Thermodynamics of Formation and Disordering of YBaCo2O6-δ Double Perovskite as a Base for Novel Dense Ceramic Membrane Materials
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Sample Characterization and Phase Behavior
3.2. Oxygen Content and Thermodynamics of Disordering
3.3. Thermodynamics of Formation of YBaCo2O6-δ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Klyndyuk, A.I.; Chizhova, E.A.; Kharytonau, D.S.; Medvedev, D.A. Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells. Materials 2022, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Gómez, A.E.M.; Lamas, D.G.; Leyva, A.G.; Sacanell, J. Nanostructured LnBaCo2O6−δ (Ln = Sm, Gd) with layered structure for intermediate temperature solid oxide fuel cell cathodes. AIP Adv. 2017, 7, 045214. [Google Scholar] [CrossRef] [Green Version]
- Pelosato, R.; Cordaro, G.; Stucchi, D.; Cristiani, C.; Dotelli, G. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review. J. Power Source 2015, 298, 46–67. [Google Scholar] [CrossRef]
- Shen, M.; Ai, F.; Ma, H.; Xu, H.; Zhang, Y. Progress and prospects of reversible solid oxide fuel cell materials. Iscience 2021, 24, 103464. [Google Scholar] [CrossRef] [PubMed]
- Strandbakke, R.; Cherepanov, V.A.; Zuev, A.Y.; Tsvetkov, D.S.; Argirusis, C.; Sourkouni, G.; Prünte, S.; Norby, T. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ion. 2015, 278, 120–132. [Google Scholar] [CrossRef]
- Tsvetkov, D.; Tsvetkova, N.; Ivanov, I.; Malyshkin, D.; Sereda, V.; Zuev, A. PrBaCo2O6−δ-Ce0.8Sm0.2O1.9 Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells: Stability and Cation Interdiffusion. Energies 2019, 12, 417. [Google Scholar] [CrossRef] [Green Version]
- Malyshkin, D.; Novikov, A.; Ivanov, I.; Sereda, V.; Tsvetkov, D.; Zuev, A. The origin of triple conductivity and water uptake in layered double perovskites: A case study on lanthanum-substituted GdBaCo2O6−δ. J. Alloy. Compd. 2020, 845, 156309. [Google Scholar] [CrossRef]
- Kim, J.P.; Pyo, D.W.; Magnone, E.; Park, J.H. Preparation and Oxygen Permeability of ReBaCo2O5+δ (Re = Pr, Nd, Y) Ceramic Membranes. Adv. Mater. Res. 2012, 560–561, 959–964. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, L.; Ran, R.; Shao, Z.; Liu, S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 2008, 56, 4876–4889. [Google Scholar] [CrossRef]
- Kim, J.-H.; Manthiram, A. LnBaCo2O5+δ oxides as cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. J. Electrochem. Soc. 2008, 155, B385–B390. [Google Scholar] [CrossRef]
- Akahoshi, D.; Ueda, Y. Oxygen Nonstoichiometry, Structures, and Physical Properties of YBaCo2O5+x (0.00 ≤ x ≤ 0.52). J. Solid State Chem. 2001, 156, 355–363. [Google Scholar] [CrossRef]
- Urusova, A.S.; Cherepanov, V.A.; Lebedev, O.I.; Aksenova, T.V.; Gavrilova, L.Y.; Caignaert, V.; Raveau, B. Tuning oxygen content and distribution by substitution at Co site in 112 YBaCo2O5+δ: Impact on transport and thermal expansion properties. J. Mater. Chem. A 2014, 2, 8823–8832. [Google Scholar] [CrossRef]
- Ivanov, I.L.; Zakiryanov, P.O.; Sereda, V.V.; Mazurin, M.O.; Malyshkin, D.A.; Zuev, A.Y.; Tsvetkov, D.S. Nonstoichiometry, Defect Chemistry and Oxygen Transport in Fe-Doped Layered Double Perovskite Cobaltite PrBaCo2-xFexO6-δ; (x = 0–0.6) Membrane Materials. Membranes 2022, 12, 1200. [Google Scholar] [CrossRef]
- Kofstad, P. Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides; Wiley-Interscience: New York, NY, USA, 1972; p. 382. [Google Scholar]
- Tsvetkov, D.S.; Yagovitin, R.E.; Sereda, V.V.; Malyshkin, D.A.; Ivanov, I.L.; Zuev, A.Y.; Maignan, A. Defect structure and redox energetics of NdBaCo2O6-δ. Solid State Ion. 2021, 361, 115549. [Google Scholar] [CrossRef]
- Anderson, P.S.; Kirk, C.A.; Knudsen, J.; Reaney, I.M.; West, A.R. Structural characterisation of REBaCo2O6−δ phases (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Solid State Sci. 2005, 7, 1149–1156. [Google Scholar] [CrossRef]
