Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of the Photothermal Membrane
2.2. Solar Evaporation Performance of the Photothermal Membrane
2.3. Optimization of Vapor Flow and Operational System Design
2.4. Optimization of the Transparent Cover Architecture and Evaporation Level
2.5. Optimization of the Light Transmission
2.6. Characterizations
3. Results and Discussion
3.1. Evaporation Performance of the Solar Evaporator
3.2. Improve Freshwater Collection by Vapor Flow and Operational System Design
3.3. Improved Freshwater Collection by Adjusting Transparent Cover Architecture and Evaporation Level
3.4. Improve Freshwater Collection by Increasing Light Transmission in a Transparent Cover
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; Li, G.; Boriskina, S.V.; Li, H.; Gang, C. Vapor generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126. [Google Scholar] [CrossRef]
- Jani, H.K.; Modi, K.V. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Sol. Energy 2019, 179, 186–194. [Google Scholar] [CrossRef]
- Mulroe, M.D.; Srijanto, B.R.; Ahmadi, S.F.; Collier, C.P.; Boreyk, J.B. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation. ACS Nano 2017, 11, 8499–8510. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; Zandavi, S.H.; Javid, S.M.; Boriskina, S.V.; Cooper, T.A.; Chen, G. A salt rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519. [Google Scholar] [CrossRef]
- Velmurugan, V.; Gopalakrishnan, M.; Raghu, R.; Srithar, K. Single basin solar still with fifin for enhancing productivity. Energy Convers. Manag. 2008, 49, 2602–2608. [Google Scholar] [CrossRef]
- Jun, Y.; Wu, X.; Ghim, D.; Jiang, Q.; Singamaneni, S. Photothermal membrane water treatment for two worlds. Acc. Chem. Res. 2019, 52, 1215–1225. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, H.; Shan, X.; Ding, Y.; Zhao, A.; Hu, Y.; Gan, Z. Solar vapor generation based on the photothermal effect: From designs to applications, and beyond. J. Mater. Chem. A 2019, 7, 19203–19227. [Google Scholar] [CrossRef]
- Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovis, N.; Chen, G. Solar vapor generation by heat localization. Nat. Commun. 2014, 5, 4449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.; Yang, X.; Owens, G.; Xu, H. Reversing heat conduction loss: Extracting energy from bulk water to enhance solar vapor generation. Nano Energy 2020, 78, 105269. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Zhou, X.; Chen, Z.; Yu, G. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 2019, 19, 2530–2536. [Google Scholar] [CrossRef]
- Yang, Y.; Que, W.; Zhao, J.; Han, Y.; Ju, M.; Yin, X. Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chem. Eng. J. 2019, 373, 955–962. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, H.; Yin, Z.; Zhao, J.; Yin, X.; Li, N.; Li, D.; Lei, B.; Du, Y.; Que, W. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater. Horiz. 2018, 5, 1143–1150. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Han, Y.; Liu, J.; Yin, X.; Que, W. Hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 2018, 6, 16196–16204. [Google Scholar] [CrossRef]
- Abraham, J.; Vasu, K.S.; Williams, C.D.; Gopinadhan, K.; Su, Y.; Cherian, C.T.; Dix, J.; Prestat, E.; Haigh, S.J.; Grigorieva, I.V. Tuneable sieving of ions using graphene oxide membranes. Nat. Nanotech. 2017, 12, 546–550. [Google Scholar] [CrossRef]
- Nawaz, F.; Yang, Y.; Bin, X.; Zhao, S.; Sheng, M.; Pan, C.; Que, W. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A 2021, 9, 16233–16254. [Google Scholar] [CrossRef]
- Cooper, T.A.; Zandavi, S.H.; Ni, G.W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S.V.; Chen, G. Contactless vapor generation and superheating under one sun illumination. Nat. Commun. 2018, 9, 5086. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Yang, Y.; Xu, B.; Cai, Z. Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl. Therm. Eng. 2018, 141, 406–412. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Song, X.; Huang, M.; Kumar, S.K.; Shaukat, S.F.; Jiang, H.Q. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 2018, 6, 9874–10152. [Google Scholar] [CrossRef]
