Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Plasma-Chemical Synthesis of ZnO-NPs
2.3. Preparation of Membranes
2.4. Zeta Potential
2.5. Density Measurements
2.6. Atomic Force Microscopy
2.7. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy
2.8. Wettability Measurements and Surface Free Energy Calculation
2.9. Gas Separation Experiments
2.10. Mechanical Testing
3. Results and Discussion
3.1. Morphology of ZnO-NPs
3.2. Zeta Potential of Polymer Solutions
3.3. Membrane Surface
3.4. Gas Separation Properties of Membranes
3.5. Mechanical Properties of Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teixeira Cardoso, A.R.; Ambrosi, A.; Di Luccio, M.; Hotza, D. Membranes for separation of CO2/CH4 at harsh conditions. J. Nat. Gas Sci. Eng. 2022, 98, 104388. [Google Scholar] [CrossRef]
- Koutsiantzi, C.; Mitrakas, M.; Zouboulis, A.; Kellartzis, I.; Stavropoulos, G.; Kikkinides, E.S. Evaluation of polymeric membranes’ performance during laboratory-scale experiments, regarding the CO2 separation from CH4. Chemosphere 2022, 299, 134224. [Google Scholar] [CrossRef]
- Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L.; Iqbal, T.; Rasheed, M.I.; Farooq, M.Z.; Saeed, M.; et al. Membranes for CO2/CH4 and CO2/N2 Gas Separation. Chem. Eng. Technol. 2020, 43, 184–199. [Google Scholar] [CrossRef]
- Kárászová, M.; Zach, B.; Petrusová, Z.; Červenka, V.; Bobák, M.; Šyc, M.; Izák, P. Post-combustion carbon capture by membrane separation, Review. Sep. Purif. Technol. 2020, 238, 116448. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Design of Amine-Containing CO2—Selective Membrane Process for Carbon Capture from Flue Gas. Ind. Eng. Chem. Res. 2020, 59, 5340–5350. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Y.; Ho, W.S.W. Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas. Membranes 2020, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Kamble, A.R.; Patel, C.M.; Murthy, Z.V.P. A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sustain. Energy Rev. 2021, 145, 111062. [Google Scholar] [CrossRef]
- Sreedhar, I.; Vaidhiswaran, R.; Kamani, B.M.; Venugopal, A. Process and engineering trends in membrane based carbon capture. Renew. Sustain. Energy Rev. 2017, 68, 659–684. [Google Scholar] [CrossRef]
- Saqib, S.; Rafiq, S.; Chawla, M.; Saeed, M.; Muhammad, N.; Khurram, S.; Majeed, K.; Khan, A.L.; Ghauri, M.; Jamil, F.; et al. Facile CO2 Separation in Composite Membranes. Chem. Eng. Technol. 2019, 42, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Dumée, L.F. Polyhedral Oligomeric Silsesquioxane (POSS) Nano-Composite Separation Membranes—A Review. Adv. Eng. Mater. 2019, 21, 1800667. [Google Scholar] [CrossRef]
- Otvagina, K.; Penkova, A.; Dmitrenko, M.; Kuzminova, A.; Sazanova, T.; Vorotyntsev, A.; Vorotyntsev, I. Novel Composite Membranes Based on Chitosan Copolymers with Polyacrylonitrile and Polystyrene: Physicochemical Properties and Application for Pervaporation Dehydration of Tetrahydrofuran. Membranes 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazanova, T.S.; Vorotyntsev, I.V.; Kulikov, V.B.; Davletbaeva, I.M.; Zaripov, I.I. An atomic force microscopy study of hybrid polymeric membranes: Surface topographical analysis and estimation of pore size distribution. Pet. Chem. 2016, 56, 427–435. [Google Scholar] [CrossRef]