- Fauth, F.; Suard, E.; Caignaert, V.; Domengès, B.; Mirebeau, I.; Keller, L. Interplay of structural, magnetic and transport properties in thelayered Co-based perovskite LnBaCo2O5 (Ln = Tb, Dy, Ho). Eur. Phys. J. B Condens. Matter Complex Syst. 2001, 21, 163–174. [Google Scholar] [CrossRef]
- Aksenova, T.V.; Gavrilova, L.Y.; Tsvetkov, D.S.; Voronin, V.I.; Cherepanov, V.A. Crystal structure and physicochemical properties of layered perovskite-like phases LnBaCo2O5+δ. Russ. J. Phys. Chem. A 2011, 85, 427–432. [Google Scholar] [CrossRef]
- Motin Seikh, M.; Pralong, V.; Lebedev, O.I.; Caignaert, V.; Raveau, B. The ordered double perovskite PrBaCo2O6: Synthesis, structure, and magnetism. J. Appl. Phys. 2013, 114, 013902. [Google Scholar] [CrossRef]
- Tang, Y.-k.; Almasan, C.C. Effect of Fe doping on the magnetic properties of GdBaCo2O5.5-δ. Phys. Rev. B 2008, 77, 094403. [Google Scholar] [CrossRef]
- Ananyev, M.V.; Eremin, V.A.; Tsvetkov, D.S.; Porotnikova, N.M.; Farlenkov, A.S.; Zuev, A.Y.; Fetisov, A.V.; Kurumchin, E.K. Oxygen isotope exchange and diffusion in LnBaCo2O6−δ (Ln = Pr, Sm, Gd) with double perovskite structure. Solid State Ion. 2017, 304, 96–106. [Google Scholar] [CrossRef]
- Taskin, A.A.; Lavrov, A.N.; Ando, Y. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett. 2005, 86, 091910. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkov, D.S.; Ivanov, I.L.; Urusov, I.V.; Zuev, A.Y. Thermodynamics of formation of double perovskites GdBaCo2−xMxO6−δ (M = Fe, Mn; x = 0, 0.2). Thermochim. Acta 2011, 519, 12–15. [Google Scholar] [CrossRef]
- Ivanov, I.L.; Malyshkin, D.A.; Tsvetkova, N.S.; Sereda, V.V.; Kiselev, E.A.; Zuev, A.Y.; Tsvetkov, D.S. Oxygen content and thermodynamics of formation of double perovskites REBaCo2O6−δ (RE = Gd, Pr). Thermochim. Acta 2014, 578, 28–32. [Google Scholar] [CrossRef]
- Tsvetkov, D.S.; Ivanov, I.L.; Malyshkin, D.A.; Zuev, A.Y. Oxygen content, cobalt oxide exsolution and defect structure of the double perovskite PrBaCo2O6-δ. J. Mater. Chem. A 2016, 4, 1962–1969. [Google Scholar] [CrossRef]
- Tsvetkov, D.S.; Sereda, V.V.; Zuev, A.Y. Oxygen nonstoichiometry and defect structure of the double perovskite GdBaCo2O6−δ. Solid State Ion. 2010, 180, 1620–1625. [Google Scholar] [CrossRef]
- Sereda, V.V.; Malyshkin, D.A.; Ivanov, I.L.; Tsvetkov, D.S.; Zuev, A.Y.; Maignan, A. Redox Thermochemistry, Thermodynamics, and Solar Energy Conversion and Storage Capability of Some Double Perovskite Cobaltites. Inorg. Chem. 2021, 60, 18141–18153. [Google Scholar] [CrossRef]
- Malyshkin, D.; Novikov, A.; Tsvetkov, D.; Zuev, A. Preparation, oxygen nonstoichiometry and defect structure of double perovskite LaBaCo2O6–δ. Mater. Lett. 2018, 229, 324–326. [Google Scholar] [CrossRef]
- Sednev-Lugovets, A.L.; Tsvetkov, D.S.; Sereda, V.V.; Yagovitin, R.E.; Zuev, A.Y.; Maignan, A. Defect structure and thermochemistry of YBaCo2O6-δ. Thermochim. Acta 2021, 698, 178886. [Google Scholar] [CrossRef]
- Sednev, A.L.; Zuev, A.Y.; Tsvetkov, D.S. Oxygen Content and Thermodynamic Stability of YBaCo2O6–δ Double Perovskite. Adv. Mater. Sci. Eng. 2018, 2018, 1205708. [Google Scholar] [CrossRef] [Green Version]
- Sednev, A.L.; Tsvetkov, D.S. Study and optimization of the synthesis routine of the single phase YBaCo2O6-δ double perovskite. Chim. Techno Acta 2017, 4, 183–190. [Google Scholar] [CrossRef]
- Zuev, A.Y.; Tsvetkov, D.S. Conventional methods for measurements of chemo-mechanical coupling. In Electro-Chemo-Mechanics of Solids; Bishop, S.R., Perry, N., Marrocchelli, D., Sheldon, B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 5–35. [Google Scholar]
- Starkov, I.; Bychkov, S.; Matvienko, A.; Nemudry, A. Oxygen release technique as a method for the determination of “δ–pO2–T” diagrams for MIEC oxides. Phys. Chem. Chem. Phys. 2014, 16, 5527–5535. [Google Scholar] [CrossRef]
- Parker, V.B. Thermal Properties of Aqueous Uni-Univalent Electrolytes; United States Government Publishing Office: Washington, DC, USA, 1965; p. 66.