- Peng, F.; Xu, J.; Bai, X.; Feng, G.; Zeng, X.; Raihan, M.R.I.; Bao, H. A Janus solar evaporator with 2D water path for highly efficient salt-resisting solar vapor generation. Sol. Energy Mater. Sol. Cells 2021, 221, 110910. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Tang, M.; Zhou, L.; Zhu, B.; Zhu, S.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, R.; Ni, G.; Xu, N.; Hu, X.; Zhu, B.; Lv, G.; Li, J.; Zhu, S.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Nat. Sci. Rev. 2018, 5, 8. [Google Scholar] [CrossRef]
- Chang, C.; Tao, P.; Fu, B.; Xu, J.; Song, C.; Wu, J.; Shang, W.; Deng, T. Three dimensional porous solar-driven interfacial evaporator for high-efficiency vapor generation under low solar flux. ACS Omega 2019, 4, 3546–3555. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, C.; Li, R.; Zhuo, S.; Jin, Y.; Shi, L.; Hong, S.; Chang, J.; Ong, C.; Wang, P. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Tech. 2018, 52, 11822–11830. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, R.; Jin, Y.; Zhuo, S.; Shi, L.; Chang, J.; Hong, S.; Ng, K.C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar vapor generation. Joule 2018, 2, 1171–1186. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Song, X.; Megarajan, S.K.; Jiang, H. A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 2017, 74, 972–978. [Google Scholar] [CrossRef]
- Wu, X.; Robson, M.E.; Phelps, J.L.; Tan, J.S.; Shao, B.; Owens, G.; Xu, H. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar vapor generation. Nano Energy 2019, 56, 708–715. [Google Scholar] [CrossRef]
- Li, N.; Yin, D.; Xu, L.; Zhao, H.; Liu, Z.; Du, Y. High-quality ultralong copper sulphide nanowires for promising applications in high efficiency solar water evaporation. Mater. Chem. Front. 2019, 3, 394–398. [Google Scholar] [CrossRef]
- Sheng, M.; Yang, Y.; Bin, X.; Zhao, S.; Pan, C.; Nawaz, F.; Que, W. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Tao, P.; Shen, Q.; Yi, N.; Zhang, F.; Liu, Q.; Song, C.; Zhang, D.; Shang, W.; et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 2014, 10, 3234–3239. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 2016, 10, 393–398. [Google Scholar] [CrossRef]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Kim, K.; Padilla, W.J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, N.; Zhao, W.; Zhou, L.; Zhu, P.; Wang, X.; Zhu, B.; Zhu, J. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 2021, 5, 1602–1612. [Google Scholar] [CrossRef]
- Gong, B.; Yang, H.; Wu, S.; Xiong, G.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Lett. 2019, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, L.; Zhao, L.; Li, B.; Bhatia, B.; Wang, C.; Wilke, K.L.; Song, Y.; Labban, O.; Lienhard, J.H.; et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 2020, 13, 830–839. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Yang, Y.; Xie, M.; Deng, Q.; Cheng, X.; Wang, X.; Zhao, S.; Wei, Y.; Que, W. Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination. Membranes 2022, 12, 899. https://doi.org/10.3390/membranes12090899
Pan C, Yang Y, Xie M, Deng Q, Cheng X, Wang X, Zhao S, Wei Y, Que W. Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination. Membranes. 2022; 12(9):899. https://doi.org/10.3390/membranes12090899
Chicago/Turabian StylePan, Cheng, Yawei Yang, Mingze Xie, Qingyuan Deng, Xiang Cheng, Xianlei Wang, Shihan Zhao, Yumeng Wei, and Wenxiu Que. 2022. "Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination" Membranes 12, no. 9: 899. https://doi.org/10.3390/membranes12090899
APA StylePan, C., Yang, Y., Xie, M., Deng, Q., Cheng, X., Wang, X., Zhao, S., Wei, Y., & Que, W. (2022). Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination. Membranes, 12(9), 899. https://doi.org/10.3390/membranes12090899