- Akhmetshina, A.; Davletbaeva, I.; Grebenschikova, E.; Sazanova, T.; Petukhov, A.; Atlaskin, A.; Razov, E.; Zaripov, I.; Martins, C.; Neves, L.; et al. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes. Membranes 2015, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy Rangaraj, V.; Wahab, M.A.; Reddy, K.S.K.; Kakosimos, G.; Abdalla, O.; Favvas, E.P.; Reinalda, D.; Geuzebroek, F.; Abdala, A.; Karanikolos, G.N. Metal Organic Framework—Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front. Chem. 2020, 8, 534. [Google Scholar] [CrossRef]
- Guan, W.; Dai, Y.; Dong, C.; Yang, X.; Xi, Y. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review. J. Appl. Polym. Sci. 2020, 137, 48968. [Google Scholar] [CrossRef]
- Atash Jameh, A.; Mohammadi, T.; Bakhtiari, O. Preparation of PEBAX-1074/modified ZIF-8 nanoparticles mixed matrix membranes for CO2 removal from natural gas. Sep. Purif. Technol. 2020, 231, 115900. [Google Scholar] [CrossRef]
- Gao, J.; Mao, H.; Jin, H.; Chen, C.; Feldhoff, A.; Li, Y. Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation. Microporous Mesoporous Mater. 2020, 297, 110030. [Google Scholar] [CrossRef]
- Wang, B.; Sheng, M.; Xu, J.; Zhao, S.; Wang, J.; Wang, Z. Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixed-Matrix Membranes for CO2 Separation. Small Methods 2020, 4, 1900749. [Google Scholar] [CrossRef]
- Aframehr, W.M.; Molki, B.; Bagheri, R.; Heidarian, P.; Davodi, S.M. Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chem. Eng. Res. Des. 2020, 153, 789–805. [Google Scholar] [CrossRef]
- Molki, B.; Aframehr, W.M.; Bagheri, R.; Salimi, J. Mixed matrix membranes of polyurethane with nickel oxide nanoparticles for CO2 gas separation. J. Memb. Sci. 2018, 549, 588–601. [Google Scholar] [CrossRef]
- Hosseini, S.; Li, Y.; Chung, T.; Liu, Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. J. Membr. Sci. 2007, 302, 207–217. [Google Scholar] [CrossRef]
- Nematollahi, M.H.; Dehaghani, A.H.S.; Pirouzfar, V.; Akhondi, E. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2. Macromol. Res. 2016, 24, 782–792. [Google Scholar] [CrossRef]
- Chen, X.Y.; Razzaz, Z.; Kaliaguine, S.; Rodrigue, D. Mixed matrix membranes based on silica nanoparticles and microcellular polymers for CO2/CH4 separation. J. Cell. Plast. 2018, 54, 309–331. [Google Scholar] [CrossRef]
- Farashi, Z.; Azizi, N.; Homayoon, R. Applying Pebax-1657/ZnO mixed matrix membranes for CO2/CH4 separation. Pet. Sci. Technol. 2019, 37, 2412–2419. [Google Scholar] [CrossRef]
- Tan, G.Y.E.; Oh, P.C.; Lau, K.K.; Low, S.C. Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance. Chin. J. Polym. Sci. 2019, 37, 654–663. [Google Scholar] [CrossRef]
- Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-organic frameworks: Structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280–307. [Google Scholar] [CrossRef]
- Japip, S.; Xiao, Y.; Chung, T.-S. Particle-Size Effects on Gas Transport Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes. Ind. Eng. Chem. Res. 2016, 55, 9507–9517. [Google Scholar] [CrossRef]
- Yu, J.; Xie, L.-H.; Li, J.-R.; Ma, Y.; Seminario, J.M.; Balbuena, P.B. CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chem. Rev. 2017, 117, 9674–9754. [Google Scholar] [CrossRef] [PubMed]
- Thür, R.; Van Velthoven, N.; Slootmaekers, S.; Didden, J.; Verbeke, R.; Smolders, S.; Dickmann, M.; Egger, W.; De Vos, D.; Vankelecom, I.F.J. Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. J. Memb. Sci. 2019, 576, 78–87. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, Y.; Zhang, F.; Zhang, S.; Wang, Z.; Jin, J. MOF Nanosheet-Based Mixed Matrix Membranes with Metal–Organic Coordination Interfacial Interaction for Gas Separation. ACS Appl. Mater. Interfaces 2020, 12, 49101–49110. [Google Scholar] [CrossRef]
