Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Heterogeneous AEMs
2.3. Membrane Characterizations
2.4. CEDI Performance Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEM | anion-exchange membrane |
AER | anion-exchange resin |
BPM | bipolar membrane |
BPPO | brominated PPO |
CEDI | continuous electrodeionization |
CEM | cation-exchange membrane |
CER | cation-exchange resin |
CV | constant voltage |
DC | direct current |
DW | distilled water |
ED | electrodialysis |
ER | electrical resistance |
FT-IR | Fourier transform infrared spectroscopy |
IEC | ion-exchange capacity |
IEM | ion-exchange membrane |
IER | ion-exchange resin |
NMP | 1-methyl-2-pyrrolidone |
PEG | polyethylene glycol |
PPO | poly(2,6-dimethyl-1,4-phenylene oxide) |
QPPO | quaternized PPO |
SEM | scanning electron microscope |
TMA | trimethyl amine |
TMEDA | N,N,N′,N′-tetramethylethylenediamine |
TN | transport number |
WU | water uptake |
References
- Arar, Ö.; Yüksel, Ü.; Kabay, N.; Yüksel, M. Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination 2014, 342, 16–22. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Xu, Y.; Wu, B. A deep desalination and anti-scaling electrodeionization (EDI) process for high purity water preparation. Desalination 2019, 468, 114075. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Zhao, X. Effect of ion exchange membrane on the removal efficiency of continuous electrodeionization (CEDI) during low level radioactive wastewater treatment. Nucl. Eng. Des. 2017, 322, 159–164. [Google Scholar] [CrossRef]
- Hakim, A.N.; Khoiruddin, K.; Ariono, D.; Wenten, I.G. Ionic separation in electrodeionization system: Mass transfer mechanism and factor affecting separation performance. Sep. Purif. Rev. 2020, 49, 294–316. [Google Scholar] [CrossRef]
- Han, S.-D.; Lee, H.-J.; Moon, S.-H. Influence of the ratio of resin to polymeric binder on the heterogeneity of cation-exchange membranes. Desalin. Water Treat. 2016, 57, 4447–4457. [Google Scholar] [CrossRef]
- Mareev, S.A.; Nebavskiy, A.V.; Nichka, V.S.; Urtenov, M.K.; Nikonenko, V.V. The nature of two transition times on chronopotentiograms of heterogeneous ion exchange membranes: 2D modelling. J. Membr. Sci. 2019, 575, 179–190. [Google Scholar] [CrossRef]
- Křivčík, J.; Vladařová, J.; Hadrava, J.; Černín, A.; Brožová, L. The effect of an organic ion-exchange resin on properties of heterogeneous ion-exchange membrane. Desalin. Water Treat. 2010, 14, 179–184. [Google Scholar] [CrossRef]
- Shah, B.G.; Shahi, V.K.; Thampy, S.K.; Rangarajan, R.; Ghosh, P.K. Comparative studies on performance of interpolymer and heterogeneous ion-exchange membranes for water desalination by electrodialysis. Desalination 2005, 172, 257–265. [Google Scholar] [CrossRef]
- Kozaderova, O.A.; Kim, K.B.; Gadzhiyeva, C.S.; Niftaliev, S.I. Electrochemical characteristics of thin heterogeneous ion exchange membranes. J. Membr. Sci. 2020, 604, 118081. [Google Scholar] [CrossRef]
- Lee, S.; Meng, W.; Wang, Y.; Wang, D.; Zhang, M.; Wang, G.; Cheng, J.; Zhou, Y.; Qu, W. Comparison of the property of homogeneous and heterogeneous ion exchange membranes during electrodialysis process. Ain Shams Eng. J. 2021, 12, 159–166. [Google Scholar] [CrossRef]
- Nemati, M.; Hosseini, S.M.; Shabanian, M. Developing thin film heterogeneous ion exchange membrane modified by 2-acrylamido-2-methylpropanesulfonic acid hydrogel-co-super activated carbon nanoparticles coating layer. Korean J. Chem. Eng. 2017, 34, 1813–1821. [Google Scholar] [CrossRef]
- Nazif, A.; Karkhanechi, H.; Saljoughi, E.; Mousavi, S.M.; Matsuyama, H. Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review. J. Water Processes Eng. 2022, 47, 102706. [Google Scholar] [CrossRef]
- Kim, J.-H.; Ryu, S.; Moon, S.-H. The fabrication of ion exchange membrane and its application to energy systems. Membr. J. 2020, 30, 79–96. [Google Scholar] [CrossRef]
- Koók, L.; Rosa, L.F.; Harnisch, F.; Žitka, J.; Otmar, M.; Nemestóthy, N.; Bakonyi, P.; Kretzschmar, J. Functional stability of novel homogeneous and heterogeneous cation exchange membranes for abiotic and microbial electrochemical technologies. J. Membr. Sci. 2022, 658, 120705. [Google Scholar] [CrossRef]
