Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination
Abstract
:1. Introduction
2. Electromagnetic and Radiation Pollution
3. Comprehensive Strategies and Solutions to Mitigate and Control Electromagnetic/Radiation Contamination
3.1. Metal-Based Membrane Shielding Materials
3.2. Polymer-Based Membrance Shielding Materials
3.3. Concrete-Based Membrane Shielding Materials
3.4. Lead-Based Membrance Shielding Materials
3.5. Boron-Based Membrance Shielding Materials
4. Novel Electromagnetic/Radiation Shielding Membrane Materials and Technologies
4.1. 3D Printing Design of Membrane Shielding Materials
4.2. MXene-Based Membrance Shielding Materials
4.3. Carbon-Based Membrane Shielding Materials
4.4. Iron-Based Membrane Shielding Materials
4.5. Cellulose-Based Membrane Shielding Materials
4.6. New Lead-Free Membrane Shielding Materials
5. Mechanism of Membrane Shielding Materials
6. Review of Composite Membrane Shielding Materials for Electromagnetic/Radiation Pollution
7. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Insight and Info. China 5G Industry Analysis Report 2020-Deep Market Analysis and Development Prospect Research; Insight and Info Consulting Ltd.: Beijing, China, 2020. [Google Scholar]
- Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.L.; Zhang, H.B.; Li, X.F.; Gui, C.X.; Yu, Z.Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 2015, 82, 6776. [Google Scholar] [CrossRef]
- Huang, H.D.; Liu, C.Y.; Zhou, D.; Jiang., X.; Zhong, G.J.; Yan, D.X.; Li, Z.M. Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J. Mater. Chem. A 2015, 3, 4983–4991. [Google Scholar] [CrossRef]
- Dasa, N.C.; Khastgira, D.; Chakia, T.K.; Chakraborty, A. Electromagnetic interference shielding effectiveness of carbon black and carbon fiber filled EVA and NR based composites. Compos. Part A Appl. 2000, 31, 1069–1081. [Google Scholar] [CrossRef]
- Dai, X.Y.; Du, Y.Z.; Yang, J.Y.; Wang, D.; Gu, J.W.; Li, Y.F.; Wang, S.; Xu, B.B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32. [Google Scholar] [CrossRef]
- Lacey, M. What Is “Energy Transition” and Why Does It Matter to Investors. 10 September 2019. Available online: https://www.schroders.com/en/insights/economics/what-is-energy-transition-and-why-does-it-matter-to-investors (accessed on 12 December 2022).
- Kim, S.C.; Cho, S.H. Analysis of the Correlation between Shielding Material Blending Characteristics and Porosity for Radiation Shielding Membranes. Appl. Sci. 2019, 9, 1765. [Google Scholar] [CrossRef] [Green Version]
- Martellucci, R.; Torsello, D. Potential of biochar reinforced concrete as neutron shielding material. Nucl. Eng. Technol. 2022, 54, 3448–3451. [Google Scholar] [CrossRef]
- Yonphan, S.; Chaiphaksa, W.; Kalkornsurapranee, E.; Tuljittraporn, A.; Kothan, S.; Kaewjaeng, S.; Intachai, N.; Wongdamnern, N.; Kedkaew, C.; Kim, H.J.; et al. Development of flexible radiation shielding materials from natural Rubber/Sb2O3 composites. Radiat. Phys. Chem. 2022, 200, 110379. [Google Scholar] [CrossRef]
- Abou, H.E.M.; Barakat, M.A.Y. Structural, physical and ultrasonic studies on bismuth borate glasses modified with Fe2O3 as promising radiation shielding materials. Mater. Chem. Phys. 2022, 290, 126606. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lozano, K.; Lomeli, K.; Foltz, H.D.; Jones, R. Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos. Part A Appl. 2005, 36, 691–697. [Google Scholar] [CrossRef]
- Song, W.L.; Cao, M.S.; Fan, L.Z.; Lu, M.M.; Li, Y.; Wang, C.Y.; Ju, H.F. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 2014, 77, 130–142. [Google Scholar] [CrossRef]
- Wang, W.J.; Gumfekar, S.P.; Jiao, Q.J.; Zhao, B.X. Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials. J. Mater. Chem. C 2013, 1, 2851–2859. [Google Scholar] [CrossRef]
- Liu, W.W.; Li, H.; Zeng, Q.P.; Duan, H.N.; Guo, Y.P.; Liu, X.F.; Sun, C.Y.; Liu, H.Z. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 2015, 3, 3739–3747. [Google Scholar] [CrossRef]
- Jiang, D.W.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.C.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 2019, 59, 280–337. [Google Scholar] [CrossRef]
- Alajerami, Y.S.; Drabold, D.; Mhareb, M.H.A.; Katherine Leslee, A.; Gang Chen, C.; Kurudirek, M. Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 2020, 46, 12718–12726. [Google Scholar] [CrossRef]
- Mhare, M.H.A.; Alajerami, Y.S.M.; Dwaikat, N.; Al-Buriahi, M.S.; Alqahtani, A.M.; Saleh, F.; Noha, A.N.; Saleh, M.A.; Sayyed, M.I. Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O- BaO glass system. Nucl. Eng. Technol. 2020, 53, 949–959. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, R.F.; Wang, Y.; Cao, Y.S.; Shen, Y.X.; Huang, Y.; Chen, Y.S. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 2023, 205, 112–137. [Google Scholar] [CrossRef]
- Oto, B.; Yıldız, N.; Akdemir, F.; Kavaz, E. Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energy 2015, 85, 391–403. [Google Scholar] [CrossRef]
- Singh, V.P.; Badiger, N.M.; Kaewkhao, J. Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study. J. Non-Cryst. Solids 2014, 404, 167–173. [Google Scholar] [CrossRef]
