Polyvinyl Alcohol/Nafion®–Zirconia Phosphate Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cell Applications: Synthesis and Characterisation
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of Zirconia Phosphate (ZrP) and Nanocomposite Membrane
2.2.1. Characterisations
2.2.2. Tensile Test
2.2.3. Water Uptake (WU)
2.2.4. Ion Exchange Capacity (IEC)
2.2.5. Measurements of the Water Contact Angle
2.2.6. Measurements of the Methanol Permeability
2.2.7. Measurement of the Proton Conductivity
3. Results and Discussion
3.1. Fourier Transform Infrared
3.2. Membrane Morphology
3.3. XRD Structure Analysis
3.4. Thermo-Gravimetric Analysis (TGA) and Derivative Thermo-Gravimetric (DTG) Analysis
3.5. Tensile Tests
3.6. Contact Angle Measurement
3.7. Methanol Permeability
3.8. Water Uptake, Swelling Ratio, Ion Exchange Capacity, and Proton Conductivity Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadi, J.M.; Aziz, S.B.; Mustafa, M.S.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z.; Ghareeb, H.O.; Hussein, S.A. Electrochemical Impedance study of Proton Conducting Polymer Electrolytes based on PVC Doped with Thiocyanate and Plasticized with Glycerol. Int. J. Electrochem. Sci. 2020, 15, 4671–4683. [Google Scholar] [CrossRef]
- Nie, G.; Li, Z.; Lu, X.; Lei, J.; Zhang, C.; Wang, C. Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Appl. Surf. Sci. 2013, 284, 595–600. [Google Scholar] [CrossRef]
- Sigwadi, R.; Dhlamini, M.; Mokrani, T.; Ṋemavhola, F.; Nonjola, P.; Msomi, P. The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane. Heliyon 2019, 5, e02240. [Google Scholar] [CrossRef] [PubMed]
- Primachenko, O.N.; Marinenko, E.A.; Odinokov, A.S.; Kononova, S.V.; Kulvelis, Y.V.; Lebedev, V.T. State of the art and prospects in the development of proton-conducting perfluorinated membranes with short side chains: A review. Polym. Adv. Technol. 2020, 32, 1386–1408. [Google Scholar] [CrossRef]
- Nemavhola, F.; Dhlamini, S.; Sigwadi, R.; Mokrani, T. Effect of relative humidity on mechanical strength of zirconia/Nafion® Nano-composite membrane. J. Comput. Appl. Res. Mech. Eng. 2018, 7, 175–187. [Google Scholar]
- Yu, H.; Ziegler, C.; Oszcipok, M.; Zobel, M.; Hebling, C. Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim. Acta 2006, 51, 1199–1207. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Wang, L. Esterification modification and characterization of polyvinyl alcohol anion exchange membrane for direct methanol fuel cell. J. Polym. Res. 2022, 29, 99. [Google Scholar] [CrossRef]
- Niazi, M.B.K.; Jahan, Z.; Ahmed, A.; Uzair, B.; Mukhtar, A.; Gregersen, Ø.W. Mechanical and thermal properties of carboxymethyl fibers (CMF)/PVA based nanocomposite membranes. J. Ind. Eng. Chem. 2020, 90, 122–131. [Google Scholar] [CrossRef]
- Thomas, P.; Guerbois, J.-P.; Russell, G.; Briscoe, B. FTIR study of the thermal degradation of poly (vinyl alcohol). J. Therm. Anal. Calorim. 2001, 64, 501–508. [Google Scholar] [CrossRef]
- Abou Taleb, M.F.; Abd El-Mohdy, H.; Abd El-Rehim, H. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J. Hazard. Mater. 2009, 168, 68–75. [Google Scholar] [CrossRef]
- Peresin, M.S.; Habibi, Y.; Zoppe, J.O.; Pawlak, J.J.; Rojas, O.J. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization. Biomacromolecules 2010, 11, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Chakrabarty, D. Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. J. Ind. Eng. Chem. 2014, 20, 462–473. [Google Scholar] [CrossRef]
- Starkweather, H.W., Jr. Crystallinity in perfluorosulfonic acid ionomers and related polymers. Macromolecules 1982, 15, 320–323. [Google Scholar] [CrossRef]
- Zhao, G.; Yuan, Z.; Chen, T. Synthesis of amorphous supermicroporous zirconium phosphate materials by nonionic surfactant templating. Mater. Res. Bull. 2005, 40, 1922–1928. [Google Scholar] [CrossRef]
- Kalita, H.; Pal, P.; Dhara, S.; Pathak, A. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application. Mater. Sci. Eng. C 2017, 71, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Devrim, Y.; Erkan, S.; Baç, N.; Eroglu, I. Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique. Int. J. Hydrog. Energy 2012, 37, 16748–16758. [Google Scholar] [CrossRef]
- Sigwadi, R.; Mokrani, T.; Msomi, P.; Nemavhola, F. The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency. Polymers 2022, 14, 263. [Google Scholar] [CrossRef]
