Cleaner Biofuel Production via Process Parametric Optimization of Nonedible Feedstock in a Membrane Reactor Using a Titania-Based Heterogeneous Nanocatalyst: An Aid to Sustainable Energy Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Determination and Extraction
2.2. Free Fatty Acid Content
2.3. Catalyst Synthesis
2.4. Catalyst Characterization
2.5. Acid Esterification
2.6. Membrane Reactor Design
2.7. Transesterification
2.8. Optimization Study and Design of Experiment
2.9. Biodiesel Characterization
3. Results
3.1. Catalyst Characterization
3.2. Preliminary Study of Feedstock
3.3. Process Parametric Optimization of Transesterification
8.10 ∗ BC + 0.62 ∗ BD + 1.31 ∗ CD − 7.75 ∗ A2 + 7.83 ∗ B2 + 1.36 ∗ C2 + 3.99 ∗ D2
3.4. Biodiesel Characterization
3.4.1. Nuclear Magnetic Resonance (NMR)
3.4.2. Fourier Transform Infrared Spectroscopy (FT-IR)
3.4.3. Gas Chromatography–Mass Spectrometry (GC-MS)
3.5. Fuel Properties
4. Membrane Performance and Contribution to System Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AISO | Azadirachta indica seed oil |
TiO2 | titanium dioxide/Titania |
NPs | nanoparticles |
FFA | free fatty acid (ffa) content |
XRD | X-ray diffraction |
SEM | scanning electron microscopy |
EDX | energy-dispersive X-ray spectroscopy |
FTIR | Fourier transform infrared spectroscopy |
GC-MS | gas chromatography–mass spectrometry |
NMR | nuclear magnetic resonance |
AIBD | Azadirachta indica biodiesel |
Oil: Met | oil–methanol molar ratio |
FAME | fatty acids methyl esters |
RSM | response surface methodology |
BBD | box Bunken design |
ANOVA | analysis of variance |
ASTM | American society of testing materials |
References
- Amin, M.F.; Gnida, P.; Kotowicz, S.; Małecki, J.G.; Siwy, M.; Nitschke, P.; Schab-Balcerzak, E. Spectroscopic and Physicochemical Investigations of Azomethines with Triphenylamine Core towards Optoelectronics. Materials 2022, 15, 7197. [Google Scholar] [CrossRef] [PubMed]
- Gnida, P.; Amin, M.F.; Pająk, A.K.; Jarząbek, B. Polymers in High-Efficiency Solar Cells: The Latest Reports. Polymers 2022, 14, 1946. [Google Scholar] [CrossRef] [PubMed]
- Moyo, L.; Iyuke, S.; Muvhiiwa, R.; Simate, G.; Hlabangana, N. Application of response surface methodology for optimization of biodiesel production parameters from waste cooking oil using a membrane reactor. S. Afr. J. Chem. Eng. 2020, 35, 1–7. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Habte, L.; Shiferaw, N.; Mulatu, D.; Thenepalli, T.; Chilakala, R.; Ahn, J.W. Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability 2019, 11, 3196. [Google Scholar] [CrossRef]
- Ameen, M.; Zafar, M.; Ramadan, M.F.; Ahmad, M.; Makhkamov, T.; Bokhari, A.; Mubashir, M.; Chuah, L.F.; Show, P.L. Conversion of novel non-edible Bischofia javanica seed oil into methyl ester via recyclable zirconia-based phyto-nanocatalyst: A circular bioeconomy approach for eco-sustenance. Environ. Technol. Innov. 2023, 30, 103101. [Google Scholar] [CrossRef]
- Shuit, S.H.; Tan, S.H. Esterification of palm fatty acid distillate with methanol via single-step pervaporation membrane reactor: A novel biodiesel production method. Energy Convers. Manag. 2019, 201, 112110. [Google Scholar] [CrossRef]
- Ameen, M.; Ahmad, M.; Zafar, M.; Munir, M.; Abbas, M.M.; Sultana, S.; Elkhatib, S.E.; Soudagar, M.E.M.; Kalam, M. Prospects of catalysis for process sustainability of eco-green biodiesel synthesis via transesterification: A state-of-the-art review. Sustainability 2022, 14, 7032. [Google Scholar] [CrossRef]
