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Abstract: The effect of the morphology and content of zinc oxide nanoparticles (ZnO-NPs) on the
physicochemical, mechanical, and gas transport properties of the polyurethane (PU) mixed matrix
membranes (MMMs) with respect to CO2 recovery from CH4, O2, and N2 was studied. The MMMs
based on PU with spherical and rod-shaped ZnO-NPs at various loadings, namely, 0.05, 0.1, 0.5, 1,
and 2 wt. %, were prepared with membrane density control and studied using AFM, wettability
measurements, surface free energy calculation, gas separation and mechanical testing. To evaluate the
resistance of the ZnO-NPs to agglomeration in the polymer solutions, zeta potential was determined.
The ZnO-NPs with average cross sectional size of 30 nm were obtained by plasma-enhanced chemical
vapor deposition (PECVD) from elemental high-purity zinc in a zinc-oxygen-hydrogen plasma-
forming gas mixture. It was established that the spherical ZnO-NPs are promising to improve the
gas performance of PU-based MMMs for CO2 recovery from natural gas, while the rod-shaped NPs
better demonstrate their potential in capturing CO2 in flue gases.

Keywords: membranes; gas separation; polyurethane; zinc oxide; nanoparticles

1. Introduction

Nowadays, one of the most promising and energy efficient approaches to carbon
dioxide recovery from natural [1–3] and flue [3–6] gases is membrane gas separation
providing the process in the absence of phase transitions at room temperature.

To implement the membrane gas separation technology, inorganic and polymeric
materials are used. As a rule, inorganic membranes have exceptional chemical, mechanical
and thermal stability, exhibit higher gas flows and can withstand higher pressures in con-
trast to polymeric ones [7]. However, their higher cost and ability to be processed into
modules for large-scale applications are the main challenges in using these materials for
gas separation [7,8]. In this context, polymeric membranes are the mainstay of commercial-
ization due to their ease of processing, manufacturing, and availability. However, the use of
polymeric membranes does not always solve the problem of obtaining the optimal ratio of
selectivity and permeability. So, researchers resort to using various composite and hybrid
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membranes [9–13]. One such approach is the use of mixed matrix membranes (MMMs) by
loading an inorganic (usually nanosized) filler into a polymer matrix [14–20]. This way is
the most versatile and relatively simple to implement due to the possibility of improving
the gas separation properties (as a rule, selectivity) of existing polymeric membranes,
as well as allows to amalgamate the benefits of both polymeric and inorganic materials.

MMMs can be filled with a variety of inorganic materials, such as metal oxides [20–25],
metal organic frameworks (MOFs) [26–30], carbon molecular sieves (CMS) [31–35], carbon
nanotubes (CNTs) [36–40], and zeolites [15,41–43]. Nevertheless, regardless of a filler
type, the manufacture of MMMs is often associated with a number of difficulties, such as
agglomeration of inorganic fillers, their sedimentation and insufficient dispersion [7].
The dispersion of inorganic fillers in a polymer can be improved by applying the priming
method [44–46], interfacial polymerization processes [47–49], as well as additional agents
to increase adhesion at the polymer/filler phase interface [50–52]. Moreover, the overall
preparation of MMMs is also influenced by the size and morphology of the filler particles,
the rigidity of the polymer chain, as well as the presence of affinity and interaction between
the introduced phase and removed gas. Thus, the key to the successful preparation of
MMMs is the selection of the suitable polymer/filler pair [53–55].

Based on the acidic nature of carbon dioxide, which can act as an electron acceptor
(Lewis acid), the introduction of an electron donor (Lewis base) into the polymer matrix
can increase the selectivity of the membrane without reducing its permeability. In this term,
promising filler for polymeric membranes is zinc oxide nanoparticles, which form a Lewis
pair with carbon dioxide. In addition, zinc oxide is insoluble in water. This fact prevents
the dissolution of the filler upon contact with wet gases.

