Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Properties of Cross-Linked Carboxymethyl Rice Starch (CLCMRS)
2.3. Preparation of HPMC-CLCMRS Composite Film
2.4. Physicochemical Properties of HPMC-CLCMRS Composite Films
2.4.1. Average Weight
2.4.2. Film Thickness and Density
2.4.3. Swelling Index
2.4.4. Moisture Content
2.4.5. Moisture Absorption
2.4.6. Transparency
2.5. Scanning Electron Microscopic (SEM) with Energy-Dispersive X-ray Analysis
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Mechanical Properties
2.8. Folding Endurance Test
2.9. In Vitro Disintegration Test
2.9.1. Petri Dish Method
2.9.2. Slide Frame and Bead Method
2.10. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Properties of Crosslinked Carboxymethyl Rice Starch (CLCMRS)
3.2. Physicochemical Properties of Composite Films
3.2.1. Average Weight, Film Thickness and Density
3.2.2. Moisture Content and Moisture Absorption
3.2.3. Transparency
3.3. SEM of Films
3.4. FTIR
3.5. Mechanical Properties
3.5.1. Tensile Strength
3.5.2. Elongation at Break (EAB)
3.6. Folding Endurance Test
3.7. In Vitro Disintegration Time
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ouda, G.I.; Dahmash, E.Z.; Alyami, H.; Iyire, A. A novel technique to improve drug loading capacity of fast/extended release orally dissolving films with potential for paediatric and geriatric drug delivery. AAPS PharmSciTech 2020, 21, 126. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, R.J.B.; Vanin, F.M.; De Carvalho, R.A.; Trindade, M.A.; Fávaro-Trindade, C.S. Characterization of low cost orally disintegrating film (ODF). Polímeros 2017, 27, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Janigová, N.; Elbl, J.; Pavloková, S.; Gajdziok, J. Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films. Pharmaceutics 2022, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Zakar, R.S.; Özakar, E. Current overview of oral thin films. Turk. J. Pharm. Sci. 2021, 18, 111–121. [Google Scholar]
- Khalid, G.M.; Musazzi, U.M.; Selmin, F.; Franze, S.; Minghetti, P.; Cilurzo, F. Extemporaneous printing of diclofenac orodis-persible films for pediatrics. Drug Dev. Ind. Pharm. 2021, 47, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Norfarhana, A.; Ilyas, R.; Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr. Polym. 2022, 291, 119563. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules 2020, 25, 2836. [Google Scholar] [CrossRef]
- Pandey, A. Pharmaceutical and biomedical applications of cellulose nanofibers: A review. Environ. Chem. Lett. 2021, 19, 2043–2055. [Google Scholar] [CrossRef]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Asl, A.K. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, W.; Vo, A.Q.; Feng, X.; Ye, X.; Kim, D.W.; Repka, M.A. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr. Polym. 2017, 177, 49–57. [Google Scholar] [CrossRef]
- Narváez-Gómez, G.; Figueroa-Flórez, J.; Salcedo-Mendoza, J.; Pérez-Cervera, C.; Andrade-Pizarro, R. Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films. Heliyon 2021, 7, e06644. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Wang, J. Structural properties of chemically modified Chinese yam starches and their films. Int. J. Food Prop. 2016, 20, 1239–1250. [Google Scholar] [CrossRef]
- Majzoobi, M.; Pesaran, Y.; Mesbahi, G.; Golmakani, M.T.; Farahnaky, A. Physical properties of biodegradable films from heat-moisture-treated rice flour and rice starch. Starch/Starke 2015, 67, 1053–1060. [Google Scholar] [CrossRef]
