. Membrane Characterization
2.5.1. Morphological Studies
2.5.2. Measurement of Membrane Zeta Potential
2.5.3. Porosity and Contact Angle Measurement
2.5.4. Thermal and Mechanical Properties of the Membranes
2.5.5. Performances of the Membranes
3. Results and Discussion
3.1. Rheological Properties of the Dope Solution
3.2. Membrane Morphology
3.3. Porosity, Hydrophilicity and MWCO of Membrane
3.4. Thermal Stability of the Membranes
3.5. Mechanical Properties of the Membranes
3.6. Performance of Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse Osmosis Pretreatment Technologies and Future Trends: A Comprehensive Review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, S.; Zhang, J.; Yang, C.; Su, B.; Han, L.; Gao, X. Emerging Sandwich-like Reverse Osmosis Membrane with Interfacial Assembled Covalent Organic Frameworks Interlayer for Highly-Efficient Desalination. J. Memb. Sci. 2020, 604, 118065. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Y.; Wang, R. Thin Film Nanocomposite Hollow Fiber Membranes Incorporated with Surface Functionalized HKUST-1 for Highly-Efficient Reverses Osmosis Desalination Process. J. Memb. Sci. 2019, 589, 117249. [Google Scholar] [CrossRef]
- Noraaini, A.; Sofiah, H.; Asmadi, A.; Suriyani, A.R. Fabrication and Characterization of Asymmetric Ultrafiltration Membrane for BSA Separation: Effect of Sheer Rates. J. Appl. Sci. 2010, 10, 1083–1089. [Google Scholar] [CrossRef]
- Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van Der Bruggen, B. How to Optimize the Membrane Properties for Membrane Distillation: A Review. Ind. Eng. Chem. Res. 2016, 55, 9333–9343. [Google Scholar] [CrossRef]
- Wang, M.; Wu, L.G.; Mo, J.X.; Gao, C.J. The Preparation and Characterization of Novel Charged Polyacrylonitrile/ PES-C Blend Membranes Used for Ultrafiltration. J. Memb. Sci. 2006, 274, 200–208. [Google Scholar] [CrossRef]
- Karanasiou, A.; Kostoglou, M.; Karabelas, A. An Experimental and Theoretical Study on Separations by Vacuum Membrane Distillation Employing Hollow-Fiber Modules. Water 2018, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Parashuram, K.; Maurya, S.K.; Rana, H.H.; Singh, P.S.; Ray, P.; Reddy, A.V.R. Tailoring the Molecular Weight Cut off Values of Polyacrylonitrile Based Hollow Fibre Ultrafiltration Membranes with Improved Fouling Resistance by Chemical Modification. J. Memb. Sci. 2013, 425–426, 251–261. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Tong, Y.; Liu, Z.-H.; Lin, H.-H.; Lin, Y.-K.; Van der Bruggen, B.; Wang, X.-L. Extracellular Polymeric Substances Removal of Dual-Layer (PES/PVDF) Hollow Fiber UF Membrane Comprising Multi-Walled Carbon Nanotubes for Preventing RO Biofouling. Sep. Purif. Technol. 2015, 148, 57–67. [Google Scholar] [CrossRef]
- Bóna, Á.; Varga, Á.; Galambos, I.; Nemestóthy, N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection. Membranes 2023, 13, 283. [Google Scholar] [CrossRef]
- Jasim, D.J.; Mohammed, T.J.; Harharah, H.N.; Harharah, R.H.; Amari, A.; Abid, M.F. Modeling and Optimal Operating Conditions of Hollow Fiber Membrane for CO2/CH4 Separation. Membranes 2023, 13, 557. [Google Scholar] [CrossRef]
- Bet-moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 Nanocomposite Based Polymeric Membranes: A Review on Performance Improvement for Various Applications in Chemical Engineering Processes. Chem. Eng. J. 2015, 283, 29–46. [Google Scholar] [CrossRef]
- Zhu, W.P.; Sun, S.P.; Gao, J.; Fu, F.J.; Chung, T.S. Dual-Layer Polybenzimidazole/Polyethersulfone (PBI/PES) Nanofiltration (NF) Hollow Fiber Membranes for Heavy Metals Removal from Wastewater. J. Memb. Sci. 2014, 456, 117–127. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, T.; Su, Y.; Yuan, H.; Hayakawa, T.; Wang, X. Fabrication of a Novel PS4VP/PVDF Dual-Layer Hollow Fiber Ultrafiltration Membrane. J. Memb. Sci. 2016, 506, 1–10. [Google Scholar] [CrossRef]
