Phenylalanine Losses in Neutralization Dialysis: Modeling and Experiment
Abstract
:1. Introduction
2. Theoretical
2.1. System under Study
2.2. Problem Formulation
2.3. Parameters of the Model
3. Experimental
3.1. Neutralization Dialysis Process
3.2. Membranes
4. Results and Discussions
- (1)
- by the selection of membranes with desired properties (structure, thickness, ion-exchange capacity, nature of fixed ion-exchange groups, etc.);
- (2)
- by changing the hydrodynamic conditions in the compartments of the ND system, which affects the DBL thickness near the membrane surfaces;
- (3)
- by changing the concentration of acid and/or alkali in the corresponding compartments, which affects the concentration gradient between these compartments and the D compartment and, as a consequence, the ion fluxes.
4.1. pH Fluctuations in Desalination Compartment
4.2. Phenylalanine Losses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value | Units | Description |
---|---|---|---|
and | 140 and 150 | microns | CEM and AEM thickness, respectively * |
85 | The thickness of diffusion boundary layers **, k = I, II, III, IV (Figure 1) | ||
0.02 | mol·L−1 | Initial molar concentration of salt in the desalination compartment D (Table 2) | |
0.1 or 0.05 | Initial molar concentration of acid in the acid compartment A (Table 2) | ||
0.1 or 0.2 | Initial molar concentration of alkali in the alkali compartment B (Table 2) | ||
0.02 | Initial molar concentration of phenylalanine in the desalination compartment D (Table 2) | ||
VA and VB | 2 | L | Volume of solutions in the acid and alkali compartments, respectively |
VD | 0.5 | Volume of the solution in the desalination compartment | |
and | 1.85 and 1.99 | mmol·cm−3 | Ion-exchange capacity of CEM and AEM, respectively (in the swollen state) * |
1.34·10−5 | cm2·s−1 | Diffusion coefficients of Na+, Cl−, H+, OH−, Phe+, Phe−, and Phe± ions in solution at infinite dilution [22,34] | |
2.03·10−5 | |||
9.31·10−5 | |||
5.26·10−5 | |||
6.7·10−7 | |||
6.7·10−7 | |||
6.7·10−7 | |||
3.25·10−7 | Diffusion coefficients of Na+, H+, Phe+ ions in CEM and Cl−, OH−, Phe− ions in AEM ** | ||
9.0·10−6 | |||
1.1·10−7 | |||
2.25·10−7 | |||
7.8·10−7 | |||
0.75·10−7 | |||
and | 3.3·10−8 and 2.3·10−8 | Diffusion coefficients of Phe± ions in CEM and AEM, respectively ** | |
10−14 | mol2·L−2 | Water ionization constant | |
6.31·10−3 | mol·L−1 | Equilibrium constant for chemical reaction (6) [22] | |
4.90·10−10 | Equilibrium constant for chemical reaction (7) [22] | ||
and | 1 | – | Nikolskii equilibrium constant for exchange between H+ and Na+, H+, and Phe+ in CEM |
and | 1 | – | Nikolskii equilibrium constant for exchange between OH− and Cl−, OH− and Phe− in AEM |
T | 298 | K | Absolute temperature |
R | 8.314 | J·(mol·K)−1 | Gas constant |
F | 96,485 | C·mol−1 | Faraday constant |
Abbreviations | Description |
---|---|
AEM | anion-exchange membrane |
CEM | cation-exchange membrane |
DBL | diffusion boundary layer |
DR | desalination rate |
ER | exchange rate |
ND | neutralization dialysis |
Phe | phenylalanine |
Superscripts/subscripts | |
Superscripts “c” and “a” | relates to CEM and AEM, respectively |
Superscripts “A”, “B”, and “D” | relates to acid, alkali (base), and desalination compartments, respectively |
Subscript “j” | relates to a certain species. The type of species described by the index j is indicated in the place of its appearance |
References
- Igawa, M.; Echizenya, K.; Hayashita, T.; Seno, M. Donnan dialysis desalination. Chem. Lett. 1986, 15, 237–238. [Google Scholar] [CrossRef]
- Igawa, M.; Echizenya, K.; Hayashita, T.; Seno, M. Neutralization Dialysis for Deionization. Bull. Chem. Soc. Jpn. 1987, 60, 381–383. [Google Scholar] [CrossRef]
- German, M.; SenGupta, A.K.; Greenleaf, J. Hydrogen ion (H+) in waste acid as a driver for environmentally sustainable processes: Opportunities and challenges. Environ. Sci. Technol. 2013, 47, 2145–2150. [Google Scholar] [CrossRef]
