Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PAN
2.3. Modification of PAN Using NaOH
2.4. Modification of PAN Using Ethylenediamine (EDA)
2.5. Quaternization of PAN-EDA
2.6. ATR-FTIR Analysis
2.7. Streaming Potential Measurements
2.8. SEM Analysis
2.9. Pure Water Permeability
2.10. Water Contact Angle
2.11. Dye Adsorption Tests
2.12. Ion Adsorption Tests
3. Results
3.1. Modification of PAN Membranes by Intoduction of Cation Adsorbing Groups
3.2. Modification of PAN Membranes by Introduction of Anion Adsorbing Groups
3.3. Ion Adsorption of Modified PAN Membranes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnell, N.W. Climate change and global water resources: Sres emissions and socio-economic scenarios. Glob. Environ. Change 2004, 14, 31–52. [Google Scholar] [CrossRef]
- National Toxicology Program. Toxicology and carcinogenesis studies of sodium dichromate dihydrate (cas no. 7789-12-0) in f344/n rats and b6c3f1 mice (drinking water studies). Natl. Toxicol. Program Tech. Rep. Ser. 2008, 546, 28592518. [Google Scholar]
- Velizarov, S.; Matos, C.; Oehmen, A.; Serra, S.; Reis, M.; Crespo, J. Removal of inorganic charged micropollutants from drinking water supplies by hybrid ion exchange membrane processes. Desalination 2008, 223, 85–90. [Google Scholar] [CrossRef]
- Brown, K.G.; Ross, G.L. Arsenic, drinking water, and health: A position paper of the american council on science and health. Regul. Toxicol. Pharmacol. 2002, 36, 162–174. [Google Scholar] [CrossRef]
- Căprărescu, S.; Modrogan, C.; Purcar, V.; Dăncilă, A.M.; Orbuleț, O.D. Study of polyvinyl alcohol-sio2 nanoparticles polymeric membrane in wastewater treatment containing zinc ions. Polymers 2021, 13, 1875. [Google Scholar] [CrossRef]
- Dayarathne, H.N.P.; Angove, M.J.; Aryal, R.; Abuel-Naga, H.; Mainali, B. Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. J. Water Process Eng. 2021, 40, 101820. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Salnikow, K.; Zhitkovich, A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem. Res. Toxicol. 2008, 21, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Muthumareeswaran, M.R.; Alhoshan, M.; Agarwal, G.P. Ultrafiltration membrane for effective removal of chromium ions from potable water. Sci. Rep. 2017, 7, 41423. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Bai, R.; Chen, J.P. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. J. Colloid Interface Sci. 2003, 260, 265–272. [Google Scholar] [CrossRef]
- Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for arsenic removal from water: Current status and future perspectives. Int. J. Environ. Res. Public Health 2016, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Căprărescu, S.; Zgârian, R.G.; Tihan, G.T.; Purcar, V.; Eftimie Totu, E.; Modrogan, C.; Chiriac, A.-L.; Nicolae, C.A. Biopolymeric membrane enriched with chitosan and silver for metallic ions removal. Polymers 2020, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Jia, Z.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Progress in adsorptive membranes for separation—A review. Sep. Purif. Technol. 2021, 255, 117772. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, B.; Ma, H.; Yu, M.; Li, L.; Li, J. Electrospun nanofibrous polyethylenimine mat: A potential adsorbent for the removal of chromate and arsenate from drinking water. RSC Adv. 2016, 6, 30739–30746. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl. Mater. Interfaces 2010, 2, 3619–3627. [Google Scholar] [CrossRef]
- Aung, K.T.; Hong, S.-H.; Park, S.-J.; Lee, C.-G. Removal of cu(ii) from aqueous solutions using amine-doped polyacrylonitrile fibers. Appl. Sci. 2020, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, L.; Chen, B.; Shi, S.; Nie, J.; Ma, G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 2019, 163, 74–85. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Wang, Q.; Di, J.; Miao, S.; Yu, J. Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. ACS Appl. Mater. Interfaces 2019, 11, 1672–1679. [Google Scholar] [CrossRef]
