A 3D Printed Membrane Reactor System for Electrochemical CO2 Conversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of 3D Printed Reactor
- The module should consist of two separated and symmetric compartments, cathodic and anodic, with a Nafion 117 proton exchange membrane assembled in between.
- The module should have one hole to accommodate the counter-electrode on the anodic compartment, and another one in the cathodic compartment for the working electrode.
- Each compartment should have two additional holes for a mini-reference electrode and a pH sensor.
- The reactor should have input holes to inject the reagent and output holes to remove it.
- The compartments also should have two holes for fitting thermometers, one in each compartment.
- The compartments should have enough space to fit a magnet for stirring.
- The reactor should be as small as possibly to reduce the amount of reagent and increase the reagent/catalyst area ratio.
2.3. CO2 Electroreduction Tests with the Miniature 3D Printed Membrane Reactor
3. Results
3.1. The 3D Printed CO2 Electroreduction Membrane Reactor
3.2. Bicarbonate Electroreduction Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wunderling, N.; Willeit, M.; Donges, J.F.; Winkelmann, R. Global warming due to loss of large ice masses and Arctic summer sea ice. Nat. Commun. 2020, 11, 5177. [Google Scholar] [CrossRef] [PubMed]
- Nogalska, A.; Zukowska, A.; Garcia-valls, R. Atmospheric CO2 capture for the artificial photosynthetic system. E3S Web Conf. 2017, 22, 125. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; Ammendola, M.; Tylkowski, B.; Ambrogi, V.; Garcia-Valls, R. Ambient CO2 adsorption via membrane contactors—Value of assimilation from air as nature stomata. J. Membr. Sci. 2018, 546, 41–49. [Google Scholar] [CrossRef]
- Anwar, M.; Fayyaz, A.; Sohail, N.; Khokhar, M.; Baqar, M.; Yasar, A.; Rasool, K.; Nazir, A.; Raja, M.; Rehan, M.; et al. CO2 utilization: Turning greenhouse gas into fuels and valuable products. J. Environ. Manag. 2020, 260, 110059. [Google Scholar] [CrossRef] [PubMed]
- Aslam, N.M.; Masdar, M.S.; Kamarudin, S.K.; Daud, W.R.W. Overview on Direct Formic Acid Fuel Cells (DFAFCs) as an Energy Sources. APCBEE Procedia 2012, 3, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.B.; Nogalska, A.; Garcia-Valls, R. Direct Electrochemical Reduction of Bicarbonate to Formate Using Tin Catalyst. Electrochem 2021, 2, 64–70. [Google Scholar] [CrossRef]
- Li, J.; Kuang, Y.; Meng, Y.; Tian, X.; Hung, W.-H.; Zhang, X.; Li, A.; Xu, M.; Zhou, W.; Ku, C.-S.; et al. Electroreduction of CO2 to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency. J. Am. Chem. Soc. 2020, 142, 7276–7282. [Google Scholar] [CrossRef] [PubMed]
- Rhee, Y.W.; Ha, S.Y.; Masel, R.I. Crossover of formic acid through Nafion® membranes. J. Power Sources 2003, 117, 35–38. [Google Scholar] [CrossRef]
- Dalena, F.; Senatore, A.; Basile, M.; Knani, S.; Basile, A.; Iulianelli, A. Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology. Membranes 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamedi, H.; Brinkmann, T.; Shishatskiy, S. Membrane-assisted methanol synthesis processes and the required permselectivity. Membranes 2021, 11, 596. [Google Scholar] [CrossRef] [PubMed]
- Seshimo, M.; Liu, B.; Lee, H.R.; Yogo, K.; Yamaguchi, Y.; Shigaki, N.; Mogi, Y.; Kita, H.; Nakao, S.-I. Membrane Reactor for Methanol Synthesis Using Si-Rich LTA Zeolite Membrane. Membranes 2021, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qin, Q.; Wang, J. A review of stereolithography: Processes and systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Mu, S.; Hong, Y.; Huang, H.; Ishii, A.; Lei, J.; Song, Y.; Li, Y.; Brinkman, K.S.; Peng, F.; Xiao, H.; et al. A novel laser 3D printing method for the advanced manufacturing of protonic ceramics. Membranes 2020, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Kennedy, J.; Potgieter, J. A comparison of traditional manufacturing vs. additive manufacturing, the best method for the job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar] [CrossRef]
- Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971. [Google Scholar] [CrossRef]
- Zhang, R.; Lv, W.; Lei, L. Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate. Appl. Surf. Sci. 2015, 356, 24–29. [Google Scholar] [CrossRef]
- Chen, Y.; Kanan, M.W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Workshop Reactor | 3D Printed Reactor |
---|---|---|
Reaction volume (mL) | 30 | 1.5 |
Transparency | No | Yes |
Cleaning | Hard | Easy |
Tuning | Hard | Easy |
Manufacturing time | Weeks | 1 day |
Manufacturing price (€) | 500 | 5 |
Chemical tolerance | High | Low |
Material variety | High | Low |
Number of parts | More than 10 | 2 |
Number of bolts | 30 | 4 |
Weight (g) | 1780 | 47 |
Gastightness | Yes | No |
Electrode–electrode Distance (mm) | 46 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, A.B.; Nogalska, A.; Garcia-Valls, R. A 3D Printed Membrane Reactor System for Electrochemical CO2 Conversion. Membranes 2023, 13, 90. https://doi.org/10.3390/membranes13010090
Navarro AB, Nogalska A, Garcia-Valls R. A 3D Printed Membrane Reactor System for Electrochemical CO2 Conversion. Membranes. 2023; 13(1):90. https://doi.org/10.3390/membranes13010090
Chicago/Turabian StyleNavarro, Andreu Bonet, Adrianna Nogalska, and Ricard Garcia-Valls. 2023. "A 3D Printed Membrane Reactor System for Electrochemical CO2 Conversion" Membranes 13, no. 1: 90. https://doi.org/10.3390/membranes13010090
APA StyleNavarro, A. B., Nogalska, A., & Garcia-Valls, R. (2023). A 3D Printed Membrane Reactor System for Electrochemical CO2 Conversion. Membranes, 13(1), 90. https://doi.org/10.3390/membranes13010090