- Bodini, R.B.; Guimarães, J.D.G.L.; Monaco-Lourenço, C.A.; de Carvalho, R.A. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. J. Drug Deliv. Sci. Technol. 2019, 51, 403–410. [Google Scholar] [CrossRef]
- Limpongsa, E.; Jaipakdee, N. Physical modification of Thai rice starch and its application as orodispersible film former. Carbohydr. Polym. 2020, 239, 116206. [Google Scholar] [CrossRef] [PubMed]
- Kittipongpatana, O.S.; Chaitep, W.; Kittipongpatana, N. Physicochemical and pharmaceutical properties of cross-linked car-boxymethyl rice starch prepared by a simultaneous dual reaction. Cereal Chem. 2010, 87, 214–220. [Google Scholar] [CrossRef]
- Kittipongpatana, O.S.; Kittipongpatana, N. Physicochemical and Functional Properties of Modified KJ CMU-107 Rice Starches as Pharmaceutical Excipients. Polymers 2022, 14, 1298. [Google Scholar] [CrossRef] [PubMed]
- Basiak, E.; Lenart, A.; Debeaufort, F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, M.; Keley, M.; Biazar, E. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int. J. Biol. Macromol. 2018, 116, 272–280. [Google Scholar] [CrossRef]
- Teixeira, E.D.M.; Lotti, C.; Corrêa, A.C.; Teodoro, K.B.R.; Marconcini, J.M.; Mattoso, L.H.C. Thermoplastic corn starch reinforced with cotton cellulose nanofibers. J. Appl. Polym. Sci. 2010, 120, 2428–2433. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Jaisan, C.; Klunklin, W.; Phongthai, S.; Rawdkuen, S.; Tongdeesoontorn, W. Mechanical and Physicochemical Properties of Composite Biopolymer Films Based on Carboxymethyl Cellulose from Young Palmyra Palm Fruit Husk and Rice Flour. Polymers 2022, 14, 1872. [Google Scholar] [CrossRef] [PubMed]
- Harussani, M.M.; Sapuan, S.M.; Firdaus, A.H.M.; El-Badry, Y.A.; Hussein, E.E.; El-Bahy, Z.M. Determination of the Tensile Properties and Biodegradability of Cornstarch-Based Biopolymers Plasticized with Sorbitol and Glycerol. Polymers 2021, 13, 3709. [Google Scholar] [CrossRef] [PubMed]
- Bruni, G.P.; de Oliveira, J.P.; Fonseca, L.M.; da Silva, F.T.; Dias, A.R.G.; da Rosa Zavareze, E. Biocomposite Films Based on Phosphorylated Wheat Starch and Cellulose Nanocrystals from Rice, Oat, and Eucalyptus Husks. Starch-Stärke 2019, 72, 1900051. [Google Scholar] [CrossRef]
- ASTM D 2176-97a. Standard Test Method for Folding Endurance of Paper by the M.I.T. Tester. Annual Book of ASTM; American Society for Testing and Materials: Philadelphia, PA, USA, 2002. [Google Scholar]
- Kim, S.; Cho, D.-H.; Kweon, D.-K.; Jang, E.-H.; Hong, J.-Y.; Lim, S.-T. Improvement of mechanical properties of orodispersible hyaluronic acid film by carboxymethyl cellulose addition. Food Sci. Biotechnol. 2020, 29, 1233–1239. [Google Scholar] [CrossRef]
- Speer, I.; Steiner, D.; Thabet, Y.; Breitkreutz, J.; Kwade, A. Comparative study on disintegration methods for oral film prepara-tions. Eur. J. Pharm. Biopharm. 2018, 132, 50–61. [Google Scholar] [CrossRef]
- Wilpiszewska, K. Hydrophilic films based on starch and carboxymethyl starch. Pol. J. Chem. Technol. 2019, 21, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Kittipongpatana, O.S.; Chaichanasak, N.; Kanchongkittipoan, S.; Panturat, A.; Taekanmark, T.; Kittipongpatana, N. An Aqueous Film-coating Formulation based on Sodium Carboxymethyl Mungbean. Starch-Stärke 2006, 58, 587–589. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Thanakkasaranee, S.; Auras, R.A.; Chaiwong, N.; Jantanasakulwong, K.; Jantrawut, P.; Phimolsiripol, Y.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T.; et al. Morphology, Mechanical, and Water Barrier Properties of Carboxymethyl Rice Starch Films: Sodium Hydroxide Effect. Molecules 2022, 27, 331. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef]
