Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digestate Pretreatment
2.2. UF System and Separation Process
2.3. Experimental Design
2.4. Analysis Methods
2.5. Membrane Performance
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of the Operating Parameters on Membrane Flux
3.2. Purification Effect of UF on Digestate
3.2.1. Changes in Physicochemical Characteristics
3.2.2. Dissolved Organic Matter
3.3. Membrane Fouling Characteristics
3.3.1. SEM-EDS
3.3.2. Fouling Layer Characterization by AFM and ATR-FTIR
3.3.3. Microbial Community Analysis
3.3.4. Membrane Cleaning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Dong, H.; Zhu, Z.; Gerber, P.J.; Xui, H.; Smith, P.; Opio, C.; Steinfeld, H.; Chadwick, D. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis. Environ. Sci. Technol. 2017, 51, 4503–4511. [Google Scholar] [CrossRef]
- Ledda, C.; Schievano, A.; Salati, S.; Adam, F. Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: A case study. Water Res. 2013, 47, 6157–6166. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Lin, S.; Zhou, X.; Dong, H.; Zhan, Y. Fate of antibiotics during membrane separation followed by physical-chemical treatment processes. Sci. Total Environ. 2020, 759, 143520. [Google Scholar] [CrossRef]
- Zhao, N.; Li, X.; Jin, X.; Angelidaki, I.; Zhang, Y. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes. Chemosphere 2017, 195, 735–741. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; Imporzano, G.D.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Masse, L.; Massé, D.I.; Pellerin, Y. The use of membranes for the treatment of manure: A critical literature review. Biosyst. Eng. 2007, 98, 371–380. [Google Scholar] [CrossRef]
- Guo, X.; Jin, X. Treatment of Anaerobically Digested Cattle Manure Wastewater by Tubular Ultrafiltration Membrane. Sep. Sci. Technol. 2012, 48, 1023–1029. [Google Scholar] [CrossRef]
- Zacharof, M.P.; Lovitt, R.W. The filtration characteristics of anaerobic digester effluents employing cross flow ceramic membrane microfiltration for nutrient recovery. Desalin 2014, 341, 27–37. [Google Scholar] [CrossRef]
- Han, Z.; Lian, L.; Zhu, S.; Ye, Z.; Yu, H. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration. Sep. Sci. Technol. 2015, 156, 817–826. [Google Scholar] [CrossRef]
- Waeger, F.; Delhaye, T.; Fuchs, W. The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep. Sci. Technol. 2010, 73, 271–278. [Google Scholar] [CrossRef]
- Konieczny, K.; Kwiecińska, A.; Gworek, B. The recovery of water from slurry produced in high density livestock farming with the use of membrane processes. Sep. Purif. Technol. 2011, 80, 490–498. [Google Scholar] [CrossRef]
- López-Fernández, R.; Aristizábal, C.; Irusta, R. Ultrafiltration as an advanced tertiary treatment of anaerobically digested swine manure liquid fraction: A practical and theoretical study. J. Membr. Sci. 2011, 375, 268–275. [Google Scholar] [CrossRef]
- Eum, Y.J.; Min, J.H.; Chan, A.; Limke, J.C.; Rhu, D.H.; Kim, J.K.; Hwang, H.J. Recovery and treatment of anaerobic digestion effluent and hog manure with high solid and high density using vortex generating membrane system. Proc. Water Environ. Fed. 2012, 14, 2142–2152. [Google Scholar] [CrossRef]
