Spider Toxin SNX-482 Gating Modifier Spontaneously Partitions in the Membrane Guided by Electrostatic Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. SNX-482 Modeling
2.2. Coarse-Grained Molecular Dynamics Simulations
2.3. All Atom Molecular Dynamics Simulations
2.4. Membrane Partitioning and Insertion Probability
2.5. Free-Energy and Potential Energy Calculations
2.6. Diffusion Coefficient Calculation
3. Results and Discussion
3.1. SNX-482 Partitions into Partially Anionic Membranes in a Conserved Manner
3.2. The Role of Electrostatic Interactions in SNX 482 Membrane Partitioning
3.3. Toxin Diffusivity Is Reduced upon Membrane Insertion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholson, G.M. Chapter 63—Spider Peptides. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 461–472. ISBN 978-0-12-385095-9. [Google Scholar]
- Avrutina, O. Synthetic Cystine-Knot Miniproteins—Valuable Scaffolds for Polypeptide Engineering. In Protein Targeting Compounds; Böldicke, T., Ed.; Springer International Publishing: Cham, Germany, 2016; Volume 917, pp. 121–144. ISBN 978-3-319-32804-1. [Google Scholar]
- Daly, N.L.; Craik, D.J. Bioactive Cystine Knot Proteins. Curr. Opin. Chem. Biol. 2011, 15, 362–368. [Google Scholar] [CrossRef]
- Herzig, V.; King, G. The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a. Toxins 2015, 7, 4366–4380. [Google Scholar] [CrossRef] [Green Version]
- Agwa, A.J.; Peigneur, S.; Chow, C.Y.; Lawrence, N.; Craik, D.J.; Tytgat, J.; King, G.F.; Henriques, S.T.; Schroeder, C.I. Gating Modifier Toxins Isolated from Spider Venom: Modulation of Voltage-Gated Sodium Channels and the Role of Lipid Membranes. J. Biol. Chem. 2018, 293, 9041–9052. [Google Scholar] [CrossRef] [Green Version]
- Catterall, W.A.; Cestèle, S.; Yarov-Yarovoy, V.; Yu, F.H.; Konoki, K.; Scheuer, T. Voltage-Gated Ion Channels and Gating Modifier Toxins. Toxicon 2007, 49, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.; Moczydlowski, E.; Latorre, R.; Phillips, M. Charybdotoxin, a Protein Inhibitor of Single Ca2+-Activated K+ Channels from Mammalian Skeletal Muscle. Nature 1985, 313, 316–318. [Google Scholar] [CrossRef]
- Jung, H.J.; Lee, J.Y.; Kim, S.H.; Eu, Y.-J.; Shin, S.Y.; Milescu, M.; Swartz, K.J.; Kim, J.I. Solution Structure and Lipid Membrane Partitioning of VSTx1, an Inhibitor of the KvAP Potassium Channel. Biochemistry 2005, 44, 6015–6023. [Google Scholar] [CrossRef]
- Lee, H.C.; Wang, J.M.; Swartz, K.J. Interaction between Extracellular Hanatoxin and the Resting Conformation of the Voltage-Sensor Paddle in Kv Channels. Neuron 2003, 40, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Axelrod, D.; Wang, M.D. Reduction-of-Dimensionality Kinetics at Reaction-Limited Cell Surface Receptors. Biophys. J. 1994, 66, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Bosmans, F.; Swartz, K.J. Targeting Voltage Sensors in Sodium Channels with Spider Toxins. Trends Pharmacol. Sci. 2010, 31, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; MacKinnon, R. A Membrane-Access Mechanism of Ion Channel Inhibition by Voltage Sensor Toxins from Spider Venom. Nature 2004, 430, 232–235. [Google Scholar] [CrossRef]