- Liu, T.Y.; Zhang, R.X.; Li, Q.; Van der Bruggen, B.; Wang, X.L. Fabrication of a Novel Dual-Layer (PES/PVDF) Hollow Fiber Ultrafiltration Membrane for Wastewater Treatment. J. Memb. Sci. 2014, 472, 119–132. [Google Scholar] [CrossRef]
- Liu, T.Y.; Li, C.K.; Pang, B.; Van der Bruggen, B.; Wang, X.L. Fabrication of a Dual-Layer (CA/PVDF) Hollow Fiber Membrane for RO Concentrate Treatment. Desalination 2015, 365, 57–69. [Google Scholar] [CrossRef]
- Chung, T.S.N. Fabrication of Hollow-Fiber Membranes by Phase Inversion. In Advanced Membrane Technology and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 821–839. [Google Scholar] [CrossRef]
- Dzinun, H.; Othman, M.H.D.; Ismail, A.F.; Puteh, M.H.; Rahman, M.A.; Jaafar, J. Morphological Study of Co-Extruded Dual-Layer Hollow Fiber Membranes Incorporated with Different TiO2 Loadings. J. Memb. Sci. 2015, 479, 123–131. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Alhoshan, M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. Membranes 2022, 12, 247. [Google Scholar] [CrossRef]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel-Hamid, S.M.S.; Drioli, E. A Review of Polymeric Nanocomposite Membranes for Water Purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Singh, S.; Varghese, A.M.; Reddy, K.S.K.; Romanos, G.E.; Karanikolos, G.N. Polysulfone Mixed-Matrix Membranes Comprising Poly(Ethylene Glycol)-Grafted Carbon Nanotubes: Mechanical Properties and CO2 Separation Performance. Ind. Eng. Chem. Res. 2021, 60, 11289–11308. [Google Scholar] [CrossRef]
- Sinha, M.K.; Purkait, M.K. Increase in Hydrophilicity of Polysulfone Membrane Using Polyethylene Glycol Methyl Ether. J. Memb. Sci. 2013, 437, 7–16. [Google Scholar] [CrossRef]
- Eke, J.; Mills, P.A.; Page, J.R.; Wright, G.P.; Tsyusko, O.V.; Escobar, I.C. Nanohybrid Membrane Synthesis with Phosphorene Nanoparticles: A Study of the Addition, Stability and Toxicity. Polymers 2020, 12, 1555. [Google Scholar] [CrossRef]
- Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; Abdullah, M.S. Morphological and Separation Performance Study of Polysulfone/Titanium Dioxide (PSF/TiO2) Ultrafiltration Membranes for Humic Acid Removal. Desalination 2011, 273, 85–92. [Google Scholar] [CrossRef]
- Khalid, A.; Ibrahim, A.; Al-Hamouz, O.C.S.; Laoui, T.; Benamor, A.; Atieh, M.A. Fabrication of Polysulfone Nanocomposite Membranes with Silver-Doped Carbon Nanotubes and Their Antifouling Performance. J. Appl. Polym. Sci. 2017, 134, 44688. [Google Scholar] [CrossRef]
- Karkooti, A.; Yazdi, A.Z.; Chen, P.; McGregor, M.; Nazemifard, N.; Sadrzadeh, M. Development of Advanced Nanocomposite Membranes Using Graphene Nanoribbons and Nanosheets for Water Treatment. J. Memb. Sci. 2018, 560, 97–107. [Google Scholar] [CrossRef]
- Ihsanullah; Laoui, T.; Al-Amer, A.M.; Khalil, A.B.; Abbas, A.; Khraisheh, M.; Atieh, M.A. Novel Anti-Microbial Membrane for Desalination Pretreatment: A Silver Nanoparticle-Doped Carbon Nanotube Membrane. Desalination 2015, 376, 82–93. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Ali, F.A.A.; Alhoshan, M. Efficient Soluble Anionic Dye Removal and Antimicrobial Properties of ZnO Embedded- Polyphenylsulfone Membrane. Water Environ. J. 2021, 35, 670–684. [Google Scholar] [CrossRef]
- Hairom, N.H.H.; Mohammad, A.W.; Kadhum, A.A.H. Influence of Zinc Oxide Nanoparticles in the Nanofiltration of Hazardous Congo Red Dyes. Chem. Eng. J. 2015, 260, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Subhapriya, S.; Gomathipriya, P. Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Trigonella Foenum-Graecum Extract and Its Antimicrobial Properties. Microb. Pathog. 2018, 116, 215–220. [Google Scholar] [CrossRef]