- Igawa, M.; Mikami, K.; Okochi, H. Transport characteristics of neutralization dialysis and desalination of tap water. Bull. Chem. Soc. Jpn. 2003, 76, 437–441. [Google Scholar] [CrossRef]
- Chérif, M.; Mkacher, I.; Dammak, L.; Ben Salah, A.; Walha, K.; Grande, D.; Nikonenko, V. Water desalination by neutralization dialysis with ion-exchange membranes: Flow rate and acid/alkali concentration effects. Desalination 2015, 361, 13–24. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Ou-Yang, W.; Bastos Sales, B.; Sun, Z.; Liu, F.; Zhao, R. Capacitive neutralization dialysis for direct energy generation. Environ. Sci. Technol. 2017, 51, 9363–9370. [Google Scholar] [CrossRef] [PubMed]
- Igawa, M.; Tanabe, H.; Ida, T.; Yamamoto, F.; Okochi, H. Separation of weak acids and bases by neutralization dialysis. Chem. Lett. 1993, 22, 1591–1594. [Google Scholar] [CrossRef]
- Bleha, M.; Tishchenko, G.A. Neutralization dialysis for desalination. J. Membr. Sci. 1992, 73, 305–311. [Google Scholar] [CrossRef]
- Igawa, M.; Fukushi, Y.; Hayashita, T.; Hoffmann, M.R. Selective transport of aldehydes across an anion-exchange membrane via the formation of bisulfite adducts. Ind. Eng. Chem. Res. 1990, 29, 857–861. [Google Scholar] [CrossRef]
- Vasil’eva, V.I.; Saud, A.M.; Akberova, E.M. Effect of the mass fraction of ion-exchange resin in a Ralex CM cation-exchange membrane on demineralization of phenylalanine aqueous salt solutions by neutralization dialysis. Membr. Membr. Technol. 2021, 3, 98–106. [Google Scholar] [CrossRef]
- Porozhnyy, M.V.; Kozmai, A.E.; Mareev, A.A.; Gil, V.V. Theoretical and experimental study of neutralization dialysis of phenylalanine–mineral salt equimolar mixture of different concentrations. Membr. Membr. Technol. 2022, 4, 306–318. [Google Scholar] [CrossRef]
- Myronchuk, V.; Zmievskii, Y.; Dzyazko, Y.; Rozhdestvenska, L.; Zakharov, V. Whey desalination using polymer and inorganic membranes: Operation conditions. Acta Period. Technol. 2018, 49, 103–115. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.Q.; Wang, Q.; Xu, T.; Kentish, S.E. Transforming salty whey into cleaning chemicals using electrodialysis with bipolar membranes. Desalination 2020, 492, 114598. [Google Scholar] [CrossRef]
- Denisov, G.A.; Tishchenko, G.; Bleha, M.; Shataeva, L. Theoretical analysis of neutralization dialysis in the three-compartment membrane cell. J. Membr. Sci. 1995, 98, 13–25. [Google Scholar] [CrossRef]
- Saud, A.M.; Vasil’eva, V.I.; Goleva, E.A.; Akberova, E.M.; Kozlov, A.T. Selection of anion-exchange membrane for separation of phenylalanine and sodium chloride by neutralization dialysis. Sorbtsionnye i Khromatograficheskie Protsessy 2020, 20, 749–759. [Google Scholar] [CrossRef]
- Sato, K.; Yonemoto, T.; Tadaki, T. Modeling of ionic transport in neutralization dialytic deionization. J. Chem. Eng. Jpn. 1993, 26, 68–74. [Google Scholar] [CrossRef]
- Kozmai, A.; Chérif, M.; Dammak, L.; Bdiri, M.; Larchet, C.; Nikonenko, V. Modelling non-stationary ion transfer in neutralization dialysis. J. Membr. Sci. 2017, 540, 60–70. [Google Scholar] [CrossRef]
- Kozmai, A.; Goleva, E.; Vasil’eva, V.; Nikonenko, V.; Pismenskaya, N. Neutralization dialysis for phenylalanine and mineral salt separation. Simple theory and experiment. Membranes 2019, 9, 171. [Google Scholar] [CrossRef]
- Franck-Lacaze, L.; Sistat, P.; Huguet, P. Determination of the pKa of poly (4-vinylpyridine)-based weak anion exchange membranes for the investigation of the side proton leakage. J. Membr. Sci. 2009, 326, 650–658. [Google Scholar] [CrossRef]
- Metayer, M.; Legras, M.; Grigorchouk, O.; Nikonenko, V.; Langevin, D.; Labbe, M.; Lebrun, L.; Shaposhnik, V. Facilitated transport of a-alanine and phenylalanine through sulfonic cation-exchange membranes. Desalination 2002, 147, 375–380. [Google Scholar] [CrossRef]