The effectiveness of zinc oxide as an MMMs nanofiller for CO2 recovery has already
been proven in a number of works [24,56–58]. So, Farashi Z. and co-workers [24] showed
that the CO2 permeability and ideal CO2/CH4 selectivity increased about 13% and 21%,
respectively, at loading 10 wt. % of zinc oxide nanoparticles into the polymer matrix based
on polyether-block-amide (Pebax-1657). The spherical zinc oxide nanoparticles had an
average particle size of 18 nm. The membrane performance was evaluated at a pressure
of 3 bars and temperature of 30 ◦C. In another work, Azizi N. and co-workers [58] studied
effect of zinc oxide on the performance of membranes based on poly (ether-block-amide)
(Pebax-1074). The authors showed that the fabricated nanocomposite membranes exhibited
better separation performance compared to the neat Pebax-1074 membrane in terms of
both permeability and selectivity. As an example, CO2 permeability, ideal CO2/CH4 and
CO2/N2 selectivity values for the neat Pebax-1074 membrane were 110.67 Barrer, 11.09 and
50.08, respectively, while those values were 152.27 Barrer, 13.52 and 62.15 for the nanocom-
posite membrane containing 8 wt. % of zinc oxide nanoparticles. The spherical zinc oxide
nanoparticles had an average particle size of 10-30 nm. The membrane performance was
evaluated at a pressure of 3 bars and temperature of 25 ◦C.

However, it is important to note that the filler effectiveness depends not only on the
content and size of nanoparticles, but also on their purity and morphology. This fact is
associated with a number of reasons. First, the presence of any impurities in the filler
introduced into the polymeric matrix can lead to its uncontrolled interaction not only with
the removed carbon dioxide but also with methane, nitrogen, or oxygen and to a decrease
in the efficiency of membrane separation. Secondly, the nanoscale of zinc oxide affects the
behavior of electrons in the resulting material [59], which is important for its interacts with
carbon dioxide, since, this can affect membrane selective properties. Thirdly, nanoparticles
loaded into a polymer matrix can lead to uncontrolled changes in the fractional free volume
of the membrane depending on the mobility and rigidity of macromolecular chains and,
accordingly, its permeability for each component in a gas mixture. Degree of those changes
depends on both the size and morphology of the loaded nanophase.

For the first time in membrane science, this study represents the effect of the morphol-
ogy of zinc oxide nanoparticles (ZnO-NPs) and their content in a polymeric matrix on the
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physicochemical, mechanical, and gas transport properties of polyurethane (PU) MMMs
with respect to CO2 recovery from CH4, O2, and N2.

2. Experimental Section
2.1. Materials

PU Elastollan® 1190 A were purchased from BASF (Ludwigshafen, Germany). Tetrahy-
drofuran (THF) were supplied from Chimreactive (Nizhny Novgorod, Russia) and purified
by distillation before using. Liquids for wettability tests and density measurements (di-
iodomethane (99%), glycerol (99%), and ethylene glycol (99.5%)) were purchased from
Merck (Darmstadt, Germany).

High purity gases (carbon dioxide (99.99%), methane (99.99%), nitrogen (99.999%),
and oxygen (99.7%)) for gas separation testing were supplied from Horst Technologies Ltd.
(Dzerzhinsk, Nizhny Novgorod region, Russia).

Zinc of 5N purity (Changsha Rich Nonferrous Metals Co., Ltd., Hunan, Changsha,
China), high purity hydrogen (99.9999%) and high purity oxygen 6.0 (99.9999%) (Horst
Technologies Ltd., Dzerzhinsk, Nizhny Novgorod region, Russia) were used as components
of a plasma-forming mixture. Hydrogen was used as a carrier gas, which also acted as a
temperature stabilizer and regulator of the growth of nanostructures.

2.2. Plasma-Chemical Synthesis of ZnO-NPs

Spherical and rod-shaped ZnO-NPs were obtained by plasma-enhanced chemical
vapor deposition (PECVD) under optical emission spectrometry control from elemental
high-purity zinc in a zinc-oxygen-hydrogen plasma-forming gas mixture. The installation
for the plasma-chemical synthesis was described in [60,61].