- Kurre, S.K.; Yadav, J.; Khan, M.K.; Yadav, P.; Dhebar, M.M.; Rawat, B.S. Experimental evaluation of performance and emission of diesel engine fueled with nano-material titanium dioxide (TiO2) nanoparticles supplemented diesel-biodiesel-ethanol blends. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Gardy, J.; Hassanpour, A.; Lai, X.; Ahmed, M.H. Synthesis of Ti (SO4) O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A Gen. 2016, 527, 81–95. [Google Scholar] [CrossRef]
- Oprescu, E.E.; Velea, S.; Doncea, S.; Radu, A.; Stepan, E.; Bolocan, I. Biodiesel from algae oil with high free fatty acid over amphiphilic solid acid catalyst. Chem. Eng. Trans. 2015, 43, 595–600. [Google Scholar]
- Anuradha, S.; Raj, K.; Vijayaraghavan, V.; Viswanathan, B. Sulphated Fe2O3-TiO2 catalysed transesterification of soybean oil to biodiesel. Indian J. Chem. Sect. A 2014, 53, 1493–1499. [Google Scholar]
- Emeji, I.C.; Afolabi, A.S.; Abdulkareem, A.S.; Kalala, J. Characterization and kinetics of biofuel produced from waste cooking oil. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 21–23 October 2015; pp. 21–23. [Google Scholar]
- Wen, Z.; Yu, X.; Tu, S.-T.; Yan, J.; Dahlquist, E. Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresour. Technol. 2010, 101, 9570–9576. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, A.; Matsubara, K.; Honda, K. Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol. 2008, 99, 3439–3443. [Google Scholar] [CrossRef] [PubMed]
- Baroutian, S.; Aroua, M.K.; Raman, A.A.A.; Sulaiman, N.M. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour. Technol. 2011, 102, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Saidi, M.; Moradi, P. Conversion of biodiesel synthesis waste to hydrogen in membrane reactor: Theoretical study of glycerol steam reforming. Int. J. Hydrogen Energy 2020, 45, 8715–8726. [Google Scholar] [CrossRef]
- Sokač, T.; Gojun, M.; Tušek, A.J.; Šalić, A.; Zelić, B. Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms. Renew. Energy 2020, 159, 642–651. [Google Scholar] [CrossRef]
- Goswami, K.P.; Pugazhenthi, G. Effect of binder concentration on properties of low-cost fly ash-based tubular ceramic membrane and its application in separation of glycerol from biodiesel. J. Clean. Prod. 2021, 319, 128679. [Google Scholar] [CrossRef]
- Olagunju, O.A.; Musonge, P.; Kiambi, S.L. Production and Optimization of Biodiesel in a Membrane Reactor, Using a Solid Base Catalyst. Membranes 2022, 12, 674. [Google Scholar] [CrossRef]
- Tajziehchi, K.; Sadrameli, S. Optimization for free glycerol, diglyceride, and triglyceride reduction in biodiesel using ultrafiltration polymeric membrane: Effect of process parameters. Process. Saf. Environ. Prot. 2020, 148, 34–46. [Google Scholar] [CrossRef]
- Mahboubi, A.; Ylitervo, P.; Doyen, W.; De Wever, H.; Taherzadeh, M.J. Reverse membrane bioreactor: Introduction to a new technology for biofuel production. Biotechnol. Adv. 2016, 34, 954–975. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.J.; Park, H.J.; Hong, S.Y.; Yoo, Y.J. Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system. Bioprocess Biosyst. Eng. 2012, 35, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Ameen, M.; Ahmad, M.; Zafar, M.; Sultana, S. Oil Extraction Techniques for Bioenergy Production: A Systematic Review. J. Biomat. Bioprod. Tech. 2021, 1–17. [Google Scholar]
- Gao, L.; Xu, W.; Xiao, G. Modeling of biodiesel production in a membrane reactor using solid alkali catalyst. Chem. Eng. Process. Process Intensif. 2017, 122, 122–127. [Google Scholar] [CrossRef]