- Deng, Q.; Wilkie, C.A.; Moore, R.B.; Mauritz, K.A. TGA–FTi.r. investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites. Polymer 1998, 39, 5961–5972. [Google Scholar] [CrossRef]
- Zhengbang, W.; Tang, H.; Mu, P. Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J. Membr. Sci. 2011, 369, 250–257. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Lin, S.; Wang, Q. Preparation and properties of glutaraldehyde crosslinked poly(vinyl alcohol) membrane with gradient structure. J. Polym. Res. 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Siviour, C.R.; Jordan, J.L. High Strain Rate Mechanics of Polymers: A Review. J. Dyn. Behav. Mater. 2016, 2, 15–32. [Google Scholar] [CrossRef]
- Lyu, J.; Zhou, Q.; Wang, H.; Xiao, Q.; Qiang, Z.; Li, X.; Wen, J.; Ye, C.; Zhu, M. Mechanically Strong, Freeze-Resistant, and Ionically Conductive Organohydrogels for Flexible Strain Sensors and Batteries. Adv. Sci. 2023, 10, e2206591. [Google Scholar] [CrossRef] [PubMed]
- Shuili, Y.; Wenxin, S.; Xuesong, Y. REMOVED: Preparation, Characterization and Application of a Novel PA/SIO2 NF Membrane. Procedia Eng. 2012, 44, 2075–2078. [Google Scholar] [CrossRef]
- Yang, T. Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells. J. Membr. Sci. 2009, 342, 221–226. [Google Scholar] [CrossRef]
- Verbrugge, M.W. Methanol Diffusion in Perfluorinated Ion-Exchange Membranes. J. Electrochem. Soc. 1989, 136, 417–423. [Google Scholar] [CrossRef]
- Gomaa, M.M.G.; Hugenschmidt, C.; Dickmann, M.; Abdel-Hady, E.E.; Mohamed, H.F.; Abdel-Hamed, M.O. Crosslinked PVA/SSA proton exchange membranes: Correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 28287–28299. [Google Scholar] [CrossRef]
- Zizhou, R.E.; Çay, A.; Akçakoca Kumbasar, E.P.; Çolpan, C.Ö. Production of poly(vinyl alcohol)/Nafion® nanofibers and their stability assessment for the use in direct methanol fuel cells. J. Ind. Text. 2021, 50, 773–793. [Google Scholar] [CrossRef]
- Jiang, R.; Kunz, H.R.; Fenton, J.M. Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells. J. Membr. Sci. 2006, 272, 116–124. [Google Scholar] [CrossRef]
- Abu-Saied, M.A.; Soliman, E.A.; Abualnaj, K.M.; El Desouky, E. Highly conductive polyelectrolyte membranes poly (vinyl alcohol)/poly (2-acrylamido-2-methyl propane sulfonic acid)(PVA/PAMPS) for fuel cell application. Polymers 2021, 13, 2638. [Google Scholar] [CrossRef]
- Kulasekaran, P.; Mahimai, B.M.; Deivanayagam, P. Novel cross-linked poly (vinyl alcohol)-based electrolyte membranes for fuel cell applications. RSC Adv. 2020, 10, 26521–26527. [Google Scholar] [CrossRef]
Methanol solutions | 2 M | 2 M | 2 M | 5 M | 5 M | 5 M |
Temperature | 30 °C | 60 °C | 80 °C | 30 °C | 60 °C | 80 °C |
Nafion 117 | - | - | - | - | 8.84 × 10−7 | 1.98 × 10−6 |
PVA-ZrP | - | - | - | - | - | 1.01 × 10−6 |
Nafion®/PVA-ZrP | - | - | - | - | - | 1.25 × 10−6 |
Membranes | Nafion® 117 | Nafion®/PVA-ZrP | PVA-ZrP |
---|---|---|---|
IEC (meq/g) | 0.93 | 1.2 | 1.1 |
Proton conductivity (S/cm) | 0.113 | 0.19 | 0.068 |
Water uptake % (30 °C) | 30 | 38 | 40 |
Water uptake % (60 °C) | 32 | 49 | 55 |
Water uptake % (80 °C) | 34 | 53 | 59 |
Swelling ratio (30 °C) | 9 | 23 | 25 |
Swelling ratio (60 °C) | 26 | 28 | 30 |
Swelling ratio (80 °C) | 29 | 34 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigwadi, R.; Nemavhola, F. Polyvinyl Alcohol/Nafion®–Zirconia Phosphate Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cell Applications: Synthesis and Characterisation. Membranes 2023, 13, 887. https://doi.org/10.3390/membranes13120887
Sigwadi R, Nemavhola F. Polyvinyl Alcohol/Nafion®–Zirconia Phosphate Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cell Applications: Synthesis and Characterisation. Membranes. 2023; 13(12):887. https://doi.org/10.3390/membranes13120887
Chicago/Turabian StyleSigwadi, Rudzani, and Fulufhelo Nemavhola. 2023. "Polyvinyl Alcohol/Nafion®–Zirconia Phosphate Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cell Applications: Synthesis and Characterisation" Membranes 13, no. 12: 887. https://doi.org/10.3390/membranes13120887
APA StyleSigwadi, R., & Nemavhola, F. (2023). Polyvinyl Alcohol/Nafion®–Zirconia Phosphate Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cell Applications: Synthesis and Characterisation. Membranes, 13(12), 887. https://doi.org/10.3390/membranes13120887