- Singh, R.; Hankins, N.P. Introduction to membrane processes for water treatment. In Emerging Membrane Technology for Sustainable Water Treatment; Hankins, N.P., Singh, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Saleh, T.A.; Gupta, V.K. Chapter 1—An overview of membrane science and technology. In Nanomaterial and Polymer Membranes; Saleh, T.A., Gupta, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–23. [Google Scholar]
- Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Hu, J.; Han, Z.; Wang, Z.; Zheng, Z.; Langer, J.; Economy, J. Synthesis of porous carbon fibers with strong anion exchange functional groups. Chem. Commun. 2015, 51, 9853–9856. [Google Scholar] [CrossRef] [PubMed]
- Scharnagl, N.; Buschatz, H. Polyacrylonitrile (pan) membranes for ultra- and microfiltration. Desalination 2001, 139, 191–198. [Google Scholar] [CrossRef]
- Sandu, T.; Sârbu, A.; Damian, C.M.; Marin, A.; Vulpe, S.; Budinova, T.; Tsyntsarski, B.; Yardim, M.F.; Sirkecioglu, A. Preparation and characterization of membranes obtained from blends of acrylonitrile copolymers with poly(vinyl alcohol). J. Appl. Polym. Sci. 2014, 131, 41013. [Google Scholar] [CrossRef]
- Fei, Z.-D.; Wan, L.-S.; Wang, W.-M.; Zhong, M.-Q.; Xu, Z.-K. Thermo-responsive polyacrylonitrile membranes prepared with poly(acrylonitrile-g-isopropylacrylamide) as an additive. J. Membr. Sci. 2013, 432, 42–49. [Google Scholar] [CrossRef]
- Zheng, G.; Ye, H.; Zhang, Y.; Li, H.; Lin, L.; Ding, X. Removal of heavy metal in drinking water resource with cation-exchange resins (type 110-h) mixed pes membrane adsorbents. J. Hazard. Toxic Radioact. Waste 2015, 19, 04014026. [Google Scholar] [CrossRef]
- Golubenko, D.V.; Voropaeva, D.Y.; Yaroslavtsev, A.B. Cation-exchange membranes with sulfonylimide groups showing a high ionic conductivity in water/organic amide mixed systems. Mater. Lett. 2020, 277, 128247. [Google Scholar] [CrossRef]
- El-Newehy, M.H.; Alamri, A.; Al-Deyab, S.S. Optimization of amine-terminated polyacrylonitrile synthesis and characterization. Arab. J. Chem. 2014, 7, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Glass, S.; Mantel, T.; Appold, M.; Sen, S.; Usman, M.; Ernst, M.; Filiz, V. Amine-terminated pan membranes as anion-adsorber materials. Chem. Ing. Tech. 2021, 93, 1396–1400. [Google Scholar] [CrossRef]
- Guy, O.J.; Walker, K.-A.D. Chapter 4—Graphene functionalization for biosensor applications. In Silicon Carbide Biotechnology, 2nd ed.; Saddow, S.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 85–141. [Google Scholar]
- Gröhlich, A.; Langer, M.; Mitrakas, M.; Zouboulis, A.; Katsoyiannis, I.; Ernst, M. Effect of organic matter on cr(vi) removal from groundwaters by fe(ii) reductive precipitation for groundwater treatment. Water 2017, 9, 389. [Google Scholar] [CrossRef]
- Jin, S.Y.; Kim, M.H.; Jeong, Y.G.; Yoon, Y.I.; Park, W.H. Effect of alkaline hydrolysis on cyclization reaction of pan nanofibers. Mater. Des. 2017, 124, 69–77. [Google Scholar] [CrossRef]
- Karacan, I.; Erdogan, G. The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage. Fibers Polym. 2012, 13, 295–302. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface modification of polymers: Methods and applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Boyraz, E.; Yalcinkaya, F. Hydrophilic surface-modified pan nanofibrous membranes for efficient oil-water emulsion separation. Polymers 2021, 13, 197. [Google Scholar] [CrossRef]
- Zimmermann, R.; Freudenberg, U.; Schweiß, R.; Küttner, D.; Werner, C. Hydroxide and hydronium ion adsorption—A survey. Curr. Opin. Colloid Interface Sci. 2010, 15, 196–202. [Google Scholar] [CrossRef]
- Allcock, H.R. Water-soluble polyphosphazenes and their hydrogels. In Hydrophilic Polymers; American Chemical Society: Washington, DC, USA, 1996; Volume 248, pp. 3–29. [Google Scholar]