- Hayyan, M.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process. Technol. 2010, 91, 116–120. [Google Scholar] [CrossRef]
- Anjum, F.; Mir, A.; Shakir, Y.; Zafar, M.; Sultana, S.; Ameen, M.; Ahmad, M. Seed Coat Morphology and Sculpturing of Selected Invasive Alien Plants from Lesser Himalaya Pakistan and Their Systematic Implications. BioMed Res. Int. 2022, 2022, 8225494. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, S.; Zafar, M.; Ahmad, M.; Althobaiti, A.; Ozdemir, F.; Kutlu, M.; Makhkamov, T.; Sultana, S.; Ameen, M.; Majeed, S. Ultra-sculpturing of seed morphotypes in selected species of genus Salvia L. and their taxonomic significance. Plant Biol. 2023, 25, 96–106. [Google Scholar] [CrossRef]
- Dutta, R.; Sarkar, U. Design modifications and scale-up of a novel soxhlet apparatus: Optimization of batch extraction of a biofuel oil from Crotalaria juncea seeds. Sustain. Energy Technol. Assess. 2023, 60, 103472. [Google Scholar] [CrossRef]
- Idibie, C.; Awatefe, K.; Ogboru, R. Biodiesel production from dika seed (Irvingia gabonensis) oil via soxhlet extraction and transesterification reaction. J. Chem. Soc. Niger. 2020, 45, 143–148. [Google Scholar]
- Gad, M.; El-Shafay, A.; Abu Hashish, H. Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from jatropha seeds. Process. Saf. Environ. Prot. 2020, 147, 518–526. [Google Scholar] [CrossRef]
- Ameen, M.; Zafar, M.; Nizami, A.-S.; Ahmad, M.; Munir, M.; Sultana, S.; Usma, A.; Rehan, M. Biodiesel Synthesis from Cucumis melo var. agrestis Seed Oil: Towards Non-Food Biomass Biorefineries. Front. Energy Res. 2022, 10, 830845. [Google Scholar] [CrossRef]
- Jan, H.A.; Saqib, N.U.; Khusro, A.; Sahibzada, M.U.K.; Rauf, M.; Alghamdi, S.; Almehmadi, M.; Khandaker, M.U.; Emran, T.B.; Mohafez, H. Synthesis of biodiesel from Carthamus tinctorius L. oil using TiO2 nanoparticles as a catalyst. J. King Saud Univ.-Sci. 2022, 34, 102317. [Google Scholar] [CrossRef]
- Bahal, M.; Kaur, N.; Sharotri, N.; Sud, D. Investigations on Amphoteric Chitosan/TiO2 Bionanocomposites for Application in Visible Light Induced Photocatalytic Degradation. Adv. Polym. Technol. 2019, 2019, 2345631. [Google Scholar] [CrossRef]
- Al-hakimi, A.N.; Alminderej, F.; Alhagri, I.A.; Al-Hazmy, S.M.; Farea, M.; Abdallah, E. Inorganic nanofillers TiO2 nanoparticles reinforced host polymer polypyrrole for microelectronic devices and high-density energy storage systems. J. Mater. Sci. Mater. Electron. 2023, 34, 238. [Google Scholar] [CrossRef]
- Khalil, R.; Kelany, N.A.; Ibrahim, M.A.; Al-Senani, G.M.; Mostafa, A.M. Linear and Nonlinear Optical Properties of PVA: SA Blend Reinforced by TiO2 Nanoparticles Prepared by Flower Extract of Aloe Vera for Optoelectronic Applications. Coatings 2023, 13, 699. [Google Scholar] [CrossRef]
- Leela, S. Structural and Optical Property of Fe Doped TiO2 Anatase Nanoparticle by Sol Gel Route Synthesis. SSRN 2023, 1–12. [Google Scholar]
- Baroutian, S.; Aroua, M.; Abdul Aziz, A.; Sulaiman, N.M. TiO2/Al2O3 membrane reactor equipped with a methanol recovery unit to produce palm oil biodiesel. Int. J. Energy Res. 2012, 36, 120–129. [Google Scholar] [CrossRef]
- Ameen, M.; Zafar, M.; Ahmad, M.; Shaheen, A.; Yaseen, G. Wild melon: A novel non-edible feedstock for bioenergy. Pet. Sci. 2018, 15, 405–411. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.M.; Abbas, Q.; Arfan, M.; Mahmood, T.; Zafar, M.; Raza, J.; Sultana, S.; Akhtar, M.T.; Ameen, M. Implication of scanning electron microscopy as a tool for identification of novel, nonedible oil seeds for biodiesel production. Microsc. Res. Tech. 2022, 85, 1671–1684. [Google Scholar]