- Smith, S.; Zhang, J.; Anaskevich, L.; Lemieux, P.B.; Oates, M.E. Personnel protective apparel integrity Inspection: Where we areand what we need. J. Am. Coll. Radiol. 2016, 13, 1223–1226. [Google Scholar] [CrossRef]
- John, B. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar]
- Raj, R.E.; Daniel, B.S.S. Structural and compressive property correlation of closed-cell aluminum foam. J. Alloy Compd. 2007, 467, 550–556. [Google Scholar] [CrossRef]
- Ji, K.J.; Zhao, Z.H.; Zhang, J.; Chen, J.; Dai, Z.D. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs. Appl. Surf. Sci. 2014, 311, 351–356. [Google Scholar] [CrossRef]
- Hema, S.; Sambhudevan, S. Ferrite-based polymer nanocomposites as shielding materials: A review. Chem. Pap. 2021, 75, 3697–3710. [Google Scholar]
- Geetha, S.; Satheesh Kumar, K.K.; Rao, C.R.K.; Vijayan, M.; Trivedi, D.C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Wei, W.T.; Zhang, P.F.; Cao, F.; Liu, J.H.; Qian, K.; Pan, D.K.; Yao, Y.T.; Li, W.B. Ultrathin flexible electrospun EVA nanofiber composite with electrothermally-driven shape memory effect for electromagnetic interference shielding. Chem. Eng. J. 2022, 446, 137135. [Google Scholar] [CrossRef]
- Zorla, E.; Ipbüker, C.; Biland, A.; Kiisk, M.; Kovaljov, S.; Tkaczyk, A.H.; Gulik, V. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron. Nucl. Eng. Des. 2017, 313, 306–318. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Sci. Total Environ. 2018, 616–617, 408–416. [Google Scholar] [CrossRef]
- McCaffrey, J.P.; Shen, H.; Downton, B.; Mainegra-Hing, E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 2007, 34, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Stam, W.; Pillay, M. Inspection of lead aprons: A practical rejection model. Health Phys. 2008, 95, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, F.; Liu, Y.K.; Yu, H.Y.; Zeng, Y.S.; Lang, L.H. Synthesizing of Metallized Acrylic Containing Both Gadolinium and Lead as a Transparent Radiation Shielding Material and Its Physical Properties. Metals 2022, 12, 990. [Google Scholar] [CrossRef]
- Gu, J.W.; Lv, Z.Y.; Wu, Y.L.; Guo, Y.Q.; Tian, L.D.; Qiu, H.; Li, W.Z.; Zhang, Q.Y. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A Appl. 2017, 94, 209–216. [Google Scholar] [CrossRef]
- Verma, S.; Dhangar, M.; Mili, M.; Bajpai, H.; Dwivedi, U.; Kumari, N.; Khan, M.A.; Bhargaw, H.N.; Hashmi, S.A.R.; Srivastava, A.K. Review on engineering designing of electromagnetic interference shielding materials using additive manufacturing. Polym. Compos. 2022, 43, 4081–4099. [Google Scholar] [CrossRef]
- Paddubskaya, A.; Valynets, N.; Kuzhir, P.; Batrakov, K.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biro, I.; Kertesz, K.; et al. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures. J. Appl. Phys. 2016, 119, 1351021–1351029. [Google Scholar] [CrossRef] [Green Version]
- Viskadourakis, Z.; Vasilopoulos, K.C.; Economou, E.N.; Soukoulis, C.M.; Kenanakis, G. Electromagnetic shielding effectiveness of 3D printed polymer composites. Appl. Phys. A 2017, 123, 736. [Google Scholar] [CrossRef] [Green Version]
- Kambiz, C.; Mohammad, A.; Liu, Z.; Uttandaraman, S.; Daniel, T. Three-Dimensional Printing of Highly Conductive Polymer Nanocomposites for EMI Shielding Applications. Mater. Today Commun. 2017, 11, 112–118. [Google Scholar]
- Shi, S.W.; Qian, B.Q.; Wu, X.Y.; Sun, H.L.; Wang, H.Q.; Zhang, H.B.; Russell, T.P. Self-assembly of MXene-surfactants at liquid–liquid interfaces: From struc-tured liquids to 3D aerogels. Angew. Chem. Int. Ed. 2019, 58, 18171–18176. [Google Scholar] [CrossRef]
- Shang, T.; Lin, Z.; Qi, C.; Liu, X.; Li, P.; Tao, Y.; Wu, Z.; Li, D.; Simon, P.; Yang, Q.H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, H.B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.G.; Yu, Z.Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367. [Google Scholar] [CrossRef]
- Qian, K.P.; Zhou, Q.F.; Wu, H.M.; Fang, J.H.; Miao, M.; Yang, Y.H.; Cao, S.M.; Shi, L.Y.; Feng, X. Carbonized cellulose microsphere@void@MXene composite membranes with egg-box structure for electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 2021, 141, 106229. [Google Scholar] [CrossRef]
- Liu, H.G.; Liang, C.Z.; Chen, J.J.; Huang, Y.W.; Cheng, F.; Wen, F.B.; Xu, B.B.; Wang, B. Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109. [Google Scholar] [CrossRef]
- Chen, C.; Tan, Y.Q.; Han, X.C.; Luo, H.; Zeng, S.F.; Peng, S.M.; Zhang, H.B. Enhanced electromagnetic interference shielding properties of silicon carbide composites with aligned graphene nanoplatelets. J. Eur. Ceram. Soc. 2018, 38, 5615–5619. [Google Scholar] [CrossRef]
- Hu, P.Y.; Lyu, J.; Fu, C.; Gong, W.B.; Liao, J.H.; Lu, W.B.; Chen, Y.P.; Zhang, X.T. Multifunctional aramid nanofiber/carbon nanotube hybridaerogel membranes. ACS Nano 2019, 14, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Bhosalea, S.D.; Gaikwadb, S.D.; Gadvec, R.D.; Goyal, R.K. Synergistic effects of graphene nanoplatelets on X-band electromagnetic interference shielding, thermal expansion and thermal stability of poly(ether- ketone) based nanocomposites. Mater. Sci. Eng. B Adv. 2021, 265, 115038. [Google Scholar] [CrossRef]