As the first step, the installation was evacuated to a pressure of 1 × 10−3 Pa for several
hours to remove traces of nitrogen and water from the walls of the reactor. After that,
the source with zinc was heated to 370 ◦C in the case of the spherical NPs and to 470 ◦C
in the case of the rod-shaped ones. The temperature of the collecting powder tank was
maintained at a level of 250 ◦C. Until the system entered the operating mode, the powder
tank was closed with a magnetic diaphragm of a special design. The total gas flow through
the plasma-chemical reactor was set equal to 30 mL min−1 at a total pressure in the system
of 0.1 Pa. The plasma discharge power was 100 W in the case of the spherical NPs and 70 W
in the case of the rod-shaped ones.

2.3. Preparation of Membranes

PU membranes without and with loading ZnO-NPs were fabricated by corresponding
polymer solutions casting using an automatic casting machine MemcastPlus (POROME-
TER, Nazareth, Belgium) onto a glass substrate under ambient conditions (20 ◦C, 105 Pa).
The polymer membranes were easily peeled off the substrates after solvent evaporation
and desiccated under vacuum for reaching the constant mass. The thickness of the obtained
membranes was about 60 µm.

THF volume of required to obtain 5 wt. % PU solutions was divided into two parts.
In the first one, the polymer was dissolved at 70 ◦C with the help of a heated stirrer; in the
second one, ZnO-NPs were dispersed in an ultrasonic bath for 10 min. After that, both parts
of THF were mixed with stirring and further ultrasonication for 10 min. The content of
ZnO-NPs (0.05, 0.1, 0.5, 1, and 2 wt. %) was calculated relative to the weight of PU.

As a result, the following series of samples was obtained: PU (without adding ZnO-
NPs), PU/ZnO-NPs(sph) in the case of the spherical NPs, and PU/ZnO-NPs(rod) in the
case of the rod-shaped ones with ZnO-NPs loadings of 0.05, 0.1, 0.5, 1, and 2 wt. %.

2.4. Zeta Potential

The resistance of the ZnO-NPs to agglomeration in the polymer solutions was evalu-
ated by determining zeta potential. The measurements were conducted with a generation
zeta potential instrument Stabino®II (Microtrac Inc., Montgomeryville, PA, USA) using a
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streaming potential method. The prepared solution of PU/ZnO-NPs in THF was addition-
ally ultrasonicated for dispersion and degassing. The samples were measured for 10 min
with a step of 10 s; the obtained values were averaged for each time interval.

2.5. Density Measurements

To control the densities of the membranes, the “flotation” method was used. The mea-
surements were conducted as follows: a graduated cylinder (25 cm3) with ground joint and
the plug was filed to a half with a mixture of ethylene glycol (ρ = 1.11 g/cm3 @ 20 ◦C) and
glycerol (ρ = 1.26 g/cm3 @ 20 ◦C) in the volume ratio 1:1. These liquids were chosen because
they do not react with the measured samples and do not cause swelling and solvation [62].
After that, a piece of a membrane sample was put down into the cylinder. Based on the
position of the membrane sample in the liquid, more of a low density or a high-density
liquid was added and mixed with the glass mixer so that a membrane sample takes an
equilibrium position in the middle of the liquid column according to the graduation. Then a
density of the obtained mixture of liquids was measured using a pycnometer (10 cm3).
Density was measured five times on each membrane.

2.6. Atomic Force Microscopy

The surface of the membranes was studied by atomic force microscopy (AFM) using
a scanning probe microscope SPM-9700 (Shimadzu, Kyoto, Japan). AFM scanning was
performed using a tapping mode by silicon vibrating cantilevers PointProbe FMR-20
(NanoWorld Innovative Technologies, Neuchâtel, Switzerland) with a stiffness coefficient
of 1.3 N/m and a typical tip radius of no more than 8 nm (guaranteed—no more than
12 nm); a tip height was 15 µm. After AFM scanning, an arithmetic average roughness
height (Ra) and a mean roughness depth (Rz) were obtained. A base length was 10 µm.
Processing of the obtained AFM images and their analysis were performed using a software
SPM Manager ver. 4.02 (Shimadzu, Kyoto, Japan).