- Klangmuang, P.; Sothornvit, R. Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocoll. 2016, 61, 609–616. [Google Scholar] [CrossRef]
- Shi, S.-C.; Chen, T.-H.; Mandal, P.K. Enhancing the Mechanical and Tribological Properties of Cellulose Nanocomposites with Aluminum Nanoadditives. Polymers 2020, 12, 1246. [Google Scholar] [CrossRef] [PubMed]
- Prado, N.R.T.; Raabe, J.; Mirmehdi, S.; Hugen, L.N.; Lima, L.C.; Ramos, A.L.S.; Junior, M.G.; Tonoli, G.H.D. Strength im-provement of hydroxypropyl methycellulose starch films using cellulose nanoncrystal. Cerne 2017, 23, 423–424. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, Y.; Ikeda, N.; Tahara, K.; Takeuchi, H. Mechanical characteristics of orally disintegrating films: Comparison of folding endurance and tensile properties. Int. J. Pharm. 2020, 589, 119876. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Mitchell, J.R.; MacNaughtan, W.; Foster, T.; Harabagiu, V.; Song, Y.; Zheng, Q. Comparison of the Mechanical Properties of Cellulose and Starch Films. Biomacromolecules 2009, 11, 126–132. [Google Scholar] [CrossRef]
- Mahadevaiah; Shivakumara, L.R.; Demappa, T.; Singh, V. Mechanical and barrier properties of hydroxypropylmethylcellulose edible polymer films with plasticizer combinations. J. Food Process. Preserv. 2017, 41, e13020. [Google Scholar] [CrossRef]
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef] [Green Version]
- Conseil de L’Europe. European Pharmacopoeia, 10th Ed. Eur. Pharm. 2020, 10, 323–324. [Google Scholar]
Formulation | Polymer Composition (%) | Glycerol (g/100 g Polymers) | ||
---|---|---|---|---|
HPMC E5LV (3 g/100 mL) | CLCMRS (3 g/100 mL) | Ratio | ||
HPMC | 100 | - | N/A | 0 |
CLCMRS | - | 100 | N/A | 0 |
C-1 | 90 | 10 | 9:1 | 0 |
C-2 | 87.5 | 12.5 | 7:1 | 0 |
C-3 | 83.5 | 16.5 | 5:1 | 0 |
C-4 | 80 | 20 | 4:1 | 0 |
C-5 | 90 | 10 | 9:1 | 1.5 |
C-6 | 87 | 13 | 7:1 | 1.5 |
C-7 | 83 | 17 | 5:1 | 1.5 |
C-8 | 80 | 20 | 4:1 | 1.5 |
C-9 | 90 | 10 | 9:1 | 2.5 |
C-10 | 87 | 13 | 7:1 | 2.5 |
C-11 | 83 | 17 | 5:1 | 2.5 |
C-12 | 80 | 20 | 4:1 | 2.5 |
Analysis | Unit | CLCMRS | NRS |
---|---|---|---|
Total starch | % | 81.58 ± 3.87 | 91.03 ± 3.15 |
Amylose content | % | 18.14 | 21.23 |
Moisture content | % | 10.60 ± 0.33 | 7.24 ± 0.12 |
Ash content | % | 6.93 ± 0.08 | 2.42 ± 0.08 |
Protein | % | 0.00 | 0.00 |
Fat | % | 0.00 | 0.00 |
Degree of carboxymethyl substitution (DS) | - | 0.24 ± 0.02 | N/A |
Degree of phosphate crosslinking (DCx) | - | 0.018 ± 0.003 | N/A |
Water solubility | % | 58.5 | 3.1 |
Swelling power | g/g | 28.43 ± 1.59 | 2.04 ± 0.18 |
Formulation | Physicochemical Property | Swelling Index (g/g DW) | Moisture Content (%) | Moisture Absorption (%) | Transparency (T Value) | ||
---|---|---|---|---|---|---|---|
Average Weight (mg) | Film Thickness (mm) | Density (g/cm 3) | |||||
HPMC | 40.12 ± 0.11 a | 0.08 ± 0.01 a | 1.254 ± 0.003 a | 3.27 ± 0.16 cd | 2.49 ± 0.32 a | 0.41 ± 0.02 a | 7.03 ± 0.77 a |
CLCMRS | 44.02 ± 1.41 d | 0.13 ± 0.02 e | 0.772 ± 0.057 e | 15.76 ± 1.89 a | 8.50 ± 1.06 e | 6.32 ± 0.68 e | 1.45 ± 0.18 d |