- Deviren, H.; Aydın, H. Production and physicochemical properties of safflower seed oil extracted using different methods and its conversion to biodiesel. Fuel 2023, 343, 128001. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.; Sharma, S.; Sharma, P.K.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2019, 262, 116553. [Google Scholar] [CrossRef]
- Wan Osman, W.N.A.; Badrol, N.A.I.; Samsuri, S. Biodiesel Purification by Solvent-Aided Crystallization Using 2-Methyltetrahydrofuran. Molecules 2023, 28, 1512. [Google Scholar] [CrossRef] [PubMed]
- Sutapa, I.W.; Sarti; Putnarubun, C.; Kamari, A.B.; Bandjar, A. Biodiesel production using Calophyllum inophyllum L. oil and CaO as catalyst in the microwave assisted reactor. AIP Conf. Proc. 2023, 2642, 040001. [Google Scholar]
- Farbod, M.; Khademalrasool, M. Synthesis of TiO2 nanoparticles by a combined sol–gel ball milling method and investigation of nanoparticle size effect on their photocatalytic activities. Powder Technol. 2011, 214, 344–348. [Google Scholar] [CrossRef]
- Salari, M.; Marashi, P.; Rezaee, M. Synthesis of TiO2 nanoparticles via a novel mechanochemical method. J. Alloys Compd. 2009, 469, 386–390. [Google Scholar] [CrossRef]
- Noor, C.W.M.; Fhatihah, A.N.; Mamat, R.; Norsani, W.M.; Nurdiyana, W.; Khasbi, M.N. Properties Study of B20 Palm-Methyl Ester Biodiesel Added with Oxide Nanoparticle towards Green Marine Fuels. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 29, 212–222. [Google Scholar]
- Bharti, A.; Debbarma, S.; Das, B. Effect of hydrogen enrichment and TiO2 nanoparticles on waste cooking palm biodiesel run CRDI engine. Int. J. Hydrogen Energy 2023, 48, 29391–29402. [Google Scholar] [CrossRef]
- Qamar, O.A.; Jamil, F.; Hussain, M.; Bae, S.; Inayat, A.; Shah, N.S.; Waris, A.; Akhter, P.; Kwon, E.E.; Park, Y.-K. Advances in synthesis of TiO2 nanoparticles and their application to biodiesel production: A review. Chem. Eng. J. 2023, 460, 141734. [Google Scholar] [CrossRef]
- Chijioke-Okere, M.O.; Hir, Z.A.M.; Ogukwe, C.E.; Njoku, P.C.; Abdullah, A.H.; Oguzie, E.E. TiO2/Polyethersulphone films for photocatalytic degradation of acetaminophen in aqueous solution. J. Mol. Liq. 2021, 338, 116692. [Google Scholar] [CrossRef]
- Haider, A.J.; Anbari, R.H.A.; Kadhim, G.R.; Salame, C.T. Exploring potential Environmental applications of TiO2 Nanoparticles. Energy Procedia 2017, 119, 332–345. [Google Scholar] [CrossRef]
- Khalil, N.F.; Ridha, A.M.; Al-Mashhadani, M.K. Modification of carbon cloth/polyaniline nano-titanium dioxide composite electrodes for enhancement microbial fuel cells (MFCs). In Proceedings of the AIP Conference Proceedings, Baghdad, Iraq, 24–25 November 2021. [Google Scholar]
- Ahmad Mukifza, H.; Awang, H.; Yusof, S.; Farid, E. Experimental analysis of titanium dioxide synthesis from synthetic rutile waste using a moderate acid concentration and temperature. Acta Phys. Pol. A 2017, 132, 833–835. [Google Scholar] [CrossRef]
- Paradisi, E.; Plaza-González, P.J.; Baldi, G.; Catalá-Civera, J.M.; Leonelli, C. On the use of microwaves during combustion/calcination of N-doped TiO2 precursor: An EMW absorption study combined with TGA-DSC-FTIR results. Mater. Lett. 2023, 338, 133975. [Google Scholar] [CrossRef]
- Dineshkumar, V.; Pryanka, J.; Ramasamy, V.; Rajesh, R.; Selvam, C.P. Analysis of green synthesis and characterization of TiO2 nanoparticle from lemon peel extract. In Proceedings of the AIP Conference Proceedings, Jaipur, India, 6–7 May 2022. [Google Scholar]