- Lau, C.H.Y.; King, G.F.; Mobli, M. Molecular Basis of the Interaction between Gating Modifier Spider Toxins and the Voltage Sensor of Voltage-Gated Ion Channels. Sci. Rep. 2016, 6, 34333. [Google Scholar] [CrossRef] [Green Version]
- Deplazes, E.; Henriques, S.T.; Smith, J.J.; King, G.F.; Craik, D.J.; Mark, A.E.; Schroeder, C.I. Membrane-Binding Properties of Gating Modifier and Pore-Blocking Toxins: Membrane Interaction Is Not a Prerequisite for Modification of Channel Gating. Biochim. Biophys. Acta BBA Biomembr. 2016, 1858, 872–882. [Google Scholar] [CrossRef]
- Posokhov, Y.O.; Gottlieb, P.A.; Morales, M.J.; Sachs, F.; Ladokhin, A.S. Is Lipid Bilayer Binding a Common Property of Inhibitor Cysteine Knot Ion-Channel Blockers? Biophys. J. 2007, 93, L20–L22. [Google Scholar] [CrossRef] [Green Version]
- Newcomb, R.; Chen, X.; Dean, R.; Dayanithi, G.; Cong, R.; Szoke, B.; Lemos, J.; Bowersox, S.; Miljanich, G. SNX-482: A Novel Class E Calcium Channel Antagonist from Tarantula Venom. CNS Drug Rev. 2006, 6, 153–173. [Google Scholar] [CrossRef]
- Newcomb, R.; Szoke, B.; Palma, A.; Wang, G.; Chen, X.; Hopkins, W.; Cong, R.; Miller, J.; Urge, L.; Tarczy-Hornoch, K.; et al. Selective Peptide Antagonist of the Class E Calcium Channel from the Venom of the Tarantula Hysterocrates Gigas. Biochemistry 1998, 378, 15353–15362. [Google Scholar] [CrossRef] [PubMed]
- Bourinet, E.; Stotz, S.C.; Spaetgens, R.L.; Dayanithi, G.; Lemos, J.; Nargeot, J.; Zamponi, G.W. Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of A1E (CaV2.3) Calcium Channels. Biophys. J. 2001, 81, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Kimm, T.; Bean, B.P. Inhibition of A-Type Potassium Current by the Peptide Toxin SNX-482. J. Neurosci. 2014, 34, 9182–9189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munhoz, J.; Thomé, R.; Rostami, A.; Ishikawa, L.L.W.; Verinaud, L.; Rapôso, C. The SNX-482 Peptide from Hysterocrates Gigas Spider Acts as an Immunomodulatory Molecule Activating Macrophages. Peptides 2021, 146, 170648. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller. Curr. Protoc. Bioinform. 2006, 15, 5.6.1–5.6.30. [Google Scholar] [CrossRef] [Green Version]
- Scott, W.R.P.; Hünenberger, P.H.; Tironi, I.G.; Mark, A.E.; Billeter, S.R.; Fennen, J.; Torda, A.E.; Huber, T.; Krüger, P.; van Gunsteren, W.F. The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A 1999, 103, 3596–3607. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Souza, P.C.T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B.M.H.; Wassenaar, T.A.; et al. Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics. Nat. Methods 2021, 18, 382–388. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- de Jong, D.H.; Singh, G.; Bennett, W.F.D.; Arnarez, C.; Wassenaar, T.A.; Schäfer, L.V.; Periole, X.; Tieleman, D.P.; Marrink, S.J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013, 9, 687–697. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; MacKerell, A.D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603. [Google Scholar] [CrossRef] [Green Version]
- Laio, A.; Parrinello, M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. [Google Scholar] [CrossRef] [Green Version]