- Shaposhnik, V.A.; Eliseeva, T.V. Barrier effect during the electrodialysis of ampholytes. J. Membr. Sci. 1999, 161, 223–228. [Google Scholar] [CrossRef]
- Lide, D.R. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0849304873. [Google Scholar]
- Chen, G.Q.; Wei, K.; Hassanvand, A.; Freeman, B.D.; Kentish, S.E. Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Res. 2020, 175, 115681. [Google Scholar] [CrossRef] [PubMed]
- Vasil’eva, V.I.; Shaposhnik, V.A.; Zemlyanukhina, I.A.; Grigorchuk, O.V. Facilitated diffusion of amino acids in ion-exchange membranes. Russ. J. Phys. Chem. A 2003, 77, 1017–1019. [Google Scholar]
- Donnan, F.G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. J. Membr. Sci. 1995, 100, 45–55. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Pismenskaya, N.D.; Belova, E.I.; Sistat, P.; Huguet, P.; Pourcelly, G.; Larchet, C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 2010, 160, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Eliseeva, T.; Kharina, A. Desalination of neutral amino acid solutions in an electromembrane system. Membranes 2022, 12, 665. [Google Scholar] [CrossRef]
- Lin, X.; Pan, J.; Zhou, M.; Xu, Y.; Lin, J.; Shen, J.; Van der Bruggen, B. Extraction of amphoteric amino acid by bipolar membrane electrodialysis: Methionine acid as a case study. Ind. Eng. Chem. Res. 2016, 55, 2813–2820. [Google Scholar] [CrossRef]
- Nikonenko, V.; Urtenov, M.; Mareev, S.; Pourcelly, G. Mathematical modeling of the effect of water splitting on ion transfer in the depleted diffusion layer near an ion-exchange membrane. Membranes 2020, 10, 22. [Google Scholar] [CrossRef]
- Kattan Readi, O.M.; Gironès, M.; Wiratha, W.; Nijmeijer, K. On the isolation of single basic amino acids with electrodialysis for the production of biobased chemicals. Ind. Eng. Chem. Res. 2013, 52, 1069–1078. [Google Scholar] [CrossRef]
- Luo, J.; Wu, C.; Xu, T.; Wu, Y. Diffusion dialysis-concept, principle and applications. J. Memb. Sci. 2011, 366, 1–16. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, H.; Wang, H.; Ladewig, B.P.; Yao, Z. A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere 2021, 282, 130817. [Google Scholar] [CrossRef] [PubMed]
- Elisseeva, T.V.; Shaposhnik, V.A.; Luschik, I.G. Demineralization and separation of amino acids by electrodialysis with ion-exchange membranes. Desalination 2002, 149, 405–409. [Google Scholar] [CrossRef]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions, 2nd ed.; Dover Publications Inc.: Mignola, NY, USA, 2002; ISBN 0486422259. [Google Scholar]
Membrane | CSE | ASE |
---|---|---|
Ion-exchange capacity, mmol·cm−3 | 1.85 | 1.99 |
Water content, % | 42.0 | 24.4 |
Conductivity (in 0.1 M NaCl), mS·cm−1 | 7.37 | 3.77 |
Conductivity (in 0.1 M Phe, CSE at pH = 0.5, ASE at pH = 13.1), mS·cm−1 | 5.67 | 2.32 |
Conductivity (CSE in 0.1 M HCl, ASE in 0.1 M NaOH), mS·cm−1 | 71.12 | 6.76 |
Thickness in swollen state, microns | 140 | 150 |
Case | , mol·L−1 | , mol·L−1 | , mol·L−1 | , mol·L−1 |
---|---|---|---|---|
case 1 | 0.1 | 0.1 | 0.02 | 0.02 |
case 2 | 0.05 | 0.1 | ||
case 3 | 0.1 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozmai, A.; Porozhnyy, M.; Gil, V.; Dammak, L. Phenylalanine Losses in Neutralization Dialysis: Modeling and Experiment. Membranes 2023, 13, 506. https://doi.org/10.3390/membranes13050506
Kozmai A, Porozhnyy M, Gil V, Dammak L. Phenylalanine Losses in Neutralization Dialysis: Modeling and Experiment. Membranes. 2023; 13(5):506. https://doi.org/10.3390/membranes13050506
Chicago/Turabian StyleKozmai, Anton, Mikhail Porozhnyy, Violetta Gil, and Lasaad Dammak. 2023. "Phenylalanine Losses in Neutralization Dialysis: Modeling and Experiment" Membranes 13, no. 5: 506. https://doi.org/10.3390/membranes13050506
APA StyleKozmai, A., Porozhnyy, M., Gil, V., & Dammak, L. (2023). Phenylalanine Losses in Neutralization Dialysis: Modeling and Experiment. Membranes, 13(5), 506. https://doi.org/10.3390/membranes13050506