- Avb, A.; Tvp, A.; Fl, B.; Sap, A. Correlation between membrane surface properties, polymer nature and fouling in skim milk ultrafiltration. Colloids Surf. A 2020, 605. [Google Scholar] [CrossRef]
- Regula, C.; Carretier, E.; Wyart, Y.; Gesan-Guiziou, G.; Vincent, A.; Boudot, D.; Moulin, P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014, 56, 325–365. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Tian, Y.; Zuo, W.; Zhang, J.; Li, H.; Pan, X. Static adsorptive fouling of extracellular polymeric substances with different membrane materials. Water Res. 2014, 50, 267–277. [Google Scholar] [CrossRef]
- Miyoshi, T.; Yuasa, K.; Ishigami, T.; Rajabzadeh, S.; Kamio, E.; Ohmukai, Y.; Saeki, D.; Ni, J.; Matsuyama, H. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors. Appl. Surf. Sci. 2015, 330, 351–357. [Google Scholar] [CrossRef]
- Yue, C.; Dong, H.; Chen, Y.; Shang, B.; Zhu, Z. Direct Purification of Digestate Using Ultrafiltration Membranes: Influence of Pore Size on Filtration Behavior and Fouling Characteristics. Membranes 2021, 11, 179. [Google Scholar] [CrossRef]
- Jing, Z.; Yla, B.; Shuang, P.B. Performance of a forward osmotic membrane bioreactor for anaerobic digestion of waste sludge with increasing solid concentration. J. Environ. Manag. 2019, 246, 239–246. [Google Scholar] [CrossRef]
- Krishnan, S.; Suzana, B.N.; Wahid, Z.A. Optimization of Operating Parameters for Xylose Reductase Separation through Ultrafiltration Membrane Using Response Surface Methodology. Biotechnol. Rep. 2020, 27, 498. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, X.; Qiu, M.; Drioli, E.; Fan, Y. Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures. Sep. Purif. Technol. 2018, 215. [Google Scholar] [CrossRef]
- Stade, S.; Kallioinen, M.; Tuuva, T.; Mänttäria, M. Compaction and its effect on retention of ultrafiltration membranes at different temperatures. Sep. Sci. Technol. 2015, 151, 211–217. [Google Scholar] [CrossRef]
- Sancho, L.; Meabe, E.; Déléris, S. Performance of anaerobic membrane bioreactor for sewage sludge treatment: Mesophilic and thermophilic processes. J. Membr. Sci. 2013, 446, 26–33. [Google Scholar] [CrossRef]
- Hanvajanawong, K.; Bs, A.; Bsa, B. Unravelling capability of two-stage thermophilic anaerobic membrane bioreactors for high organic loading wastewater: Effect of support media addition and irreversible fouling. Bioresour. Technol. 2022, 348, 136725. [Google Scholar] [CrossRef]
- Saeki, D.; Minami, R.; Matsuyama, H. Effects of operating conditions on biofouling in crossflow ultrafiltration membrane processes. Sep. Sci. Technol. 2017, 189, 138–144. [Google Scholar] [CrossRef]
- Ng, H.; Elimelech, M. Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. J. Membr. Sci. 2004, 244, 215–226. [Google Scholar] [CrossRef]
- Jaffrin, M.Y. Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems. J. Membr. Sci. 2008, 324, 7–25. [Google Scholar] [CrossRef]
- Zhang, G.; Ji, S.; Xue, G.; Liu, Z. Adsorptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes. J. Membr. Sci. 2007, 309, 28–35. [Google Scholar] [CrossRef]
- Sheng, G.P.; Yu, H.Q.; Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef]