- Thakur, B.; Kumar, A.; Kumar, D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S. Afr. J. Bot. 2019, 124, 223–227. [Google Scholar] [CrossRef]
- Narayan, J. Organogenesis in Cucumis melo L. var. agrestis Naudin. Rie Consult. Meet-Cum-Semin. Sci. Educ. 2015, 59, 1–7. [Google Scholar]
- Jorge, N.; da Silva, A.C.; Malacrida, C.R. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils. Nat. Prod. Res. 2015, 29, 2313–2317. [Google Scholar] [CrossRef]
- Ameen, M.; Zafar, M.; Ahmad, M.; Ramadan, M.F.; Eid, H.F.; Makhkamov, T.; Yuldashev, A.; Mamarakhimov, O.; Nizomova, M.; Isaifan, R.J. Assessing the Bioenergy Potential of Novel Non-Edible Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization. Agronomy 2023, 13, 735. [Google Scholar] [CrossRef]
- Basumatary, B.; Brahma, S.; Nath, B.; Basumatary, S.F.; Das, B.; Basumatary, S. Post-harvest waste to value-added materials: Musa champa plant as renewable and highly effective base catalyst for Jatropha curcas oil-based biodiesel production. Bioresour. Technol. Rep. 2023, 21, 101338. [Google Scholar] [CrossRef]
- Simsek, S.; Uslu, S.; Simsek, H. Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine. Energy 2022, 239, 122389. [Google Scholar] [CrossRef]
- Pali, H.S.; Sharma, A.; Kumar, N.; Singh, Y. Biodiesel yield and properties optimization from Kusum oil by RSM. Fuel 2021, 291, 120218. [Google Scholar] [CrossRef]
- Karimi, S.; Saidi, M. Biodiesel production from Azadirachta India-derived oil by electrolysis technique: Process optimization using response surface methodology (RSM). Fuel Process. Technol. 2022, 234, 107337. [Google Scholar] [CrossRef]
- Olutoye, M.; Wong, S.; Chin, L.; Amani, H.; Asif, M.; Hameed, B. Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renew. Energy 2016, 86, 392–398. [Google Scholar] [CrossRef]
- Catarino, M.; Martins, S.; Dias, A.P.S.; Pereira, M.F.C.; Gomes, J. Calcium diglyceroxide as a catalyst for biodiesel production. J. Environ. Chem. Eng. 2019, 7, 103099. [Google Scholar] [CrossRef]
- Dias, A.P.S.; Puna, J.; Gomes, J.; Correia, M.J.N.; Bordado, J. Biodiesel production over lime. Catalytic contributions of bulk phases and surface Ca species formed during reaction. Renew. Energy 2016, 99, 622–630. [Google Scholar] [CrossRef]
- Jan, H.A.; Osman, A.I.; Al-Fatesh, A.S.; Almutairi, G.; Surina, I.; Al-Otaibi, R.L.; Al-Zaqri, N.; Kumar, R.; Rooney, D.W. Biodiesel production from Sisymbrium irio as a potential novel biomass waste feedstock using homemade titania catalyst. Sci. Rep. 2023, 13, 11282. [Google Scholar] [CrossRef] [PubMed]
- Argaw Shiferaw, K.; Mathews, J.M.; Yu, E.; Choi, E.-Y.; Tarte, N.H. Sodium Methoxide/Zeolite-Supported Catalyst for Transesterification of Soybean Waste Cooking Oil for Biodiesel Production. Inorganics 2023, 11, 163. [Google Scholar] [CrossRef]
- Hasnain, S.M.M.; Chatterjee, R.; Ranjan, P.; Kumar, G.; Sharma, S.; Kumar, A.; Salah, B.; Ullah, S.S. Performance, Emission, and Spectroscopic Analysis of Diesel Engine Fuelled with Ternary Biofuel Blends. Sustainability 2023, 15, 7415. [Google Scholar] [CrossRef]
- Yatish, K.; Omkaresh, B.; Kattimani, V.R.; Lalithamba, H.; Sakar, M.; Balakrishna, R.G. Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies. Energy 2023, 263, 125768. [Google Scholar] [CrossRef]
- Daimary, N.; Eldiehy, K.S.; Bora, N.; Boruah, P.; Rather, M.A.; Mandal, M.; Bora, U.; Deka, D. Towards integrated sustainable biofuel and chemical production: An application of banana pseudostem ash in the production of biodiesel and recovery of lignin from bamboo leaves. Chemosphere 2023, 314, 137625. [Google Scholar] [CrossRef]