- Wang, W.; Guo, J.X.; Long, C.; Li, W.; Guan, J.G. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloy Compd. 2015, 637, 106–111. [Google Scholar] [CrossRef]
- Acharya, S.; Datar, S. Wideband (8–18 GHz) microwave absorption dominated electromagnetic interference (EMI) shieldingcomposite using copper aluminum ferrite and reduced graphene oxide in polymer matrix. J. Appl Phys. 2020, 128, 104902. [Google Scholar] [CrossRef]
- Ján, K.; Andrea, K.; Klaudia, H.; Roderik, P.; Rastislav, D.; Marek, G.; Jarmila, V.; Ivan, H. Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers. Polymers 2021, 13, 2937. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yao, L.H.; Zheng, Q.; Cao, M.S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760. [Google Scholar] [CrossRef]
- Xiong, C.Y.; Wang, T.X.; Zhang, Y.K.; Zhu, M.; Ni, Y.H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532. [Google Scholar] [CrossRef]
- Park, J.; Kwac, L.k.; Kim, H.G.; Shin, K.H. Fabrication and Characterization of Waste Wood Cellulose Fiber/Graphene Nanoplatelet Carbon Papers for Application as Electromagnetic Interference Shielding Materials. Nanomaterials 2021, 11, 2878. [Google Scholar] [CrossRef]
- Song, S.W.; Li, H.T.; Liu, P.W.; Peng, X.H. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding. Carbohydr. Polym. 2022, 287, 119347. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Zhao, Y.J.; Zhang, M.L.; Jiang, S.; Farooq, A.; Liu, L.Y.; Ge, A.; Liu, L.F. Recent Progress in the Application of Cellulose in Electromagnetic Interference Shielding Materials. Macromol. Mater. Eng. 2022, 307, 2100899. [Google Scholar] [CrossRef]
- Almurayshid, M.; Alssalim, Y.; Aksouh, F.; Almsalam, R.; ALQahtani, M.; Sayyed, M.I.; Almasoud, F. Development of New Lead-Free Composite Materials as Potential Radiation Shields. Materials 2021, 14, 4957. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Kaky, K.M.; Şakar, E.; Akbaba, U.; Taki, M.M.; Agar, O. Gamma radiation shielding investiga-tions for selected germanate glasses. J. Non-Cryst. Solids 2019, 512, 33–40. [Google Scholar] [CrossRef]
- Kurudirek, M.; Chutithanapanonb, N.; Laopaiboonb, R.; Yenchaic, C.; Bootjomchaib, C. Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloy Comp. 2018, 745, 355–364. [Google Scholar] [CrossRef]
- Kumar, A. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 2017, 136, 50–53. [Google Scholar] [CrossRef]
- Yue, K.; Luo, W.Y.; Dong, X.Q.; Wang, C.S.; Wu, G.H.; Jiang, M.W.; Zha, Y.Z. A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosimetry 2009, 133, 256–260. [Google Scholar] [CrossRef]
- La, L.B.T.; Leatherday, C.; Leong, Y.K.; Watts, H.P.; Zhang, L.C. Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Compos. Sci. Technol. 2018, 163, 89–95. [Google Scholar] [CrossRef]
- Ren, F.; Song, D.P.; Li, Z.; Jia, L.C.; Zhao, Y.C.; Yan, D.X.; Ren, P.G. Synergistic effect of graphene nanosheets and carbonyl iron-nickel alloy hybrid filler on electromagnetic inter-ference shielding and thermal conductivity of cyanate ester composites. J. Mater. Chem. C 2018, 6, 1476–1486. [Google Scholar] [CrossRef]
- Liang, C.B.; Song, P.; Qiu, H.; Yiming, H.F.; Lu, Y.J.; Wang, L.; Kong, J.; Gu, J.W. Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide membranes. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105512. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Li, W.C.; Feng, L.; Shi, X.L.; Wang, Y. Mechanical and electromagnetic shielding properties of carbon foam. Adv. Eng. Mater. 2021, 23, 2100452. [Google Scholar] [CrossRef]
- Jia, Z.X.; Zhang, M.F.; Liu, B.; Wang, F.C.; Wei, G.; Su, Z.Q. Graphene foams for electromagnetic interference shielding: A review. ACS Appl. Nano Mater. 2020, 3, 6140–6155. [Google Scholar] [CrossRef]
- Sang, G.L.; Xu, P.; Yan, T.; Murugadoss, V.; Naik, N.; Ding, Y.S.; Guo, Z.H. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nanomicro Lett. 2021, 13, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.Y.; Liao, X.; Li, J.S.; Chen, J.; Wang, G.; Yi, J.; Yang, Q.; Li, G.X. Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. Part A Appl. Sci. Manuf. 2019, 123, 310–319. [Google Scholar] [CrossRef]
- Ji, H.; Zhao, R.; Zhang, N.; Jin, C.X.; Lu, X.F.; Wang, C. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Mater. 2018, 10, 749–760. [Google Scholar] [CrossRef]
- Zhu, R.Q.; Li, Z.Y.; Deng, G.; Yu, Y.H.; Shui, J.L.; Yu, R.H.; Pan, C.F.; Liu, X.F. Anisotropic magnetic liquid metal membrane for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Z.; Li, Y.L.; Han, G.J.; Feng, Y.Z.; Wang, B.; Zhang, D.B.; Ma, J.M.; Liu, C.T. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Membrane with Alternating Cellulose Nanofiber and MXene Layers. ACS Appl. Mater. 2020, 12, 4895–4905. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.Y.; Wang, X.Y.; Li, X.M.; Wan, Y.J.; Zhao, T.; Hu, Y.G.; Zhu, P.L.; Sun, R.; Wong, C.P. Flexible liquid metal/cellulose nanofiber composites membrane with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 2021, 422, 129962. [Google Scholar] [CrossRef]