C-1 | 40.28 ± 0.18 ab | 0.09 ± 0.01 a | 1.165 ± 0.075 ab | 3.87 ± 0.48 cd | 3.54 ± 0.22 b | 0.75 ± 0.06 b | 6.18 ± 0.49 a |
C-2 | 40.68 ± 0.23 b | 0.09 ± 0.01 a | 1.224 ± 0.082 ab | 4.62 ± 1.02 cd | 3.72 ± 0.34 b | 0.82 ± 0.11 b | 5.41 ± 0.77 b |
C-3 | 40.54 ± 0.28 ab | 0.09 ± 0.02 ab | 1.220 ± 0.074 ab | 5.87 ± 0.86 bc | 4.05 ± 0.82 b | 1.14 ± 0.23 b | 5.44 ± 1.02 ab |
C-4 | 40.72 ± 0.33 ab | 0.09 ± 0.01 a | 1.225 ± 0.072 ab | 7.09 ± 0.59 b | 4.14 ± 0.75 b | 1.16 ± 0.34 b | 4.73 ± 0.16 b |
C-5 | 41.89 ± 0.17 cd | 0.10 ± 0.03 abc | 1.086 ± 0.063 bc | 3.95 ± 0.65 cd | 5.68 ± 0.68 cd | 1.87 ± 0.55 bc | 6.52 ± 1.83 a |
C-6 | 42.05 ± 0.39 cde | 0.10± 0.01 bc | 1.051 ± 0.010 c | 4.88 ± 0.23 c | 6.19 ± 1.12 cde | 2.05 ± 0.46 c | 5.79 ± 0.67 ab |
C-7 | 41.93 ± 0.25 cd | 0.10± 0.02 abcd | 0.984± 0.050 c | 6.19 ± 0.35 bc | 6.87 ± 0.49 de | 2.61 ± 0.56 c | 5.21 ± 0.85 b |
C-8 | 41.74± 0.23 cd | 0.10 ± 0.02 abcd | 0.980 ± 0.049 c | 6.96 ± 0.28 b | 5.93 ± 0.65 cd | 2.98 ± 0.04 cd | 5.11 ± 1.26 b |
C-9 | 42.19 ± 0.45 cde | 0.11 ± 0.02 cde | 1.029 ± 0.111 c | 4.05 ± 0.23 d | 6.72 ± 0.89 cde | 5.13 ± 0.59 e | 5.11 ± 1.16 b |
C-10 | 42.62 ± 0.28 e | 0.11 ± 0.02 cd | 0.969 ± 0.006 cd | 5.01 ± 0.74 c | 6.98 ± 1.02 cde | 4.78 ± 0.76 de | 4.74 ± 1.08 b |
C-11 | 42.37 ± 0.50 cde | 0.11 ± 0.01 d | 0.968 ± 0.077 cd | 6.36 ± 0.81 bc | 6.32 ± 1.31 cde | 5.54 ± 0.97 de | 4.40 ± 0.59 b |
C-12 | 41.95 ± 0.31 cd | 0.11 ± 0.01 cd | 0.927 ± 0.041 d | 6.78 ± 1.16 b | 5.46 ± 0.64 c | 5.32 ± 1.21 de | 3.12 ± 0.62 c |
Formulation | Mechanical Property | FE (Times) | ||
---|---|---|---|---|
TS (MPa) | EAB (%) | YM (MPa) | ||
HPMC | 2.24 ± 0.11 a | 6.03 ± 0.38 d | 10.67 ± 1.04 b | 135 ± 22 c |
CLCMRS | 1.43 ± 0.09 b | 2.53 ± 0.47 g | 20.25 ± 1.57 a | 42 ± 12 a |
C-1 | 2.09 ± 0.07 a | 4.97 ± 0.19 e | 10.93 ± 0.69 b | 122 ± 21 b,c |
C-2 | 2.05 ± 0.06 a | 5.09 ± 0.44 e | 10.28 ± 0.52 b | 113 ± 15 b,c |
C-3 | 2.13 ± 0.32 a | 4.31 ± 0.53 e,f | 11.59 ± 0.90 b | 101 ± 18 b,c |
C-4 | 2.01 ± 0.18 a | 4.51 ± 0.77 e,f | 10.47 ± 0.84 b | 96 ± 15 b |
C-5 | 1.61 ± 0.08 b | 8.59 ± 0.70 b,c | 6.53 ± 0.53 d | 266 ± 35 d |
C-6 | 1.75 ± 0.14 b | 7.65 ± 0.64 c | 7.38 ± 1.77 c,d | 251 ± 24 d |
C-7 | 1.65 ± 0.16 b | 7.21 ± 0.50 c | 7.62 ± 0.64 c,d | 233 ± 18 d |
C-8 | 1.57 ± 0.24 b | 7.64 ± 0.83 c | 8.25 ± 0.55 c | 241 ± 13 d |
C-9 | 0.79 ± 0.14 c | 10.51 ± 0.58 a,b | 4.71 ± 0.63 e | >300 e |
C-10 | 0.66 ± 0.17 c | 11.07 ± 0.41 a | 4.31 ± 0.42 e | >300 e |
C-11 | 0.72 ± 0.08 c | 10.05 ± 0.64 a,b | 5.24 ± 0.80 d,e | >300 e |
C-12 | 0.82 ± 0.10 c | 9.76 ± 0.57 b | 4.99 ± 0.86 e | >300 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittipongpatana, O.S.; Trisopon, K.; Wattanaarsakit, P.; Kittipongpatana, N. Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch. Membranes 2022, 12, 594. https://doi.org/10.3390/membranes12060594
Kittipongpatana OS, Trisopon K, Wattanaarsakit P, Kittipongpatana N. Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch. Membranes. 2022; 12(6):594. https://doi.org/10.3390/membranes12060594
Chicago/Turabian StyleKittipongpatana, Ornanong S., Karnkamol Trisopon, Phanphen Wattanaarsakit, and Nisit Kittipongpatana. 2022. "Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch" Membranes 12, no. 6: 594. https://doi.org/10.3390/membranes12060594
APA StyleKittipongpatana, O. S., Trisopon, K., Wattanaarsakit, P., & Kittipongpatana, N. (2022). Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch. Membranes, 12(6), 594. https://doi.org/10.3390/membranes12060594