- Fiorin, G.; Klein, M.L.; Hénin, J. Using Collective Variables to Drive Molecular Dynamics Simulations. Mol. Phys. 2013, 111, 3345–3362. [Google Scholar] [CrossRef]
- Coutsias, E.A.; Seok, C.; Dill, K.A. Using Quaternions to Calculate RMSD. J. Comput. Chem. 2004, 25, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Venable, R.M.; Ingólfsson, H.I.; Lerner, M.G.; Perrin, B.S.; Camley, B.A.; Marrink, S.J.; Brown, F.L.H.; Pastor, R.W. Lipid and Peptide Diffusion in Bilayers: The Saffman–Delbrück Model and Periodic Boundary Conditions. J. Phys. Chem. B 2017, 121, 3443–3457. [Google Scholar] [CrossRef]
- Swartz, K.J.; MacKinnon, R. An Inhibitor of the Kv2.1 Potassium Channel Isolated from the Venom of a Chilean Tarantula. Neuron 1995, 15, 941–949. [Google Scholar] [CrossRef] [Green Version]
- Camley, B.A.; Lerner, M.G.; Pastor, R.W.; Brown, F.L.H. Strong Influence of Periodic Boundary Conditions on Lateral Diffusion in Lipid Bilayer Membranes. J. Chem. Phys. 2015, 143, 243113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lipid Composition | Coarse Grain | All-Atom | ||
---|---|---|---|---|
IS | Bindings/Run | IS | Bindings/Run | |
POPC | 0 | 0/4 | 2.7 ± 2.5 | 1/4 |
POPC:POPG (3:1) | 5.4 ± 2.3 | 4/4 | 13.4 ± 2.2 | 4/4 |
POPC:POPG (1:1) | 7.9 ± 1.1 | 4/4 | 3.9 ± 2.3 | 2/4 |
POPC:POPG (1:3) | 4.7 ± 3.1 | 2/4 | 5.5 ± 2.2 | 2/4 |
POPG | 6.8 ± 2.3 | 3/4 | 1.3 ± 0.6 | 1/4 |
Component | 3:1 | 1:0 |
---|---|---|
ΔETotPot | −83.8 ± 7.4 | 5.5 ± 6.3 |
ΔETotVdW | −122.8 ± 4.8 | −4.0 ± 3.0 |
ΔETotEle | 36.7± 5.0 | 8.2 ± 4.8 |
ΔETotBond | 1.8 ± 2.6 | 1.4 ± 2.7 |
ΔEToxVdW | −65.3 ± 3.2 | −52.7 ± 2.8 |
ΔERestVdW | −56.6 ± 4.0 | 48.7 ± 4.8 |
ΔEToxEle | −76.0 ± 3.3 | −53.8 ± 3.9 |
ΔERestEle | 111.4 ± 4.4 | 62.1 ± 4.6 |
Diffusion Coefficient | D∞ (cm2/s) | Dsim (cm2/s) |
---|---|---|
SNX-482 partitioned in POPC:POPG (3:1) (DM) 1 | 1.1 × 10−7 | 4.1 × 10−8 |
SNX-482 in solution (DAP) | -- | 1.0 × 10−6 |
POPC 2 | 1.0 × 10−7 | 1.5 × 10−7 |
POPC:POPG (3:1) 1 | 1.0 × 10−7 | 1.6 × 10−7 |
POPC:POPG (1:1) 2 | 1.0 × 10−7 | 1.3 × 10−7 |
POPC:POPG (1:3) 2 | 1.0 × 10−7 | 1.5 × 10−7 |
POPG2 | 1.0 × 10−7 | 1.4 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellado, G.; Espinoza, N.; Garate, J.A.; Neely, A. Spider Toxin SNX-482 Gating Modifier Spontaneously Partitions in the Membrane Guided by Electrostatic Interactions. Membranes 2022, 12, 595. https://doi.org/10.3390/membranes12060595
Mellado G, Espinoza N, Garate JA, Neely A. Spider Toxin SNX-482 Gating Modifier Spontaneously Partitions in the Membrane Guided by Electrostatic Interactions. Membranes. 2022; 12(6):595. https://doi.org/10.3390/membranes12060595
Chicago/Turabian StyleMellado, Guido, Nicolas Espinoza, Jose Antonio Garate, and Alan Neely. 2022. "Spider Toxin SNX-482 Gating Modifier Spontaneously Partitions in the Membrane Guided by Electrostatic Interactions" Membranes 12, no. 6: 595. https://doi.org/10.3390/membranes12060595
APA StyleMellado, G., Espinoza, N., Garate, J. A., & Neely, A. (2022). Spider Toxin SNX-482 Gating Modifier Spontaneously Partitions in the Membrane Guided by Electrostatic Interactions. Membranes, 12(6), 595. https://doi.org/10.3390/membranes12060595