- Nasir, R.; Mukhtar, H.; Shima Shaharun, M.; Man, Z. Effect of Carbon Molecular Sieve (CMS) Concentration on Mixed Matrix Membranes (MMMs) Performance for Carbon Dioxide Removal. Appl. Mech. Mater. 2015, 754–755, 869–873. [Google Scholar] [CrossRef]
- Wiryoatmojo, A.S.; Mannan, H.A.; Nasir, R.; Mukhtar, H.; Mohshim, D.F.; Abdulrahman, A.; Man, Z. Surface modification effect of carbon molecular sieve (CMS) on the morphology and separation performance of mixed matrix membranes. Polym. Test. 2019, 80, 106152. [Google Scholar] [CrossRef]
- Li, W.; Goh, K.; Chuah, C.Y.; Bae, T.-H. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. J. Memb. Sci. 2019, 588, 117220. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.-H. Carbon Molecular Sieve Membranes Comprising Graphene Oxides and Porous Carbon for CO2/N2 Separation. Membranes 2021, 11, 284. [Google Scholar] [CrossRef]
- Cosey, W.K.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Reduced Aging in Carbon Molecular Sieve Membranes Derived from PIM-1 and MOP-18. Ind. Eng. Chem. Res. 2021, 60, 9962–9970. [Google Scholar] [CrossRef]
- Jiang, L.; Meng, Y.; Tu, S.; Zhao, Y.; Cui, Q.; Zhang, W.; Yu, H.; Hou, X. Graphene Oxide/Single-Walled Carbon Nanotube Membranes for CO2 and N2 Separation from Blast Furnace Gas. J. Nanomater. 2020, 2020, 7140182. [Google Scholar] [CrossRef]
- Hussain, A.; Farrukh, S.; Hussain, A.; Ayoub, M. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes. Environ. Technol. 2019, 40, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, T.; Xu, Y.; Gao, W.; Li, P.; Niu, Q.J. Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Sep. Purif. Technol. 2017, 177, 327–336. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, R.; Hou, J.; Wei, Z.; Li, X. Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO2 Separation. ACS Appl. Mater. Interfaces 2016, 8, 29044–29051. [Google Scholar] [CrossRef]
- Khan, M.M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.; Abetz, V. Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res. Lett. 2012, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Castro-Muñoz, R.; Fíla, V. Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation. Membranes 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuah, C.Y.; Lee, J.; Bao, Y.; Song, J.; Bae, T.-H. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation. J. Memb. Sci. 2021, 622, 119031. [Google Scholar] [CrossRef]
- Dunn, C.A.; Denning, S.; Crawford, J.M.; Zhou, R.; Dwulet, G.E.; Carreon, M.A.; Gin, D.L.; Noble, R.D. CO2/CH4 separation characteristics of poly(RTIL)-RTIL-zeolite mixed-matrix membranes evaluated under binary feeds up to 40 bar and 50 °C. J. Memb. Sci. 2021, 621, 118979. [Google Scholar] [CrossRef]
- Wang, C.; Ren, G.; Wei, K.; Liu, D.; Wu, T.; Jiang, J.; Qian, J.; Pan, Y. Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. Green Chem. Eng. 2021, 2, 86–95. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, X.; Xu, L.; Zhang, G.; Zheng, J.; Tong, Z.; Shen, C.; Meng, Q. Preparation of Amino-Functional UiO-66/PIMs Mixed Matrix Membranes with [bmim][Tf2N] as Regulator for Enhanced Gas Separation. Membranes 2021, 11, 35. [Google Scholar] [CrossRef]
- Zagho, M.M.; Hassan, M.K.; Khraisheh, M.; Al-Maadeed, M.A.A.; Nazarenko, S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chem. Eng. J. Adv. 2021, 6, 100091. [Google Scholar] [CrossRef]
- Loloei, M.; Kaliaguine, S.; Rodrigue, D. Mixed matrix membranes based on NH2-MIL-53 (Al) and 6FDA-ODA polyimide for CO2 separation: Effect of the processing route on improving MOF-polymer interfacial interaction. Sep. Purif. Technol. 2021, 270, 118786. [Google Scholar] [CrossRef]