- Liew, C.S.; Mong, G.R.; Lim, J.W.; Raksasat, R.; Rawindran, H.; Hassan, M.A.; Lam, M.K.; Khoo, K.S.; Zango, Z.U. Low-temperature thermal pre-treated sewage sludge for feeding of black soldier fly (Hermetia illucens) larvae: Protein, lipid and biodiesel profile and characterization. Renew. Sustain. Energy Rev. 2023, 178, 113241. [Google Scholar] [CrossRef]
- Mamedov, I.; Javadova, O.; Iskakov, R. Testing of n-butanol and eucalyptus essential oil as additivities of cottonseed biodiesel-diesel blends. Indian J. Chem. Technol. 2023, 30, 247–251. [Google Scholar]
- Zeeshan, M.; Ghazanfar, S.; Tariq, M.; Asif, H.M.; Hussain, A.; Usman, M.; Khan, M.A.; Mahmood, K.; Sirajuddin, M.; Imran, M. Synthesis of novel ternary NiO–CdO-Nd2O3 nanocomposite for biodiesel production. Renew. Energy 2023, 210, 800–809. [Google Scholar] [CrossRef]
- Joshi, N.C.; Gururani, P.; Bhatnagar, P.; Kumar, V.; Vlaskin, M.S. Advances in Metal Oxide-based Nanocatalysts for Biodiesel Production: A Review. ChemBioEng Rev. 2023, 10, 258–271. [Google Scholar] [CrossRef]
- Kumar, S.; Manasa, V.; Madhubalaji, C.; Tumaney, A.; Giridhar, P. GC/MS quantification of individual fatty acids of selected green leafy vegetable foliage and their biodiesel attributes. Grasas Y Aceites 2023, 74, e499. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Riayatsyah, T.M.I.; Silitonga, A.S.; Mofijur, M.; Shamsuddin, A.H.; Ong, H.C.; Mahlia, T.M.I.; Rahman, S.A. Techno-Economic Analysis and Physicochemical Properties of Ceiba pentandra as Second-Generation Biodiesel Based on ASTM D6751 and EN 14214. Processes 2019, 7, 636. [Google Scholar] [CrossRef]
- Available online: https://www.en-standard.eu/une-en-14214-2013-v2-a2-2019-liquid-petroleum-products-fatty-acid-methyl-esters-fame-for-use-in-diesel-engines-and-heating-applications-requirements-and-test-methods/ (accessed on 24 August 2023).
- Available online: https://www.astm.org/d6751-20a.html (accessed on 24 August 2023).
- Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT20828-2007 (accessed on 24 August 2023).
- Available online: https://www.astm.org/d1298-12br17e01.html (accessed on 24 August 2023).
- Suzihaque, M.; Syazwina, N.; Alwi, H.; Ibrahim, U.K.; Abdullah, S.; Haron, N. A sustainability study of the processing of kitchen waste as a potential source of biofuel: Biodiesel production from waste cooking oil (WCO). Mater. Today Proc. 2022, 63, S484–S489. [Google Scholar] [CrossRef]
- Available online: https://www.astm.org/standards/d445 (accessed on 24 August 2023).
- Aziz, A.; Ahmad, M.; Ullah, R.; Bari, A.; Khan, M.Y.; Zafar, M.; Sultana, S.; Rozina; Ameen, M.; Anar, M. Microscopic techniques for characterization and authentication of oil-yielding seeds. Microsc. Res. Tech. 2022, 85, 900–916. [Google Scholar] [CrossRef] [PubMed]
- Ávila Vázquez, V.; Díaz Estrada, R.A.; Aguilera Flores, M.M.; Escamilla Alvarado, C.; Correa Aguado, H.C. Transesterification of non-edible castor oil (Ricinus communis L.) from Mexico for biodiesel production: A physicochemical characterization. Biofuels 2020, 11, 753–762. [Google Scholar] [CrossRef]
- Available online: https://webstore.ansi.org/standards/astm/astmd9316?gad_source=1&gclid=EAIaIQobChMIwNTh_ZzmggMVQQUGAB0tnQlIEAAYASAAEgLH4vD_BwE| (accessed on 24 August 2023).
- Available online: https://www.astm.org/d2500-17a.html (accessed on 24 August 2023).
- Available online: https://ayalytical.com/methods/astm-d97/ (accessed on 24 August 2023).