- Asante-Sackey, D.; Rathilal, S.; Kweinor Tetteh, E.; Ezugbe, E.O.; Pillay, L.V. Donnan membrane process for the selective recovery and removal of target metal ions—A mini review. Membranes 2021, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Khoiruddin, K.; Ariono, D.; Subagjo, S.; Wenten, I.G. Structure and transport properties of polyvinyl chloride-based heterogeneous cation-exchange membrane modified by additive blending and sulfonation. J. Electroanal. Chem. 2020, 873, 114304. [Google Scholar] [CrossRef]
- Tong, B.; Hossain, M.M.; Yang, Z.; Cheng, C.; Wang, Y.; Jiang, C.; Xu, T. Development of heterogeneous cation exchange membranes using functional polymer powders for desalination applications. J. Taiwan Inst. Chem. Eng. 2016, 67, 435–442. [Google Scholar] [CrossRef]
- Nebavskaya, K.A.; Butylskii, D.Y.; Moroz, I.A.; Nebavsky, A.V.; Pismenskaya, N.D.; Nikonenko, V.V. Enhancement of Mass Transfer Through a Homogeneous Anion-Exchange Membrane in Limiting and Overlimiting Current Regimes by Screening Part of Its Surface with Nonconductive Strips. Pet. Chem. 2018, 58, 780–789. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Nikonenko, V.; Pismenskaya, N.; Pourcelly, G.; Choi, S.; Kwon, H.J.; Han, J.; Bazinet, L. How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field. Destalination 2016, 393, 102–114. [Google Scholar] [CrossRef]
- Oren, Y.; Freger, V.; Linder, C. Highly conductive ordered heterogeneous ion-exchange membranes. J. Membr. Sci. 2004, 239, 17–26. [Google Scholar] [CrossRef]
- Niftaliev, S.I.; Kozaderova, O.A.; Kim, K.B. Electroconductance of heterogeneous ion-exchange membranes in aqueous salt solutions. J. Electroanal Chem. 2017, 794, 58–63. [Google Scholar] [CrossRef]
- Miao, Y.; Jia, Y.; Guo, R.; Wang, M. Heterogeneous anion-exchange membrane: Influences of charged binders with crosslinking structure on electrodialytic performance. J. Membr. Sci. 2018, 557, 67–75. [Google Scholar] [CrossRef]
- Khoiruddin, K.; Ariono, D.; Subagjo, S.; Wenten, I.G. Improved anti-organic fouling of polyvinyl chloride-based heterogeneous anion-exchange membrane modified by hydrophilic additives. J. Water Process Eng. 2021, 41, 102007. [Google Scholar] [CrossRef]
- Khoiruddin, K.; Ariono, D.; Subagjo, S.; Wenten, I.G. Electrochemical properties of chemically treated polyvinylchloride-based heterogeneous cation-exchange membrane. Polym. Eng. Sci. 2019, 59, E219–E226. [Google Scholar] [CrossRef]
- Mofrad, A.E.; Moheb, A.; Masigol, M.; Sadeghi, M.; Radmanesh, F. An investigation into electrochemical properties of poly(ether sulfone)/poly(vinyl pyrrolidone) heterogeneous cation-exchange membranes by using design of experiment method. J. Colloid Interface Sci. 2018, 532, 546–556. [Google Scholar] [CrossRef]
- Mubita, T.; Porada, S.; Aerts, P.; Van Der Wal, A. Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. J. Membr. Sci. 2020, 607, 118000. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Wang, K.; Jia, Y. Tuning electrodialytic transport properties of heterogeneous cation exchange membrane by the addition of charged microspheres. Desalination 2016, 384, 43–51. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, C.X.; Liu, F.H.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells. J. Membr. Sci. 2018, 552, 367–376. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kang, M.-S. Improvement of capacitive deionization performance by coating quaternized poly(phenylene oxide). Membr. J. 2014, 24, 332–339. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Z.; Yang, W. Fundamental studies of a new series of anion exchange membranes: Membrane prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and triethylamine. J. Membr. Sci. 2005, 249, 183–191. [Google Scholar] [CrossRef]
- Lee, K.H.; Chu, J.Y.; Kim, A.R.; Yoo, D.J. Facile fabrication and characterization of improved proton conducting sulfonated poly(arylene biphenylether sulfone) blocks containing fluorinated hydrophobic units for proton exchange membrane fuel cell applications. Polymers 2018, 10, 1367. [Google Scholar] [CrossRef] [PubMed]
- McNair, R.; Cseri, L.; Szekely, G.; Dryfe, R. Asymmetric membrane capacitive deionization using anion-exchange membranes based on quaternized polymer blends. ACS Appl. Polym. Mater. 2020, 2, 2946–2956. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-B.; Kim, D.-H.; Kang, M.-S. Thin-reinforced anion-exchange membranes with high ionic contents for electrochemical energy conversion processes. Membranes 2022, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Hagesteijn, K.F.; Jiang, S.; Ladewig, B.P. A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 2018, 53, 11131–11150. [Google Scholar] [CrossRef]