- Liu, X.L.; Ye, Z.H.; Zhang, L.; Feng, P.D.; Shao, J.; Zhong, M.; Chen, Z.; Ci, L.J.; He, P.; Ji, H.J.; et al. Highly flexible electromagnetic interference shielding membranes based on ultrathin Ni/Ag, composites on paper substrates. J. Mater. Sci. 2021, 56, 5570–5580. [Google Scholar] [CrossRef]
- He, P.; Cao, M.S.; Cai, Y.Z.; Shu, J.C.; Cao, W.Q.; Yuan, J. Self-assembling flexible 2D carbide MXene membrane with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 2020, 157, 80–89. [Google Scholar] [CrossRef]
- Song, P.; Qiu, H.; Wang, L.; Liu, X.Y.; Zhang, Y.L.; Zhang, J.L.; Kong, J.; Gu, J.W. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. SM&T 2020, 24, e00153. [Google Scholar]
- Zhu, Y.Y.; Liu, J.; Guo, T.; Wang, J.J.; Tang, X.Z.; Nicolosi, V. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic- interference shielding. ACS Nano 2021, 15, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Liu, B.; Qiu, H.; Shi, X.T.; Cao, D.P.; Gu, J.W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653. [Google Scholar] [CrossRef]
- Gao, W.W.; Zhao, N.F.; Yu, T.; Xi, J.B.; Mao, A.R.; Yuan, M.Q.; Bai, H.; Gao, C. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 2020, 157, 570–577. [Google Scholar] [CrossRef]
- Han, G.J.; Ma, Z.G.; Zhou, B.; He, C.G.; Wang, B.; Feng, Y.Z.; Ma, J.M.; Sun, L.; Liu, C.T. Cellulose-based Ni-decorated graphene magnetic membrane for electromagnetic interference shielding. J. Colloid Interface Sci. 2021, 583, 571–578. [Google Scholar] [CrossRef]
- Xiang, Z.; Xiong, J.; Deng, B.W.; Cui, E.B.; Yu, L.Z.; Zeng, Q.W.; Pei, K.; Che, R.C.; Lu, W. Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO, nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 2020, 8, 2123–2134. [Google Scholar] [CrossRef]
- Xue, T.T.; Yang, Y.; Yu, D.Y.; Wali, Q.; Wang, Z.Y.; Cao, X.S.; Fan, W.; Liu, T.X. 3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection. Nanomicro Lett. 2023, 15, 338–351. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Zhang, H.W.; Liu, Z.H.; Jiang, R.J.; Zhou, X. Functional composite electromagnetic shielding materials for aerospace, electronics and wearable fields. Mater. Today Commun. 2022, 33, 104498. [Google Scholar] [CrossRef]
- Qi, F.Q.; Wang, L.; Zhang, Y.L.; Ma, Z.L.; Qiu, H.; Gu, J.W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512. [Google Scholar] [CrossRef]
- Song, P.; Liang, C.B.; Wang, L.; Qiu, H.; Gu, H.B.; Kong, J.; Gu, J.W. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 181, 107698. [Google Scholar] [CrossRef]
- Wang, Z.C.; Wang, P.; Cao, W.X.; Sun, C.Q.; Song, Z.C.; Ji, D.C.; Yang, L.; Han, J.C.; Zhu, J.Q. Robust, Transparent, and Conductive AgNW/MXene Composite Polyurethane Self-healing film for Electromagnetic Interference Shielding. J. Mater. 2022, 10, 17066–17074. [Google Scholar] [CrossRef]
- Roels, E.; Terryn, S.; Iida, F.; Bosman, A.W.; Norvez, S.; Clemens, F.; Van Assche, G.; Vanderborght, B.; Brancart, J. Processing of Self-Healing Polymers for SoftRobotics. Adv. Mater. 2022, 34, 2104798. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, S.M.; Antony, T.; Grohens, Y.; Thomas, S. From waste to wealth: A critical review on advanced materials for EMI shielding. J. Appl. Polym. Sci. 2022, 139, e52974. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Li, C.B.; Xiong, Y.F.; Zhang, H.B.; Raza, H.; Ullah, S.; Wu, J.Y.; Zheng, G.P.; Cao, Q.; Zhang, D.Q.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nanomicro Lett. 2022, 14, 128–158. [Google Scholar] [CrossRef]
- Mehrara, R.; Malekie, S.; Kotahi, S.M.S.; Kashian, S. Introducing a novel low energy gamma ray shield utilizing Polycarbonate Bismuth Oxide composite. Sci. Rep. 2021, 11, 10614. [Google Scholar] [CrossRef]
- Lu, L.; Sun, M.Z.; Lu, Q.Y.; Wu, T.; Huang, B.L. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy 2021, 79, 105437. [Google Scholar] [CrossRef]
- Kim, S. Comparison of Shielding Material Dispersion Characteristics and Shielding Efficiency for Manufacturing Medical X-ray Shielding Barriers. Materials 2022, 15, 6075. [Google Scholar] [CrossRef]
- Lian, L.y.; Qi, W.; Ding, H.y.; Tian, H.; Ye, Q.; Zhao, Y.B.; Zhao, L.; Gao, J.b.; Zhang, D.l.; Zhang, J.B. Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation. Nano Res. 2022, 15, 8486–8492. [Google Scholar] [CrossRef]
- Lee, N.; Choi, S.H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: Part I—Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int. J. Radiat. Biol. 2017, 9, 851–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; WHO Press: Lyon, France, 2012. [Google Scholar]
- Poltabtim, W.; Thumwong, A.; Wimolmala, E.; Rattanapongs, C.; Tokonami, S.; Ishikawa, T.; Saenboonruang, K. Dual X-ray-and Neutron-Shielding Properties of Gd2O3/NR Composites with Autonomous Self-Healing Capabilities. Polymers 2022, 14, 4481. [Google Scholar] [CrossRef] [PubMed]
- Los, P.; Lukomska, A.; Jeziorska, R. Metal-polymer composites forelectromagnetic interference shielding applications. Polimery 2016, 61, 663–669. [Google Scholar] [CrossRef]
- Lin, S.; Wang, H.Y.; Wu, F.; Wang, Q.M.; Bai, X.P.; Zu, D.; Song, J.N.; Wang, D.; Liu, Z.L.; Li, Z.W.; et al. Room-temperature production of silver-nanofibermembrane for large-area, transparent and flexible surface electromagnetic interferenceshielding. NPJ. Flex. Electron. 2019, 3, 1614–1621. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.B.; Hao, H. Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. J. Alloy Compd. 2014, 617, 207–213. [Google Scholar] [CrossRef]