- Available online: https://www.astm.org/d4294-21.html (accessed on 24 August 2023).
- Available online: https://www.astm.org/d0974-22.html (accessed on 24 August 2023).
- Baral, S.S.; Dionisi, D.; Maarisetty, D.; Gandhi, A.; Kothari, A.; Gupta, G.; Jain, P. Biofuel production potential from wastewater in India by integrating anaerobic membrane reactor with algal photobioreactor. Biomass Bioenergy 2020, 133, 105445. [Google Scholar] [CrossRef]
- Tayel, A.; Ramadan, A.R.; El Seoud, O.A. Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination. Catalysts 2018, 8, 491. [Google Scholar] [CrossRef]
- Khademi, M.H.; Alipour-Dehkordi, A.; Nalchifard, F. Sustainable hydrogen and syngas production from waste valorization of biodiesel synthesis by-product: Green chemistry approach. Renew. Sustain. Energy Rev. 2023, 175, 113191. [Google Scholar] [CrossRef]
- Wiley, P.E. Microalgae Cultivation Using Offshore Membrane Enclosures for Growing Algae (OMEGA); University of California: Merced, CA, USA, 2013. [Google Scholar]
- Ameen, M.; Zafar, M.; Ahmad, M.; Sultana, S.; Makhkamov, T.; Yuldashev, A.; Mamarakhimov, O.; Nasirov, M.; Kilic, O.; Ozdemir, F.A. Prospects of Bioenergy Development in Future In Biomass Energy. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–11. [Google Scholar]
- Garg, S.; Behera, S.; Ruiz, H.A.; Kumar, S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl. Biochem. Biotechnol. 2023, 195, 5497–5540. [Google Scholar] [CrossRef] [PubMed]
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Response | |
---|---|---|---|---|---|
Run | A: Methanol–Oil Molar Ratio | B: Reaction Time | C: Catalyst Loading | D: Reaction Temperature | Biodiesel Yield |
Minutes | Wt.% | °C | % | ||
1. | 3:1 | 60 | 0.5 | 60 | 61 |
2. | 3:1 | 360 | 3.5 | 120 | 61 |
3. | 3:1 | 60 | 3.5 | 120 | 77 |
4. | 3:1 | 360 | 2 | 90 | 67 |
5. | 3:1 | 360 | 0.5 | 90 | 68 |
6. | 3:1 | 60 | 3.5 | 60 | 94 |
7. | 3:1 | 60 | 0.5 | 120 | 79 |
8. | 3:1 | 210 | 2 | 90 | 52 |
9. | 3:1 | 360 | 3.5 | 60 | 43 |
10. | 3:1 | 360 | 0.5 | 120 | 56 |
11. | 9:1 | 210 | 2 | 60 | 88 |
12. | 9:1 | 210 | 2 | 120 | 69 |
13. | 9:1 | 60 | 2 | 90 | 51 |
14. | 9:1 | 210 | 0.5 | 90 | 73 |
15. | 9:1 | 360 | 0.5 | 90 | 66 |
16. | 9:1 | 360 | 2 | 60 | 88 |
17. | 9:1 | 210 | 0.5 | 60 | 80 |
18. | 9:1 | 210 | 3.5 | 90 | 72 |
19. | 9:1 | 360 | 2 | 90 | 95 |
20. | 9:1 | 360 | 2 | 120 | 61 |
21. | 15:1 | 60 | 2 | 90 | 71 |
22. | 15:1 | 60 | 0.5 | 120 | 68 |
23. | 15:1 | 60 | 3.5 | 60 | 62 |
24. | 15:1 | 360 | 0.5 | 120 | 88 |
25. | 15:1 | 360 | 3.5 | 90 | 49 |
26. | 15:1 | 360 | 0.5 | 60 | 59 |
27. | 15:1 | 360 | 3.5 | 120 | 67 |
28. | 15:1 | 210 | 3.5 | 90 | 45 |
29. | 15:1 | 210 | 2 | 90 | 55 |
30. | 15:1 | 60 | 0.5 | 60 | 53 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 5049.46 | 14 | 341.03 | 3.11 | 0.0085 | significant |
A—Methanol–oil Molar ratio | 304.18 | 1 | 4.18 | 0.0193 | 0.0914 | |
B—Reaction Time | 128.61 | 1 | 379.61 | 1.75 | 0.2054 | |