- Cseri, L.; Hardian, R.; Anan, S.; Vovusha, H.; Schwingenschlögl, U.; Budd, P.M.; Sada, K.; Kokado, K.; Szekely, G. Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: Precise molecular sieving with polymer-grafted metal–organic frameworks. J. Mater. Chem. A 2021, 9, 23793–23801. [Google Scholar] [CrossRef]
- Molavi, H.; Shojaei, A.; Mousavi, S.A. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2—UiO-66. J. Mater. Chem. A 2018, 6, 2775–2791. [Google Scholar] [CrossRef]
- Ahmad, M.; Pelletier, H.; Martin-Gil, V.; Castro-Muñoz, R.; Fila, V. Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO2/CH4 Separation. Membranes 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Castro-Muñoz, R.; Fíla, V.; Martin-Gil, V.; Muller, C. Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures. Sep. Purif. Technol. 2019, 210, 553–562. [Google Scholar] [CrossRef]
- Vu, M.-T.; Monsalve-Bravo, G.; Lin, R.; Li, M.; Bhatia, S.; Smart, S. Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes 2021, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Najari, S.; Saeidi, S.; Gallucci, F.; Drioli, E. Mixed matrix membranes for hydrocarbons separation and recovery: A critical review. Rev. Chem. Eng. 2021, 37, 363–406. [Google Scholar] [CrossRef]
- Ebadi Amooghin, A.; Mashhadikhan, S.; Sanaeepur, H.; Moghadassi, A.; Matsuura, T.; Ramakrishna, S. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Prog. Mater. Sci. 2019, 102, 222–295. [Google Scholar] [CrossRef]
- Lin, R.; Villacorta Hernandez, B.; Ge, L.; Zhu, Z. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A 2018, 6, 293–312. [Google Scholar] [CrossRef]
- Moradihamedani, P.; Ibrahim, N.A.; Ramimoghadam, D.; Yunus, W.M.Z.W.; Yusof, N.A. Polysulfone/zinc oxide nanoparticle mixed matrix membranes for CO2/CH4 separation. J. Appl. Polym. Sci. 2014, 131, 39745. [Google Scholar] [CrossRef]
- Jazebizadeh, M.H.; Khazraei, S. Investigation of Methane and Carbon Dioxide Gases Permeability Through PEBAX/PEG/ZnO Nanoparticle Mixed Matrix Membrane. Silicon 2017, 9, 775–784. [Google Scholar] [CrossRef]
- Azizi, N.; Mohammadi, T.; Behbahani, R.M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. J. Energy Chem. 2017, 26, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Parihar, V.; Raja, M.; Paulose, R. A Brief Review of Structural, Electrical and Electrochemical Properties of Zinc Oxide Nanoparticles. Rev. Adv. Mater. Sci. 2018, 53, 119–130. [Google Scholar] [CrossRef]
- Sazanova, T.S.; Mochalov, L.A.; Logunov, A.A.; Fukina, D.G.; Vorotyntsev, I. V Influence of plasma power on the size distribution of deposited zinc oxide nanorods. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1155, 012093. [Google Scholar] [CrossRef]
- Sazanova, T.S.; Mochalov, L.A.; Logunov, A.A.; Kudryashov, M.A.; Fukina, D.G.; Vshivtsev, M.A.; Prokhorov, I.O.; Yunin, P.A.; Smorodin, K.A.; Atlaskin, A.A.; et al. Influence of Temperature Parameters on Morphological Characteristics of Plasma Deposited Zinc Oxide Nanoparticles. Nanomaterials 2022, 12, 1838. [Google Scholar] [CrossRef]
- Wypych, G. PU polyurethane. In Handbook of Polymers; Elsevier: Amsterdam, The Netherlands, 2012; pp. 579–584. [Google Scholar]