- Lu, N.N.; Wang, X.J.; Meng, L.L.; Ding, C.; Liu, W.Q.; Shi, H.L.; Hu, X.S.; Wu, K. Electromagnetic interference shielding effectiveness of magnesium alloy-fly ash composites. J. Alloy Compd. 2015, 650, 871–877. [Google Scholar] [CrossRef]
- Chen, X.H.; Liu, J.; Zhang, Z.H.; Pan, F.S. Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Mater. Des. 2012, 42, 327–333. [Google Scholar] [CrossRef]
- Chen, X.H.; Liu, J.; Pan, F.S. Enhanced electromagnetic interference shielding in ZK60 magnesium alloy by aging precipitation. J. Phys. Chem. Solids 2013, 74, 872–878. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liao, S.Y.; Wan, Y.J.; Zhu, P.J.; Hu, Y.G.; Zhao, T.; Sun, R.; Wong, C.P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72. [Google Scholar] [CrossRef]
- Seung, H.L.; Seunggun, Y.; Faisal, S.; Jun, P.H.; Woo, N.K.; Cheolmin, P.; Soon, M.H.; Chong, M.K. Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Compos. Sci. Technol. 2017, 144, 57–62. [Google Scholar]
- Yu, C.Y.; Liang, X.W.; Zhao, T.; Zhu, P.; Li, G.; Cao, R.; Sun, R.; Wong, C.P. Synthesis and electromagnetic shielding performance of nickel nanowires with controllable morphology. Mater. Lett. 2019, 236, 112–115. [Google Scholar] [CrossRef]
- Wang, H.Y.; Ji, C.G.; Zhang, C.; Zhang, Y.L.; Zhang, Z.; Lu, Z.G.; Tan, J.B.; Guo, L.J. Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Membrane Structures. ACS Appl. Mater. 2019, 11, 11782–11791. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Liang, M.; Yan, L.W.; Chen, Y.; Zou, H.W. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 392, 124815. [Google Scholar] [CrossRef]
- He, Q.M.; Tao, J.R.; Yang, Y.; Yang, D.; Zhang, K.; Fei, B.; Wang, M. Electric-Magnetic-Dielectric Synergism and Salisbury Screen Effect in Laminated Polymer Composites with Multiwall Carbon Nanotube, Nickel, and Antimony Trioxide for Enhancing Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106901. [Google Scholar] [CrossRef]
- Zahi, M.; Anum, R.; Siddique, S.; Shaki, H.F.; Rehan, Z.A. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review. J. Thermoplast. Compos. 2021, 089270572110224. [Google Scholar]
- Song, P.W.; Liao, X.; Zou, F.F.; Wang, X.H.; Liu, F.; Liu, S.L.; Li, G.X. Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Compos. Commun. 2022, 34, 101264. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S.K. Thermally conducting polymer composites with EMI shielding: A review. J. Electron. Mater. 2020, 49, 1749–1764. [Google Scholar] [CrossRef]
- Liang, C.B.; Liu, Y.X.; Ruan, Y.F.; Qiu, H.; Song, P.; Kong, J.; Zhang, H.B.; Gu, J.W. Multifunctional sponges with flexible motion sensingin and outstanding thermal insulation for superior electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106143. [Google Scholar] [CrossRef]
- Hu, G.; Sun, W.Q.; Yan, Y.H.; Wu, R.J.; Xu, H. Review on the Change Law of the Properties and Performance of Polymer-Matrix Nuclear Radiation Shielding Materials Under the Coupling of Nuclear Radiation and Thermal Effects. Front. Energy Res. 2021, 9, 777956. [Google Scholar] [CrossRef]
- Wang, P.; Tang, X.B.; Chai, H.; Chen, D.; Qiu, Y.L. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material. Fusion Eng. Des. 2015, 101, 218–225. [Google Scholar] [CrossRef]
- Kim, J.; Lee, B.C.; Uhm, Y.R.; Miller, W.H. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites. J. Nucl. Mater. 2014, 453, 48–53. [Google Scholar] [CrossRef]
- Abdullah, M.A.R.; Rashid, R.S.M.; Amran, M.; Hejazii, F.; Azreen, N.M.; Fediuk, R.; Voo, Y.L.; Vatin, N.I.; Idris, M.I. Recent Trends in Advanced Radiation Shielding Concrete for Construction of Facilities: Materials and Properties. Polymers 2022, 14, 2830. [Google Scholar] [CrossRef]
- Omid, L.M.; Ali, S.; Iman, M.N. A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete. Constr. Build. Mater. 2019, 229, 116905. [Google Scholar]
- Azeez, A.B.; Mohammed, K.S.; Bakri, A.M.M.A.; Hasan, H.I.; Abdulkareem, O.A. Radiation Shielding Characteristics of Concretes Incorporates Different Particle Sizes of Various Waste Materials. Adv. Mater. Res. 2014, 3151, 190–194. [Google Scholar] [CrossRef]
- Hanan, A.G.; Elsafi, M.; Sayyed, M.I.; Almuqrin Aljawhara, H.; Tamayo, P. Performance of newly developed concretes incorporating WO3 and barite as radiation shielding material. J. Mater. Res. 2022, 19, 4103–4114. [Google Scholar]
- Paul, M.B.; Ankan, A.D.; Deb, H.; Ahasan, M.M. A Monte Carlo simulation model to determine the effective concrete materials for fast neutron shielding. Radiat. Phys. Chem. 2023, 202, 110476. [Google Scholar] [CrossRef]
- Micheli, D.; Vricella, A.; Pastore, R.; Delfini, A.; Bueno Morles, R.; Marchetti, M.; Santoni, F.; Bastianelli, L.; Moglie, F.; Mariani Primiani., V.; et al. Electromagnetic properties of carbon nanotube reinforced concrete composites for frequency selective shielding structures. Constr. Build. Mater. 2017, 131, 267–277. [Google Scholar] [CrossRef]