2.7. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy

The stoichiometry and size-morphological characteristics of the ZnO-NPs were stud-
ied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy
(EDS) using an electron microscope JSM-IT300LV (JEOL, Peabody, MA, USA) with an
electron probe diameter of about 5 nm and a probe current of less than 0.5 nA (operating
voltage 20 kV). SEM scanning was performed using low-energy secondary electrons and
backscattered electrons under a low vacuum to eliminate the charge.

2.8. Wettability Measurements and Surface Free Energy Calculation

Wettability tests were carried out with using three test liquids with different surface
tensions (Table 1): water, glycerol, and diiodomethane. A drop of test liquid was applied
on a membrane surface in an enclosed area filled with the corresponding liquid’s vapor.
After reaching the equilibrium state, a drop image was taken, and the contact angle of
wetting (θ) was determined using ImageJ software with contact angle plugin. The measure-
ments were conducted at 20 ◦C. The results were collected for a series of five drops with
contact angle deviations did not exceed ±1◦.

Table 1. The surface tension values (overall, dispersive and polar) of the test liquids.

Test Liquid γl, mJ·m−2 γd
l , mJ·m−2 γ

p
l , mJ·m−2

Water 72.1 19.9 52.2
Glycerol 63.4 37.0 26.4

Diiodomethane 50.8 49.5 1.3

Total surface free energy and its polar and dispersive components were calculated
based on wettability test results using the Owens-Wendt method [63,64].
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2.9. Gas Separation Experiments

The pure gas permeability coefficients (P) of CO2, CH4, O2, and N2 through the mem-
branes were measured by an experimental setup (Figure 1) equipped with an automatic
computing system based on a software-logic controller V130-33-RA22 (Unitronics, Airport
City, Israel) at the initial transmembrane pressure of 110 kPa and ambient temperature
(20 ◦C) in a constant volume mode. Each single-gas test was repeated at least three times.
The selectivity (α) of the polymeric membranes was calculated as the ratio of the single gas
permeability coefficients.
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2.10. Mechanical Testing

The mechanical properties, namely, breaking strength (σ, MPa) and elongation at break
(ε, %), were measured using Universal Tensile Machine Z005 (ZWICK, Ennepetal, Germany)
in tension elongation experiments at a tension rate of 50 mm/min under ambient conditions.
The polymer samples were prepared as a flat rectangular shape (50 mm × 10 mm) with
original film thickness. The data were collected for ten measurements for each membrane
sample and processed with ZWICK Tensile Machine software testControl II (ZWICK,
Ennepetal, Germany).

3. Results and Discussion
3.1. Morphology of ZnO-NPs

Figure 2 shows the SEM images of the spherical and rod-shaped ZnO-NPs obtained
by the PECVD method; the average size of the NPs in cross section 30 nm with coefficients
of variation of 17% and 23%, respectively.
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The EDS analysis data for the obtained ZnO-NPs are shown in Table 2.

Table 2. The EDS analysis data for the spherical and rod-shaped ZnO-NPs.

Sample Zn, at. % O, at. %

ZnO-NPs(sph) 51.2 48.8
ZnO-NPs(rod) 55.7 44.3

3.2. Zeta Potential of Polymer Solutions

According to the zeta potential measurements (Figure 3), the negative charge in the
polymer solutions was declined due to loading ZnO-NPs. Moreover, the charge drop was
more noticeable for the rod-shaped NPs in contrast to the spherical ones. However, in all
cases, the value of the zeta potential did not decrease below 25 mV modulo, so, it could be
concluded that the ZnO-NPs are well resistant to agglomeration in the polymer solutions
and the latter have a high degree of stability [65].
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3.3. Membrane Surface

The AFM data of the membranes based on the various PU solutions with ZnO-NPs
are shown in Figure 4.