C—Catalyst loading | 98.82 | 1 | 10.82 | 0.0499 | 0.3262 | |
D—Reaction Temperature | 86.67 | 1 | 192.67 | 0.8894 | 0.3606 | |
AB | 1.25 | 1 | 1.57 | 0.015 | 0.0014 | |
AC | 8.00 | 1 | 7.57 | 0.0780 | 0.780 | |
AD | 13.25 | 1 | 14.07 | 0.1440 | 0.01 | |
BC | 46.00 | 1 | 45.77 | 0.4721 | 0.50 | |
BD | 0.0525 | 1 | 0.06 | 0.0007 | 0.70 | |
CD | 30.01 | 1 | 27.8 | 0.304 | 0.59 | |
A2 | 469.87 | 1 | 468.53 | 4.78 | 0.04 | |
B2 | 19.44 | 1 | 19.00 | 0.19 | 0.68 | |
C2 | 1227.61 | 1 | 1226.00 | 12.40 | 0.004 | |
D2 | 8.17 | 1 | 8.40 | 0.08 | 0.7 | |
Residual | 1472.41 | 15 | 99.10 | |||
Lack of Fit | 1443.91 | 11 | 129.10 | 14.03 | 0.5054 | not significant |
Pure Error | 31.50 | 4 | 7.8 | - | - | |
Cor Total | 6523.87 | 29 |
Parameter | ASTM | EN 14214 | China GB/T 20828-2007 | Azadhiracta indica Biodiesel |
---|---|---|---|---|
Density@15 °C, gm/cc | 0.8445 | - | - | 0.897 |
Kinematic Viscosity@40 °C cSt. | 1.9–6.0 | 3.4–5.0 | - | 5.32 |
Flash Point °C | 100–170 | >120 | <130 | 90 |
Pour Point °C | −15–16 | - | - | −12 |
Cloud Point °C | −3 to −12 | - | - | −10 |
Sulfur Content, % | 0.05 | 0.020 | <0.05 | 0.00047 |
Total acid no. mg KOH/g | 0.8 max | <0.5 | <0.8 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, M.; Zafar, M.; Ahmad, M.; Munir, M.; Abid, I.; Mustafa, A.E.-Z.M.A.; Athar, M.; Makhkamov, T.; Mamarakhimov, O.; Yuldashev, A.; et al. Cleaner Biofuel Production via Process Parametric Optimization of Nonedible Feedstock in a Membrane Reactor Using a Titania-Based Heterogeneous Nanocatalyst: An Aid to Sustainable Energy Development. Membranes 2023, 13, 889. https://doi.org/10.3390/membranes13120889
Ameen M, Zafar M, Ahmad M, Munir M, Abid I, Mustafa AE-ZMA, Athar M, Makhkamov T, Mamarakhimov O, Yuldashev A, et al. Cleaner Biofuel Production via Process Parametric Optimization of Nonedible Feedstock in a Membrane Reactor Using a Titania-Based Heterogeneous Nanocatalyst: An Aid to Sustainable Energy Development. Membranes. 2023; 13(12):889. https://doi.org/10.3390/membranes13120889
Chicago/Turabian StyleAmeen, Maria, Muhammad Zafar, Mushtaq Ahmad, Mamoona Munir, Islem Abid, Abd El-Zaher M. A. Mustafa, Mohammad Athar, Trobjon Makhkamov, Oybek Mamarakhimov, Akramjon Yuldashev, and et al. 2023. "Cleaner Biofuel Production via Process Parametric Optimization of Nonedible Feedstock in a Membrane Reactor Using a Titania-Based Heterogeneous Nanocatalyst: An Aid to Sustainable Energy Development" Membranes 13, no. 12: 889. https://doi.org/10.3390/membranes13120889
APA StyleAmeen, M., Zafar, M., Ahmad, M., Munir, M., Abid, I., Mustafa, A. E. -Z. M. A., Athar, M., Makhkamov, T., Mamarakhimov, O., Yuldashev, A., Khaydarov, K., Mammadova, A. O., Botirova, L., & Makkamov, Z. (2023). Cleaner Biofuel Production via Process Parametric Optimization of Nonedible Feedstock in a Membrane Reactor Using a Titania-Based Heterogeneous Nanocatalyst: An Aid to Sustainable Energy Development. Membranes, 13(12), 889. https://doi.org/10.3390/membranes13120889