- Lin, Q.; Yang, B.; Li, J.; Meng, X.S.; Shen, J.C. Synthesis, characterization and property studies of Pb2+-containing optical resins. Polymer 2000, 41, 8305–8309. [Google Scholar] [CrossRef]
- Milazim, Y.; Kahraman, M.V.; Apohan, N.K.; Kızıltaş, S.; Güngör, A. Preparation and characterizationof UV-curable, boron-containing, transparent hybrid coatings. J. Appl. Polym. Sci. 2011, 120, 2112–2121. [Google Scholar] [CrossRef]
- Cheraghi, E.; Chen, S.Y.; Yeow John, T.W. Boron Nitride-Based Nanomaterials for Radiation Shielding A review. IEEE Nanotechnol. Mag. 2021, 15, 8–17. [Google Scholar] [CrossRef]
- Zhu, H.L.; Li, Y.Y.; Fang, Z.Q.; Xu, J.J.; Cao, F.Y.; Wan, J.Y.; Preston, C.; Yang, B.; Hu, L.B. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 2014, 8, 3606–3613. [Google Scholar] [CrossRef]
- Shin, J.W.; Lee, J.W.; Yu, S.; Baek, B.K.; Hong, J.P.; Seo, Y.; Kim, W.N.; Hong, S.M.; Koo, C.M. Polyethylene/boron-containing composites for radiation shielding. Thermochim. Acta 2014, 585, 5–9. [Google Scholar] [CrossRef]
- Ma, T.B.; Ma, H.; Ruan, K.P.; Shi, X.T.; Qiu, H.; Gao, S.Y.; Gu, J.W. Thermally Conductive Poly (lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. Chin. J. Polym. Sci. 2022, 40, 248–255. [Google Scholar] [CrossRef]
- Shi, S.H.; Dai, M.Y.; Tao, X.Y.; Wu, F.X.; Sun, J.P.; Chen, Y.H. 3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding. Chem. Eng. J. 2022, 450, 138248. [Google Scholar] [CrossRef]
- Liu, G.D.; Yu, R.R.; Liu, D.; Xia, Y.H.; Pei, X.Y.; Wang, W.; Min, C.Y.; Liu, S.K.; Shao, R.Q.; Xu, Z.W. 3D-printed TiO2-Ti3C2Tx heterojunction/rGO/PDMS composites with gradient pore size for electromagnetic interference shielding and thermal management. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107058. [Google Scholar] [CrossRef]
- Pei, X.Y.; Liu, G.D.; Shao, R.Q.; Yu, R.R.; Chen, R.X.; Liu, D.; Wang, W.; Min, C.Y.; Liu, S.K.; Xu, Z.W. 3D-printing carbon nanotubes/Ti3C2Tx/chitosan composites with different arrangement structures based on ball milling for EMI shielding. J. Appl. Polym. Sci. 2022, 139, 2112–2121. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.X.; Song, P.; Liang, C.B.; Lu, Y.J.; Qiu, H.; Zhang, Y.L.; Kong, J.; Gu, J.W. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. B Eng. 2019, 171, 111–118. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Song, P.; Zhang, Y.L.; Lu, Y.J.; Liang, C.B.; Kong, J.; Chen, L.X.; Gu, J.W. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 123, 293–300. [Google Scholar] [CrossRef]
- Liang, C.B.; Qiu, H.; Song, P.; Shi, X.T.; Kong, J.; Gu, J.W. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Shi, Y.Y.; Zhu, X.J.; Cai, L.; Lu, W. Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion. Nano-Micro Lett. 2021, 13, 150. [Google Scholar] [CrossRef]
- Yang, Y.F.; Wu, N.; Li, B.; Liu, W.; Pan, F.; Zeng, Z.H.; Liu, J.R. Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding. ACS Nano 2022, 16, 15042–15052. [Google Scholar] [CrossRef]
- Song, S.S.; Xu, G.P.; Wang, B.; Liu, D.Q.; Ren, Z.C.; Wang, C.Y.; Zhao, J.P.; Zhang, L.P.; Li, Y. A Multifunctional Flexible Electronic Skin for Dynamic Thermal Radiation Regulation and Electromagnetic Interference Shielding. ACS Appl. Mater. 2022, 14, 52379–52389. [Google Scholar] [CrossRef]
- Wang, L.; Song, P.; Lin, C.T.; Kong, J.; Gu, J.W. 3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. Research 2020, 2020, 4093732. [Google Scholar] [CrossRef]
- Das, P.; Ashish, B.D.; Saikat, R.M. Exploring the Potential of Graphene as an EMI Shielding Material-An Overview. Mater. Today 2020, 22, 1737–1744. [Google Scholar] [CrossRef]
- Huangfu, Y.M.; Ruan, K.P.; Qiu, H.; Lu, Y.J.; Liang, C.B.; Kong, J.; Gu, J.W. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 265–272. [Google Scholar] [CrossRef]
- Liang, C.B.; Qiu, H.; Han, Y.Y.; Gu, H.B.; Song, P.; Wang, L.; Kong, J.; Cao, D.P.; Gu, J.W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733. [Google Scholar] [CrossRef]
- Liang, C.B.; Song, P.; Qiu, H.; Zhang, Y.L.; Ma, X.T.; Qi, F.Q.; Gu, H.B.; Kong, J.; Cao, D.P.; Gu, J.W. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhou, C.G.; Sun, W.J.; Wang, T.; Jia, L.C.; Yan, D.X.; Li, Z.M. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 2020, 197, 108253. [Google Scholar] [CrossRef]
- Song, P.; Liu, B.; Liang, C.; Ruan, K.P.; Qiu, H.; Ma, Z.L.; Guo, Y.Q.; Gu, J.W. Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities. Nanomicro Lett. 2021, 13, 132–148. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Qiu, H.; Ruan, K.P.; Zhang, Y.L.; Gu, J.W. Hierarchically Multifunctional Polyimide Composite Membranes with Strongly Enhanced Thermal Conductivity. Nanomicro Lett. 2021, 14, 26. [Google Scholar]
- Wu, X.; Tu, T.; Dai, Y.; Tang, P.; Zhang, Y.; Deng, Z.; Li, L.; Zhang, H.B.; Yu, Z.Z. Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nanomicro Lett. 2021, 13, 148. [Google Scholar] [CrossRef]
- Deng, Z.; Tang, P.; Wu, X.; Zhang, H.B.; Yu, Z.Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube Anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Ma, Z.L.; Ruan, K.P.; Gu, J.W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite membranes with Janus struc-ture for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609. [Google Scholar] [CrossRef]