The surface of the samples is loosely packed but with low roughness. It is notewor-
thy that, first, the surface irregularities decreased with loading ZnO-NPs of both types
and, then, increased with the growth in the NPs content above 0.5 wt. %. This effect
could be related to the compensation of voids in the polymer due to the NPs. Moreover,
the smoothing of the membrane surface was more expressed in the case of loading the
spherical ZnO-NPs in contrast to the rod-shaped ones. This difference might be due to
the varying degrees of resistance to agglomeration of the NPs with different shapes in the
initial polymer solutions (Figure 3). The higher the stability of the system, the lower the
degree of the NPs agglomeration and the smaller the perturbations introduced into the
surface relief formation of the membranes.

It should be noted that the results of the AFM study for the reverse side of the polymer
membranes were similar (Figure S1), which indicated the absence or minimal presence of
the NPs sedimentation process during film formation.

According to the wettability measurements, it was found that loading the ZnO-NPs
into the polymer matrix caused not only a change in the relief of the membrane surface
but also a redistribution of polar and nonpolar fragments on it. This led to a change in the
nature of the surface wettability of the PU membranes (Table 3).
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It is noteworthy that with an increase in the NPs’ loading into the polymer matrix,
the wettability of the membranes’ surface with the polar liquids (water, glycerol) mainly
decreased and then increased again. The opposite tendency was observed in the case of
nonpolar diiodomethane. Such behavior could be associated with a combination of two
possible factors, namely, the ZnO presence on the surface of the membranes and a change
in their roughness. Probably, the first factor contributed due to the self-energy of the ZnO
surface, and the second contributed due to the redistribution of the PU polar and non-polar
segments during a physical change in the relief of the membrane.

Based on the wettability data, the specific surface free energy (with its polar and
dispersive components) of the polymeric membranes was calculated using the Owens-
Wendt method (Figure 5).
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Table 3. The contact angles of the polymeric membranes.

Sample NPs Content, wt. %
Contact Angles θ,±1◦

Water Glycerol Diiodomethane

PU 0 62 52 30

PU/ZnO-NPs(sph)

0.05 62 67 19
0.1 63 65 23
0.5 68 54 38
1 56 70 32
2 58 52 27

PU/ZnO-NPs(rod)

0.05 54 62 19
0.1 55 63 18
0.5 58 52 27
1 50 59 21
2 50 53 18
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Figure 5. The specific surface free energy (overall (left), polar (center), and dispersive (right)).

With loading spherical ZnO-NPs into the PU matrix, a decrease in the polar surface
energy component was observed with a minimum at 0.5 wt. % of the NPs. The same
minimum was observed with loading the rod-shaped ZnO-NPs. However, the maximum
values slightly exceeded the values of the polar energy for the pure PU membrane.

At the same time, the dispersion surface energy component in the case of both NPs’
types decreased with respect to the pure PU membrane. Such tendency might be due to an
increase in the fractional free volume (FFV) [66] of the polymer membranes with loading
the ZnO-NPs. This fact is indirectly confirmed by the theory described in the works [63,67]
and a decrease in membrane density after modification (Table 4).

It should be noted that the membrane densities’ decrease with loading the ZnO NPs
into the PU matrix was probably associated with an intensification of the NPs’ agglomera-
tion from an increase in their content. With an increase of the NPs’ agglomeration, a forced
rearrangement of PU macromolecules probably occurred, which caused a decrease in the
density of the membranes.

The essence of the theory mentioned above lies in the inversely dependence between
the dispersion component of the surface free energy in polymeric membranes and their FFV,
which has the directly dependence with the total gas permeability [63,67]. The fact is that
the dispersion component is understood as the sum of van der Waals and other non-site-
specific interactions between a polymer surface and an applied liquid. I.e., the dispersion
component has only physical origins and depends on the morphological/supramolecular
structure of the polymer. The looser the packed structure, the smaller the dispersion com-
ponent of its surface energy. At the same time, the polar component of the surface free
energy in polymeric membranes is understood as the sum of site-specific interactions such
as electrostatic, hydrogen bonding, etc., between a polymer surface and an applied liquid.
I.e., a change in the polar component can be associated with the corresponding redistribu-
tion of polar/nonpolar segments of polymer chains in membranes. Thus, an increase in the
polar surface energy indicates an increase in the polar segment proportion on the polymer
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surface, and vice versa. In this case, the presence of polar segments of the polymer chain
on the membrane surface will directly affect its interaction with separated gases. At that,
plasticizing gases are more susceptible to this effect than non-plasticizing ones, since they
are prone to site-specific interactions.