- Ma, B.; Ding, Y.; Li, W.; Hu, C.; Yang, M. Ultrafiltration membrane fouling induced by humic acid with typical inorganic salts. Chemosphere 2018, 197, 793–802. [Google Scholar] [CrossRef]
- Charfi, A.; Kim, S.; Yoon, Y. Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate. Chemosphere 2021, 279, 130524. [Google Scholar] [CrossRef] [PubMed]
- Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalin 2015, 356, 187–207. [Google Scholar] [CrossRef]
Types | pH | EC/(ms cm−1) | TS/(mg L−1) | COD/(mg L−1) | TP/(mg L−1) | NH3-N/(mg L−1) | TN/(mg L−1) | K/(mg L−1) | TIC/(mg L−1) |
---|---|---|---|---|---|---|---|---|---|
Digestate | 8.96 ± 0.13 | 9.2 ± 0.2 | 15.5 ± 0.7 | 12,275 ± 1025.3 | 185.9 ± 39.0 | 2035 ± 14.1 | 3200 ± 282.8 | 3799.5 ± 26.2 | 9552 ± 445.5 |
Components | Number | Main Parameters | Manufacturer |
---|---|---|---|
Feed tank | 1 | Volume, 3 L | Xiamen Fumei Technology Co., Ltd; Xiamen, China |
Volumetric flask | 2 | Volume, 500 mL | Sichuan Shubo (Group) Co., Ltd; Chengdu, China |
Pressure gauge | 2 | Range, 0–10 bar | Yuyao Zhenxing Flowmeter Instrument Factory; Yuyao, China |
Electronic balance | 1 | Max: 800 g; Accuracy class II | Shanghai Tianmei Balance Instrument Co., Ltd; Shanghai, China |
Thermostatic circulator | 1 | Model, DTY-30B; range 20–50 ℃ | Beijing Detianyou Technology Development Co., Ltd; Beijing, China |
Three-phase induction motor | 1 | Type, MS 100LN-6B, 1.5 KW | LEUCO S.p.A; Reggio Emilia, Italy |
Piston diaphragm pump | 1 | HAWK, Model NMT1520ESR | LEUCO S.p.A; Reggio Emilia, Italy |
Membrane module and membrane | 1 | See Figure 1B | Xiamen Fumei Technology Co., Ltd; Xiamen, China RisingSun Membrane technology Co., Ltd; Beijing, China |
Rotameter | 1 | Range, 0–20 LPM | Yuyao Zhenxing Flowmeter Instrument Factory; Yuyao, China |
Membrane Material | MWCO (Da) | Contact Angle (CA) (°) | Surface Roughness (Ra) (nm) | Pure Water Flux (L m−2 h−1) 1 |
---|---|---|---|---|
PS | 50,000 | 73.9 ± 2.1 | 5.1 ± 0.8 | 438.8 ± 90.8 |
PVDF | 50,000 | 81.5 ± 1.9 | 44.4 ± 27.1 | 965.7 ± 127.9 |
PES | 50,000 | 61.9 ± 1.2 | 22.8 ± 5.5 | 688.8 ± 35.1 |
PAN | 50,000 | 54.4 ± 2.6 | 15.1 ± 2.9 | 576.6 ± 77.8 |
Parameters | Instruments | Methods |
---|---|---|
Ph | Five Go F2, METTLER; Zurich, Switzerland | Electrode |
EC | Five Go F3, METTLER; Zurich, Switzerland | Electrode |
COD | DR 6000, HACH; Loveland, CO, USA | Potassium dichromate method |
NH3-N | DR 6000, HACH; Loveland, CO, USA | Salicylic acid hypochlorite photometry method |
TN | DR 6000, HACH; Loveland, CO, USA | The Chinese Standard (HJ 636-2012) |
K | Atomic absorption spectrometry, ContrAA 700; Jena, Germany | The Chinese Standard (GB 11904-1989) |
TP | Spectrumlab S22pc; Shanghai, China | The Chinese Standard (GB/T 11893-1989) |
TS | Drying oven, Renggli TC-400, Salvin Lab; Rotjreuz, Switzerland | 105 °C, |
TIC | TOC analyzer, Elementar; Frankfurt, Germany | The Chinese Standard (GB/T 13193-1991) |
CA | OCA15EC, Dataphysics Instruments GmbH; Filderstadt, Germany | Electron microscope, image capture |
UV254 | UV spectrophotometer, UV-2550, Shimadzu; Kyoto, Japan | 254 nm UV light |
3D-EEM | F-4700 fluorescence spectrophotometer, Hitachi; Tokyo, Japan | Excitation–emission matrix spectra |