- Sazanova, T.S.; Otvagina, K.V.; Kryuchkov, S.S.; Zarubin, D.M.; Fukina, D.G.; Vorotyntsev, A.V.; Vorotyntsev, I.V. Revealing the Surface Effect on Gas Transport and Mechanical Properties in Nonporous Polymeric Membranes in Terms of Surface Free Energy. Langmuir 2020, 36, 12911–12921. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Shnoudeh, A.J.; Hamad, I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y.; Surchi, H.S.; Alkelany, S.Z. Synthesis, Characterization, and Applications of Metal Nanoparticles. In Biomaterials and Bionanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 527–612. [Google Scholar]
- Yampolskii, Y. Fractional Free Volume (FFV). In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 818–819. [Google Scholar]
- Bogdanova, Y.G.; Dolzhikov, V.D. Relationship between Energy Characteristics of Surface of Polymeric Membranes and Their Transport Properties. Russ. J. Appl. Chem. 2018, 91, 1311–1321. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Yang, Y.; Kong, X.-M.; Li, P.; Yu, J.-G.; Ribeiro, A.M.; Rodrigues, A.E. Adsorption of Pure and Binary CO2, CH4, and N2 Gas Components on Activated Carbon Beads. J. Chem. Eng. Data 2015, 60, 2684–2693. [Google Scholar] [CrossRef]
- Perez, E.; Karunaweera, C.; Musselman, I.; Balkus, K.; Ferraris, J. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations. Processes 2016, 4, 32. [Google Scholar] [CrossRef] [Green Version]
Test Liquid | |||
---|---|---|---|
Water | 72.1 | 19.9 | 52.2 |
Glycerol | 63.4 | 37.0 | 26.4 |
Diiodomethane | 50.8 | 49.5 | 1.3 |
Sample | Zn, at. % | O, at. % |
---|---|---|
ZnO-NPs(sph) | 51.2 | 48.8 |
ZnO-NPs(rod) | 55.7 | 44.3 |
Sample | NPs Content, wt. % | |||
---|---|---|---|---|
Water | Glycerol | Diiodomethane | ||
PU | 0 | 62 | 52 | 30 |
PU/ZnO-NPs(sph) | 0.05 | 62 | 67 | 19 |
0.1 | 63 | 65 | 23 | |
0.5 | 68 | 54 | 38 | |
1 | 56 | 70 | 32 | |
2 | 58 | 52 | 27 | |
PU/ZnO-NPs(rod) | 0.05 | 54 | 62 | 19 |
0.1 | 55 | 63 | 18 | |
0.5 | 58 | 52 | 27 | |
1 | 50 | 59 | 21 | |
2 | 50 | 53 | 18 |
Sample | NPs Content, wt. % | ρ, g/cm3 |
---|---|---|
PU | 0 | 1.15 ± 0.02 |
PU/ZnO-NPs(sph) | 0.05 | 1.14 ± 0.01 |
0.1 | 1.14 ± 0.02 | |
0.5 | 1.14 ± 0.02 | |
1 | 1.13 ± 0.01 | |
2 | 1.10 ± 0.03 | |
PU/ZnO-NPs(rod) | 0.05 | 1.14 ± 0.02 |
0.1 | 1.14 ± 0.03 | |
0.5 | 1.12 ± 0.02 | |
1 | 1.11 ± 0.01 | |
2 | 1.11 ± 0.02 |
Gases | Kinetic Diameter, Å |
---|---|
CO2 | 3.30 |
CH4 | 3.80 |
O2 | 3.46 |
N2 | 3.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sazanova, T.S.; Smorodin, K.A.; Zarubin, D.M.; Otvagina, K.V.; Maslov, A.A.; Markov, A.N.; Fukina, D.G.; Mochalova, A.E.; Mochalov, L.A.; Atlaskin, A.A.; et al. Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2. Membranes 2022, 12, 577. https://doi.org/10.3390/membranes12060577
Sazanova TS, Smorodin KA, Zarubin DM, Otvagina KV, Maslov AA, Markov AN, Fukina DG, Mochalova AE, Mochalov LA, Atlaskin AA, et al. Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2. Membranes. 2022; 12(6):577. https://doi.org/10.3390/membranes12060577
Chicago/Turabian StyleSazanova, Tatyana Sergeevna, Kirill Alexandrovich Smorodin, Dmitriy Mikhailovich Zarubin, Kseniia Vladimirovna Otvagina, Alexey Andreevich Maslov, Artem Nikolaevich Markov, Diana Georgievna Fukina, Alla Evgenievna Mochalova, Leonid Alexandrovich Mochalov, Artem Anatolevich Atlaskin, and et al. 2022. "Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2" Membranes 12, no. 6: 577. https://doi.org/10.3390/membranes12060577
APA StyleSazanova, T. S., Smorodin, K. A., Zarubin, D. M., Otvagina, K. V., Maslov, A. A., Markov, A. N., Fukina, D. G., Mochalova, A. E., Mochalov, L. A., Atlaskin, A. A., & Vorotyntsev, A. V. (2022). Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2. Membranes, 12(6), 577. https://doi.org/10.3390/membranes12060577