- Liu, N.; Dou, Y.Y.; Zhang, X.Y.; Yu, L.M.; Yan, X.F. Design of porous FeNi-carbon nanosheets by a double-effect synergistic strategy for electromagnetic wave absorption. Carbon 2022, 190, 125–135. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Qiu, H.; Ruan, K.P.; Wang, S.S.; Zhang, Y.L.; Gu, J.W. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Z.L.; Qiu, H.; Zhang, Y.L.; Yu, Z.; Gu, J.W. Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures. Nanomicro Lett. 2022, 14, 224. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiu, H.; Liang, C.B.; Song, P.; Han, Y.X.; Han, Y.X.; Gu, J.W.; Kong, J.; Pan, D.; Guo, Z.H. Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 2019, 141, 506–514. [Google Scholar] [CrossRef]
- Huangfu, Y.M.; Liang, C.B.; Han, Y.X.; Qiu, H.; Song, P.; Wang, L.; Kong, J.; Gu, J.W. Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 2018, 169, 70–75. [Google Scholar] [CrossRef]
- Song, P.; Ma, Z.L.; Qiu, H.; Ru, Y.F.; Gu, J.W. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures. Nanomicro Lett. 2022, 14, 250–262. [Google Scholar] [CrossRef]
- Yang, B.T.; Fang, J.F.; Xu, X.Y.; Cao, H.; Zhang, R.X.; Zhao, B.; Huang, M.Q.; Wang, X.Y.; Lv, H.L.; Ch, R.C. One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption. Nanomicro Lett. 2022, 14, 266–278. [Google Scholar] [CrossRef]
- Guan, G.G.; Yan, L.; Zhou, Y.T.; Xiang, J.; Gao, G.J.; Zhang, H.Y.; Gai, Z.Q.; Zhang, K.Y. Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers. Carbon 2022, 197, 494–507. [Google Scholar] [CrossRef]
- Verma, M.L.; Dhanya, B.S.; Sukriti; Rani, V.; Thakur, M.; Jeslin, J.; Kushwaha, R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int. J. Biol. Macromol. 2020, 154, 390–412. [Google Scholar] [CrossRef]
- Amanuel, G.; Tersur, O.J.; Muzata, T.S.; Sinha, R.S. Cellulose-Based Sustainable Composites: A Review of Systems for Applications in EMI Shielding and Sensors. Macromol. Mater. Eng. 2022, 307, 2200185. [Google Scholar]
- Han, Y.X.; Ruan, K.P.; Gu, J.W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite membranes with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755. [Google Scholar] [CrossRef]
- Uddin, A.; Khatoon, R.; Estevez, D.; Salem, M.; Ali, A.; Attique, S.; Lu, J.; Qin, F.X. Waste paper cellulose based-MoS2 hybrid composites: Towards sustainable green shielding. Mater. Today Commun. 2022, 31, 103858. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Yang, S.G.; Li, L.; Yang, B.; Huang, H.D.; Yan, D.X.; Zhong, G.J.; Xu, L.; Li, Z.M. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Appl. Mater. 2018, 10, 40156–40167. [Google Scholar] [CrossRef]
- Rahman Kifayat, U.; Ferreira Neto Elias, P.; Rahman Ghaws, U.; Parveen, R.; Monteiro Andreia, S.; Rahman, G.; Van, L.Q.; Domeneguetti Rafael, R.; Ribeiro Sidney, J.L.; Ullah, S. Flexible bacterial cellulose-based BC-SiO2-TiO2-Ag membranes with self-cleaning, photocatalytic, antibacterial and UV-shielding properties as a potential multifunctional material for combating infections and environmental applications. J. Environ. Chem. Eng. 2020, 9, 104708. [Google Scholar] [CrossRef]
- Wu, N.; Zeng, Z.H.; Kummer, N.; Han, D.X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889. [Google Scholar] [CrossRef]
- Chai, H.; Tang, X.B.; Ni, M.X.; Chen, F.D.; Zhang, Y.; Chen, D.; Qiu, Y.L. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth (III) oxide. J. Appl. Polym. Sci. 2015, 133, 43012. [Google Scholar] [CrossRef]
- Nadin, J.A.; Noorfatin, A.B.A.; Rafidah, Z. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar]
- Li, Z.F.; Zhou, W.; Zhang, X.L.; Gao, Y.; Guo, S.Y. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Sci. Rep. 2021, 11, 4384. [Google Scholar] [CrossRef]
- Tiwari, M.; Arya, M.A.; Priyesh, V.M.; Parmar, S.; Datar, S.; Khanna, P.K. Co/CoO Based Nanoparticles and Their Polymer Composites for Tuned Electromagnetic Interference Shielding Application. J. Nanosci. Nanotechnol. 2020, 20, 2847–2857. [Google Scholar] [CrossRef]
- Yu, L.; Pereira Ana, L.C.; Tran Diana, N.H.; Santos Alexandre, M.C.; Losic, D. Bismuth Oxide Membranes for X-ray shielding: Effects of particle size and structural morphology. Mater. Chem. Phys. 2021, 260, 12484. [Google Scholar] [CrossRef]
- Safdar, F.; Ashraf, M.; Javid, A.; Iqbal, K. Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications-A review. J. Ind. Text. 2022, 51, 7293S–7358S. [Google Scholar] [CrossRef]
- Li, J. Preparation of Three-Dimensional Porous Ti3C2Tx Material and Research on X-Band Electromagnetic Shielding Performance. Master’s Thesis, Tianjin University of Technology, Tianjin, China, 2022. [Google Scholar]
- Jia, X.C.; Li, Y.; Shen, B.; Zheng, W.G. Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Compos. B Eng. 2022, 233, 109652. [Google Scholar] [CrossRef]
- Jin, X.X.; Wang, J.F.; Dai, L.Z.; Liu, X.Y.; Li, L.; Yang, Y.Y.; Cao, Y.X.; Wang, W.J.; Wu, H.; Guo, S.Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered membranes with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475. [Google Scholar] [CrossRef]