SEM-EDS | Hitachi S-4800, Hitachi; Tokyo, Japan | Electron microscopy and X-ray spectroscopy |
AFM | Bruker Dimenson ICON; Billerica, MA, USA | - |
ATR-FTIR | Thermo Scientific Nicolet iS5; Waltham, MA, USA | - |
Treatment | Types | pH | EC/(ms cm−1) | TS/(mg L−1) | COD/(mg L−1) | TP/(mg L−1) | NH3-N/(mg L−1) | TN/(mg L−1) | K/(mg L−1) |
---|---|---|---|---|---|---|---|---|---|
Influent | 8.96 ± 0.13 a | 9.2 ± 0.2 a | 15.5 ± 0.7 b | 12,275 ± 1025.3 b | 185.9 ± 39.0 a | 2035 ± 14.1 a | 3200 ± 282.8 a,b | 3799.5 ± 26.2 a | |
PS | Concentrate | 9.1 ± 0.1 a | 8.8 ± 0.1 a,b | 24.5 ± 0.7 a | 27,200 ± 424.3 a | 251.3 ± 7.2 a | 1895 ± 7.1 a | 3400 ± 0.01 a,b | 3614 ± 222.0 a |
Permeate | 9.2 ± 0.04 a | 8.2 ± 0.01 b | 8.0 ± 1.4 c | 3400 ± 282.8 c | 98 ± 7.2 b | 1520 ± 28.3 b,c | 2150 ± 70.7 c | 3298.5 ± 297.7 a | |
PVDF | Concentrate | 9.2 ± 0.03 a | 8.6 ± 0.1 a,b | 19.0 ± 4.2 a,b | 24,200 ± 565 a | 192.1 ± 10.1 a | 1780 ± 183.8 a,b | 3100 ± 141.4 a,b | 3194.5 ± 782.8 a |
Permeate | 9.3 ± 0.04 a | 8.3 ± 0.07 b | 8.5 ± 0.7 c | 2950 ± 353.6 c | 99.1 ± 0.07 b | 1480 ± 84.9 c | 2150 ± 212.1 c | 3366.5 ± 600.3 a | |
PES | Concentrate | 9.1 ± 0.08 a | 8.6 ± 0.06 a,b | 23.0 ± 4.2 a,b | 27,400 ± 367.9 a | 252.3 ± 34.6 a | 1930 ± 70.7 a | 3700 ± 70.7 a | 3217 ± 461 a |
Permeate | 9.2 ± 0.04 a | 8.2 ± 0.07 b | 9.0 ± 1.4 c | 4000 ± 141.4 c | 101.1 ± 8.7 b | 1580 ± 14.1 b,c | 2550 ± 70.7 b,c | 3731.5 ± 325.9 a | |
PAN | Concentrate | 9.1 ± 0.1 a | 8.3 ± 0.4 b | 20.5 ± 3.5 a,b | 23,350 ± 3181.9 a | 224.8 ± 36.1 a | 1780 ± 70.7 a,b | 3400 ± 282.8 a,b | 3608 ± 469.5 a |
Permeate | 9.3 ± 0.1 a | 8.0 ± 0.3 b | 9.0 ± 0.1 c | 3400 ± 989.9 c | 104.2 ± 1.5 b | 1615 ± 7.1 b,c | 2350 ± 212.1 b,c | 3217 ± 485.1 a |
Region | Organic | Ex (nm) | Em (nm) | Integral Standard Volume (au·nm2) | ||||
---|---|---|---|---|---|---|---|---|
Influent | PS Effluent | PVDF Effluent | PES Effluent | PAN Effluent | ||||
I | Aromatic proteins I | 200~250 | 280~330 | 136,468 | 97,768 | 97,866 | 96,755 | 105,871 |
II | Aromatic proteins II | 200~250 | 330~380 | 116,915 | 72,806 | 76,214 | 61,272 | 82,627 |
III | Fulvic acid-like | 200~250 | 380~550 | 475,054 | 472,246 | 422,871 | 386,558 | 447,355 |
IV | SMBP | 250~340 | 280~380 | 547,659 | 43,2198 | 383,674 | 347,842 | 474,927 |
V | Humic acid-like | 340~400 | 380~550 | 556,674 | 393,454 | 345,436 | 316,562 | 430,629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Chen, Y.; Zhang, W.; Zheng, Y.; Hu, X.; Shang, B. Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics. Membranes 2022, 12, 882. https://doi.org/10.3390/membranes12090882
Yue C, Chen Y, Zhang W, Zheng Y, Hu X, Shang B. Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics. Membranes. 2022; 12(9):882. https://doi.org/10.3390/membranes12090882
Chicago/Turabian StyleYue, Caide, Yongxing Chen, Wanqin Zhang, Yunhao Zheng, Xuzhao Hu, and Bin Shang. 2022. "Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics" Membranes 12, no. 9: 882. https://doi.org/10.3390/membranes12090882
APA StyleYue, C., Chen, Y., Zhang, W., Zheng, Y., Hu, X., & Shang, B. (2022). Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics. Membranes, 12(9), 882. https://doi.org/10.3390/membranes12090882