- Glass, S.; Rüdiger, T.; Griebel, J.; Abel, B.; Schulze, A. Uptake and release of photosensitizers in a hydrogel for applications in photodynamic therapy: The impact of structural parameters on intrapolymer transport dynamics. RSC Adv. 2018, 8, 41624–41632. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Kawabata, K.; Kaufman, G.; Elimelech, M.; Osuji, C.O. Highly selective vertically aligned nanopores in sustainably derived polymer membranes by molecular templating. ACS Nano 2017, 11, 3911–3921. [Google Scholar] [CrossRef]
- Zhang, Z.; Rahman, M.M.; Abetz, C.; Höhme, A.-L.; Sperling, E.; Abetz, V. Chemically tailored multifunctional asymmetric isoporous triblock terpolymer membranes for selective transport. Adv. Mater. 2020, 32, 1907014. [Google Scholar] [CrossRef]
- Sogawa, H.; Wang, C.-G.; Monjiyama, S.; Akae, Y.; Takata, T. Aliphatic ditopic nitrile n-oxide crosslinker: Synthesis, chemical stability, and catalyst-free crosslinking reactions. Polymer 2021, 213, 123291. [Google Scholar] [CrossRef]
- Sruthi, P.R.; Anas, S. An overview of synthetic modification of nitrile group in polymers and applications. J. Polym. Sci. 2020, 58, 1039–1061. [Google Scholar] [CrossRef]
- Wu, L.; Sun, J.; Tong, F. Surface modification of a pvdf membrane by cross-linked collagen. RSC Adv. 2014, 4, 63989–63996. [Google Scholar] [CrossRef]
- Han, H.; Dai, R.; Wang, Z. Fabrication of high-performance thin-film composite nanofiltration membrane by dynamic calcium-carboxyl intra-bridging during post-treatment. Membranes 2020, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Geng, Y.; Jia, Z. Uv pre-activation/thermal initiated grafting of caffeic acid on pvdf for preparation of adsorptive membranes for cesium. React. Funct. Polym. 2018, 132, 120–126. [Google Scholar] [CrossRef]
Duration of Reaction (min) | Abbreviation |
---|---|
5 | PAN-NaOH-5 |
10 | PAN-NaOH-10 |
20 | PAN-NaOH-20 |
30 | PAN-NaOH-30 |
40 | PAN-NaOH-40 |
60 | PAN-NaOH-60 |
Alkyl Halide | Abbreviation |
---|---|
CH3I | PAN-EDA-MeI |
1-C4H9Br | PAN-EDA-BrBu |
1-C8H17Br | PAN-EDA-BrO |
PAN-Pristine | PAN-NaOH-5 | PAN-NaOH-10 | PAN-NaOH-20 | PAN-NaOH-30 | PAN-NaOH-40 | PAN-NaOH-60 | |
---|---|---|---|---|---|---|---|
Pore size (nm) | 12.6 ± 6.7 | 11.8 ± 6.1 | 11.4 ± 6.1 | 11.7 ± 6.2 | 12.8 ± 7.5 | 11.9 ± 6.2 | 11.5 ± 8.4 |
(n = 5216) | (n = 3949) | (n = 4037) | (n = 2715) | (n = 1087) | (n = 3510) | (n = 1003) | |
Surface porosity (%) | 11.7 ± 1.3 | 7.7 ± 2.0 | 7.3 ± 0.7 | 5.3 ± 1.3 | 5.2 ± 0.1 | 6.9 ± 1.2 | 4.3 ± 1.2 |
(n = 6) | (n = 6) | (n = 6) | (n = 6) | (n = 3) | (n = 6) | (n = 3) | |
Water contact angle (°) | 46.3 ± 1.9 | 43.0 ± 5.9 | 47.4 ± 1.8 | 44.3 ± 3.2 | 43.6 ± 2.8 | 44.1 ± 4.8 | 37.4 ± 5.5 |
(n = 3) | (n = 3) | (n = 3) | (n = 3) | (n = 3) | (n = 3) | (n = 3) |
PAN-Pristine | PAN-EDA | PAN-EDA-MeI | |
---|---|---|---|
Pore size (nm) | 12.6 ± 6.7 | 12.2 ± 6.1 | 12.2 ± 6.2 |
(n = 5216) | (n = 4186) | (n = 4129) | |
Surface porosity (%) | 11.7 ± 1.3 | 9.3 ± 0.6 | 9.2 ± 1.2 |
(n = 6) | (n = 6) | (n = 6) | |
Water contact angle (°) | 46.8 ± 1.9 | 42.1 ± 5.4 | 57.2 ± 5.5 |
(n = 3) | (n = 3) | (n = 3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishore Chand, A.A.; Bajer, B.; Schneider, E.S.; Mantel, T.; Ernst, M.; Filiz, V.; Glass, S. Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions. Membranes 2022, 12, 580. https://doi.org/10.3390/membranes12060580
Kishore Chand AA, Bajer B, Schneider ES, Mantel T, Ernst M, Filiz V, Glass S. Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions. Membranes. 2022; 12(6):580. https://doi.org/10.3390/membranes12060580
Chicago/Turabian StyleKishore Chand, Anthony Arvind, Barbara Bajer, Erik S. Schneider, Tomi Mantel, Mathias Ernst, Volkan Filiz, and Sarah Glass. 2022. "Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions" Membranes 12, no. 6: 580. https://doi.org/10.3390/membranes12060580
APA StyleKishore Chand, A. A., Bajer, B., Schneider, E. S., Mantel, T., Ernst, M., Filiz, V., & Glass, S. (2022). Modification of Polyacrylonitrile Ultrafiltration Membranes to Enhance the Adsorption of Cations and Anions. Membranes, 12(6), 580. https://doi.org/10.3390/membranes12060580