- Cheng, M.L.; Ying, M.F.; Zhao, R.Z.; Ji, L.Z.; Li, H.X.; Liu, X.G.; Zhang, J.; Li, Y.M.; Dong, X.L.; Zhang, X.F. Transparent and Flexible Electromagnetic Interference Shielding Materials by Constructing Sandwich AgNW@MXene/Wood Composites. ACS Nano 2022, 16, 16996–17007. [Google Scholar] [CrossRef]
- Zhu, L.L.; Mo, R.; Yin, C.G.; Guo, W.Y.; Yu, J.H.; Fan, J.C. Synergistically Constructed Electromagnetic Network of Magnetic Particle-Decorated Carbon Nanotubes and MXene for Efficient Electromagnetic Shielding. ACS Appl. Mater. Interfaces 2022, 14, 56120–56131. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic interferenceshielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.C.; Wang, Z.F.; Tu, J.Y.; Liu, C.; Xu, P.; Ding, Y.S. Interfacial distribution and compatibilization of imidazolium functionalized CNTs in poly(lactic acid)/polycaprolactone composites with excellent EMI shielding and mechanical properties. Int. J. Biol. Macromol. 2022, 227, 1182–1190. [Google Scholar] [CrossRef]
- Zhang, H.; Heng, Z.; Zhou, J.; Shi, Y.; Chen, Y.; Zou, H.; Liang, M. In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem. Eng. J. 2020, 398, 125559. [Google Scholar] [CrossRef]
- Liu, H.; Wu, S.; You, C.; Tian, N.; Li, Y.; Chopra, N. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 2021, 172, 569–596. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, L.; Cao, Y.X.; Yang, Y.Y.; Wang, W.J.; Wang, J.F. High-strength, low infrared-emission nonmetallic membranes for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage. Mater. Horiz. 2022, 10, 235–247. [Google Scholar] [CrossRef]
- Sahoo, R.; Sundara, R.; Venkatachalam, S. Silver Nanowires Coated Nitrocellulose Paper for High-Efficiency Electromagnetic Interference Shielding. ACS Omega 2022, 7, 41426–41436. [Google Scholar] [CrossRef]
- Tang, L.; Zheng, Y.; Chen, S.Y.; Wang, L.; Wang, H.P. Flexible X-ray radiation protection membrane PVA/pb(NO3)2 microcapsule composites supported by bacterial cellulose. J. Appl. Polym. Sci. 2016, 133, 43120. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.X.; Yang, L.Y.; Yin, S.G. Ti3C2Tx/PANI/Liquid Metal Composite Microspheres with 3D Nanoflower Structure: Preparation, Characterization, and Applications in EMI Shielding. Adv. Mater. Interfaces 2022, 9, 2102266. [Google Scholar] [CrossRef]
- Wang, H.G.; Lu, R.G.; Yan, J.; Peng, J.S.; Tomsia, A.P.; Liang, H.; Sun, G.X.; Liu, M.J.; Jiang, L.; Cheng, Q.F. Tough and Conductive Nacre-inspired MXene/Epoxy Layered Bulk Nanocomposites. Angew. Chem. Int. Ed. 2022, 62, e202216874. [Google Scholar]
- Tian, D.; Xu, Y.; Wang, Y.; Lei, Z.; Lin, Z.; Zhao, T.; Hu, Y.; Sun, R.; Wong, C.P. In-situ metallized carbon nanotubes/poly(styrene-butadiene-styene) (CNTs/SBS) foam for electromagnetic interference shielding. Chem. Eng. J. 2021, 420, 130482. [Google Scholar] [CrossRef]
Classification | Material | Frequency/GHz | SE/dB | Strength/MPa | Characteristics | Ref. |
---|---|---|---|---|---|---|
Metal | AgNWs/NC | 8–12 | 60–76 | - | High thermal and electrical conductivity | [97] |
AgNF | [178] | |||||
Polymer | EP/PES/MWCNT | 3.94–12.4 | 23–90 | 2.55–69.7 | Adjustable conductivity, good flexibility, production cost. | [28] |
PDMS/MWCNTs | [107] | |||||
EVA@PDA@Ag | [175] | |||||
Concrete | WO3 and barit | 0.122 (MeV) | 99% (RPE) | Thermal durability and chemical corrosion resistance | [118] | |
Lead | PVA/pb(NO3)2 | - | - | 37.5 | It has good attenuation characteristics for neutrons and γ rays. | [179] |
Boron | BN/NFC | - | - | 102 | Good radiation resistance and neutron absorption performance. | [124] |
3D | TiO2-Ti3C2Tx/rGO | 30 | 58–65 | Flexible, controllable and efficient | [126] | |
Ti3C2Tx/(o-GNPs/PLA | [128] | |||||
MXene | AgNW@MXene/ | 8–12.4 | 44.96–58.4 | 11.7–422 | Lightweight, strong flexibility and high shielding efficiency | [171] |
Ti3C2Tx/PANI/LM | [180] | |||||
MXene/Epoxy | [177] | |||||
MXene/GO | [181] | |||||
Carbon | PLA/PCL/8CNT/0.8IPU | 9 | 35.6 | - | Good electrical conductivity, light weight and stable chemical properties. | [175] |
CNTs/SBS | [182] | |||||
Fe | Fe3O4@CNT | 8.2–12.5 | 30–91 | 0.1692–0.0432 | Strong absorption and frequency bandwidth | [3] |
PS/TGO/Fe3O4 | [172] | |||||
Cellulos | CNT-interface/cellulose | 8.2–12.4 | 28–40 | 22.5 | Thermal stability and easy processing | [159] |
Waste paper cellulose | [158] | |||||
Lead-free | Gd2O3/NR | Neutrons | - | 8.29 | High temperature resistance and oxidation resistance | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Lin, S. Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. Membranes 2023, 13, 315. https://doi.org/10.3390/membranes13030315
Zhang H, Lin S. Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. Membranes. 2023; 13(3):315. https://doi.org/10.3390/membranes13030315
Chicago/Turabian StyleZhang, Hengtong, and Shudong Lin. 2023. "Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination" Membranes 13, no. 3: 315. https://doi.org/10.3390/membranes13030315
APA StyleZhang, H., & Lin, S. (2023). Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. Membranes, 13(3), 315. https://doi.org/10.3390/membranes13030315