- Jalali, E.; Maghsoudi, S.; Noroozian, E. A Novel Method for Biosynthesis of Different Polymorphs of TiO2 Nanoparticles as a Protector for Bacillus Thuringiensis from Ultra Violet. Sci. Rep. 2020, 10, 426. [Google Scholar] [CrossRef] [Green Version]
- Mohany, M.; Ullah, I.; Fozia, F.; Aslam, M.; Ahmad, I.; Sharifi-Rad, M.; Al-Rejaie, S.S.; Zaghloul, N.S.S.; Ahmad, S.; Aboul-Soud, M.A.M. Biofabrication of Titanium Dioxide Nanoparticles Catalyzed by Solanum Surattense: Characterization and Evaluation of Their Antiepileptic and Cytotoxic Activities. ACS Omega 2023, 8, 16948–16955. [Google Scholar] [CrossRef] [PubMed]
- Grünig, L.E.; Meyer, A.; Emmler, T.; Abetz, V.; Handge, U.A. Solvent-Induced Crystallization of Poly(Phenylene Sulfone). Macromolecules 2021, 54, 4816–4826. [Google Scholar] [CrossRef]
- Lawrence Arockiasamy, D.; Alhoshan, M.; Alam, J.; Muthumareeswaran, M.R.; Figoli, A.; Arun Kumar, S. Separation of Proteins and Antifouling Properties of Polyphenylsulfone Based Mixed Matrix Hollow Fiber Membranes. Sep. Purif. Technol. 2017, 174, 529–543. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Bhattacharjee, S. Rational Design of Phase Inversion Membranes by Tailoring Thermodynamics and Kinetics of Casting Solution Using Polymer Additives. J. Memb. Sci. 2013, 441, 31–44. [Google Scholar] [CrossRef]
- Liang, C.Z.; Askari, M.; Choong, L.T.; Chung, T.-S. Ultra-Strong Polymeric Hollow Fiber Membranes for Saline Dewatering and Desalination. Nat. Commun. 2021, 12, 2338. [Google Scholar] [CrossRef]
- Ohkame, T.; Minegishi, K.; Sugihara, H.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(Vinyl Alcohol) Copolymers. Membranes 2021, 11, 981. [Google Scholar] [CrossRef]
- Zhang, P.; Rajabzadeh, S.; Song, Q.; Gonzales, R.R.; Jia, Y.; Xiang, S.; Li, Z.; Matsuyama, H. Development of Loose Nanofiltration PVDF Hollow Fiber Membrane for Dye/Salt Separation. Desalination 2023, 549, 116315. [Google Scholar] [CrossRef]
- Ian, D.N.; Malcolm, C.M.; Benjamin, R.M. High Flux Polyamide Composite Hollow Fiber Membranes for Reverse Osmosis Applications. MRS Online Proc. Libr. 2006, 930, 107. [Google Scholar] [CrossRef]
Membranes | Inner Layer | Outer Layer | ||||
---|---|---|---|---|---|---|
SPPSu (wt%) | TiO2 (wt%) | NMP (wt%) | PPSu (wt%) | PEG 600 (wt%) | NMP (wt%) | |
SPPSu/PPSu | 22 | -- | 78.0 | 24 | 2.0 | 74 |
SPPSu-TiO2 (0.50 wt%)/PPSu | 22 | 0.50 | 77.5 | 24 | 2.0 | 74 |
SPPSu-TiO2 (1.0 wt%)/PPSu | 22 | 1.0 | 77.0 | 24 | 2.0 | 74 |
SPPSu-TiO2 (2.0 wt%)/PPSu | 22 | 2.0 | 76.0 | 24 | 2.0 | 74 |
Parameter | Value |
---|---|
Bore fluid composition (wt%) | Water/NMP(9:1) |
External coagulant | Water |
Outer dope flow rate (mL/min) | 4 |
Inner dope flow rate (mL/min) | 8 |
Bore fluid flow rate (mL/min) | 2 |
Air gap (cm) | 10 |
Take up speed (m/min) | 2 |
Spinneret temperature (°C) | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, J.; Shukla, A.K.; Arockiasamy, L.; Alhoshan, M. Scale Design of Dual-Layer Polyphenylsulfone/Sulfonated Polyphenylsulfone Hollow Fiber Membranes for Nanofiltration. Membranes 2023, 13, 714. https://doi.org/10.3390/membranes13080714
Alam J, Shukla AK, Arockiasamy L, Alhoshan M. Scale Design of Dual-Layer Polyphenylsulfone/Sulfonated Polyphenylsulfone Hollow Fiber Membranes for Nanofiltration. Membranes. 2023; 13(8):714. https://doi.org/10.3390/membranes13080714
Chicago/Turabian StyleAlam, Javed, Arun Kumar Shukla, Lawrence Arockiasamy, and Mansour Alhoshan. 2023. "Scale Design of Dual-Layer Polyphenylsulfone/Sulfonated Polyphenylsulfone Hollow Fiber Membranes for Nanofiltration" Membranes 13, no. 8: 714. https://doi.org/10.3390/membranes13080714
APA StyleAlam, J., Shukla, A. K., Arockiasamy, L., & Alhoshan, M. (2023). Scale Design of Dual-Layer Polyphenylsulfone/Sulfonated Polyphenylsulfone Hollow Fiber Membranes for Nanofiltration. Membranes, 13(8), 714. https://doi.org/10.3390/membranes13080714