- Titorova, V.; Sabbatovskiy, K.; Sarapulova, V.; Kirichenko, E.; Sobolev, V.; Kirichenko, K. Characterization of MK-40 membrane modified by layers of cation exchange and anion exchange polyelectrolytes. Membranes 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-S.; Choi, Y.-J.; Moon, S.-H. Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol)(PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA). J. Membr. Sci. 2002, 207, 157–170. [Google Scholar] [CrossRef]
- Choi, J.-H.; Moon, S.-H. Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. J. Membr. Sci. 2001, 191, 225–236. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, X.; Yao, P.; Wang, D. Continuous electrodeionization for removal and recovery of Cr(VI) from wastewater. Sep. Purif. 2009, 67, 123–126. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Electrodeionization theory, mechanism and environmental applications. A review. Environ. Chem. Lett. 2020, 18, 1209–1227. [Google Scholar] [CrossRef]
- Zhu, L.; Zimudzi, T.J.; Wang, Y.; Yu, X.; Pan, J.; Han, J.; Kushner, D.I.; Zhuang, L.; Hickner, M.A. Mechanically robust anion exchange membranes via long hydrophilic cross-linkers. Macromolecules 2017, 50, 2329–2337. [Google Scholar] [CrossRef]
- Abbasi, A.; Hosseini, S.; Somwangthanaroj, A.; Mohamad, A.A.; Kheawhom, S. Poly(2, 6-dimethyl-1, 4-phenylene oxide)-based hydroxide exchange separator membranes for zinc–air battery. Int. J. Mol. Sci. 2019, 20, 3678. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Afsar, N.U.; Wang, Y.; Xu, T. Investigation of key process parameters in acid recovery for diffusion dialysis using novel (MDMH-QPPO) anion exchange membranes. J. Taiwan Inst. Chem. Eng. 2018, 93, 405–413. [Google Scholar] [CrossRef]
- Khan, M.I.; Shanableh, A.; Elboughdiri, N.; Kriaa, K.; Ghernaout, D.; Ghareba, S.; Khraisheh, M.; Lashari, M.H. Higher acid recovery efficiency of novel functionalized inorganic/organic composite anion exchange membranes from acidic wastewater. Membranes 2021, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, V.; Son, T.Y.; Im, K.S.; Chae, J.E.; Kim, H.J.; Kim, T.H.; Nam, S.Y. Anion exchange composite membranes composed of quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) and silica for fuel cell application. ACS Omega 2021, 6, 10168–10179. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, L.; Miao, Q.; Jin, B.; Bai, R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chem. Commun. 2014, 50, 2791–2793. [Google Scholar] [CrossRef]
- Fan, H.; Huang, Y.; Yip, N.Y. Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites. J. Membr. Sci. 2020, 610, 118259. [Google Scholar] [CrossRef]
- Kingsbury, R.S.; Bruning, K.; Zhu, S.; Flotron, S.; Miller, C.T.; Coronell, O. Influence of water uptake, charge, manning parameter, and contact angle on water and salt transport in commercial ion exchange membranes. Ind. Eng. Chem. Res. 2019, 58, 18663–18674. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Kim, K.-J.; Kang, H. Preparation of anion exchange membranes of cross-linked poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol). Appl. Chem. Eng. 2010, 21, 621–626. [Google Scholar]
QPPO (TMA/BPPO, Mole Ratio) | Thickness (μm) | WU (%) | IEC (meq./g) | ER (Ω·cm2) | Conductivity (mS/cm) |
---|---|---|---|---|---|
0.1 | 68.2 | 6.34 | 0.26 | 573 | 0.01 |
0.2 | 53.8 | 6.50 | 0.81 | 22.0 | 0.22 |
0.3 | 46.8 | 14.8 | 1.41 | 3.74 | 3.06 |
0.4 | 45.9 | 27.9 | 1.87 | 1.05 | 4.38 |
Properties | Conductivity (mS/cm) | WU (%) | IEC (meq./g) | Tensile Strength (MPa) | Transport Number (−) |
---|---|---|---|---|---|
Criteria | >2 | 10~40 | >1 | >3 | >0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-M.; Kang, M.-S. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. Membranes 2023, 13, 888. https://doi.org/10.3390/membranes13120888
Lee J-M, Kang M-S. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. Membranes. 2023; 13(12):888. https://doi.org/10.3390/membranes13120888
Chicago/Turabian StyleLee, Ji-Min, and Moon-Sung Kang. 2023. "Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization" Membranes 13, no. 12: 888. https://doi.org/10.3390/membranes13120888
APA StyleLee, J. -M., & Kang, M. -S. (2023). Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. Membranes, 13(12), 888. https://doi.org/10.3390/membranes13120888