- Diaz-Fernandez, Y.; Malavasi, L.; Mozzati, M.C. Effect of oxygen content on properties of the HoBaCo2O5+δ layered cobaltite. Phys. Rev. B 2008, 78, 144405. [Google Scholar] [CrossRef]
- Ishizawa, N.; Asaka, T.; Kudo, T.; Fukuda, K.; Yasuhara, A.; Abe, N.; Arima, T.-h. Structural Evolution of GdBaCo2O5+δ (δ = 7/18) at Elevated Temperatures. Chem. Mater. 2014, 26, 6503–6517. [Google Scholar] [CrossRef]
- Ishizawa, N.; Asaka, T.; Kudo, T.; Fukuda, K.; Abe, N.; Arima, T. Incommensurate structure of GdBaCo2O5+δ (δ∼0.38). J. Solid State Chem. 2013, 198, 532–541. [Google Scholar] [CrossRef]
- Asaka, T.; Abe, N.; Kudo, T.; Fukuda, K.; Kimoto, K.; Matsui, Y.; Ishizawa, N.; Arima, T. Structural Phase Transition and Magnetic-Field Effect on the Modulated Structure in GdBaCo2O5+δ (δ<0.5). Phys. Rev. Lett. 2013, 110, 125502. [Google Scholar] [CrossRef]
- Baza Dannykh «Termicheskiye Konstanty Veshchestv». Available online: http://www.chem.msu.ru/cgi-bin/tkv.pl (accessed on 7 June 2022).
Annealing Conditions | (6-δ) in YBC |
---|---|
T = 573 K, pO2 = 0.21 atm | 5.406 ± 0.005 * |
T = 643 K, pO2 = 0.21 atm | 5.299 ± 0.005 |
T = 733 K, pO2 = 0.21 atm | 5.209 ± 0.005 |
T = 773 K, pO2 = 3.2 · 10−2 atm | 5.109 ± 0.005 |
T = 1373 K, pO2 = 0.21 atm | 5.018 ± 0.005 |
Defect Reaction | kJ·mol−1 | J·mol−1·K−1 | ||
---|---|---|---|---|
1 | 18.0 ± 2.9 a | 0 b | 0.986 | |
2 | −113.1 ± 0.9 a | 0 b | ||
3 | 63.9 ± 1.6 a | 69.9 ± 1.0 a |
Substance | Concentration of the Obtained Solution, mol·kg−1 | |
---|---|---|
−676 ± 3 a | (2.0 ± 0.1 a) · 10−4 | |
−20.8 ± 0.4 a | (1.9 ± 0.1 a) · 10−4 | |
6.1 ± 0.4 a | (3.8 ±0.2 a) · 10−4 |
δ in YBC | Concentration of the Obtained Solution, mol·kg−1 | |
---|---|---|
0.594 | −791 ± 4 a | (1.8 ± 0.1 a) · 10−4 |
0.701 | −769 ± 3 a | |
0.791 | −748 ± 6 a | |
0.891 | −728 ± 4 a | |
0.982 | −710 ± 2 a |
Substance | |
---|---|
BaCO3(s) | −1213.0 ± 0.1 a [23] |
CO2(g) | −393.51 ± 0.05 a [39] |
CoCl2·4.24H2O(s) | −1588.6 ± 2.1 a,b [39] |
HCl(aq) | −162.17 ± 0.01 a [39] |
H2O(aq) | −285.83 ± 0.04 a [39] |
N2H6Cl2(aq) | −338.58 a [39] |
(6-δ) in YBC | |
---|---|
5.406 | −2072 ± 7 a |
5.299 | −2063 ± 6 a |
5.209 | −2059 ± 8 a |
5.109 | −2052 ± 6 a |
5.018 | −-2044 ± 6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagovitin, R.E.; Tsvetkov, D.S.; Ivanov, I.L.; Malyshkin, D.A.; Sereda, V.V.; Zuev, A.Y. Thermodynamics of Formation and Disordering of YBaCo2O6-δ Double Perovskite as a Base for Novel Dense Ceramic Membrane Materials. Membranes 2023, 13, 10. https://doi.org/10.3390/membranes13010010
Yagovitin RE, Tsvetkov DS, Ivanov IL, Malyshkin DA, Sereda VV, Zuev AY. Thermodynamics of Formation and Disordering of YBaCo2O6-δ Double Perovskite as a Base for Novel Dense Ceramic Membrane Materials. Membranes. 2023; 13(1):10. https://doi.org/10.3390/membranes13010010
Chicago/Turabian StyleYagovitin, Roman E., Dmitry S. Tsvetkov, Ivan L. Ivanov, Dmitry A. Malyshkin, Vladimir V. Sereda, and Andrey Yu. Zuev. 2023. "Thermodynamics of Formation and Disordering of YBaCo2O6-δ Double Perovskite as a Base for Novel Dense Ceramic Membrane Materials" Membranes 13, no. 1: 10. https://doi.org/10.3390/membranes13010010