Table 4. The density of the polymeric membranes.

Sample NPs Content, wt. % ρ, g/cm3

PU 0 1.15 ± 0.02

PU/ZnO-NPs(sph)

0.05 1.14 ± 0.01
0.1 1.14 ± 0.02
0.5 1.14 ± 0.02
1 1.13 ± 0.01
2 1.10 ± 0.03

PU/ZnO-NPs(rod)

0.05 1.14 ± 0.02
0.1 1.14 ± 0.03
0.5 1.12 ± 0.02
1 1.11 ± 0.01
2 1.11 ± 0.02

3.4. Gas Separation Properties of Membranes

As exhibited in Figure 6, at all membrane samples, the gas permeability of CO2 was
higher than those of CH4, O2, and N2. Such tendency was probably associated with intrinsic
affinity of ZnO which could render its NPs to interact with CO2 more than the other three
gases and consequently led higher adsorption capacity for CO2 [58,68].
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Figure 6. The permeability coefficients for the polymeric membranes based on the PU/ZnO-NPs.

In addition to the affinity of the gases to the membrane filler, the difference in the
kinetic diameters of the gas molecules could also made a contribution (Table 5).
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Table 5. Kinetic diameters for different gases [69].

Gases Kinetic Diameter, Å

CO2 3.30
CH4 3.80
O2 3.46
N2 3.64

However, the different degrees of the changes in the permeability with the ZnO NPs
loading into the PU matrix indicated that the affinity of the gases to the membrane filler
had the greatest contribution to the formation of the gas permeability.

Notably, loading the ZnO-NPs into the PU matrix caused an increase in the CO2
permeability of the polymer membranes with a further decrease below the permeability of
pure PU (Figure 6). The maximum growth occurred at 0.5 wt. % NPs loading. Moreover,
the peaks of the CO2 permeability for the membranes were 30% and 38% in the case of the
spherical and rod-shaped ZnO-NPs, respectively.

The maximum increase in the permeability of other gases was also observed at
0.5 wt. % NPs loading into the polymer matrix. However, the peaks in the case of these
gases were relatively modest (Figure 6).

The gas permeability data correlate well with the changes in the specific surface
free energy of the membranes (Figure 5) in the context of the theory described above.
At that, the maximum permeability of the gases coincided with the minimum of the polar
component for the surface energy of the membranes. I.e., a lower value of the polar
energy provided less resistance to the interaction between the gases and composite media.
As noted earlier, the degree of such influence is higher for the gases prone to site-specific
interactions, such as CO2 and CH4.

However, the changes in the membrane densities should also be taken into account
(Table 4). The density of the membranes with the loading rod-like ZnO NPs into the PU
matrix exhibited greater degradation than in the case of the spherical ones. This fact could
been a reason of the higher CO2 and CH4 permeability values observed with the loading
rod-like ZnO NPs. The opposite tendency for the O2 and N2 permeabilities could been
observed due to the larger molecule kinetic diameter of these gases (Table 5) compared to
CO2 and the lower propensity to site-specific interactions compared to CH4.

As a result of the different degrees of the changes in the permeability with the ZnO
NPs loading into the PU matrix, the membranes’ selectivity increased after modification
(Figure 7). For both forms of the NPs, the growth peak occurred at 0.5 wt. % NPs loading.
It is noteworthy that, the largest increase was observed for CO2/CH4 in the case of the
spherical ZnO-NPs and amounted to 8%. In the case of the rod-like ZnO-NPs, the CO2/CH4
selectivity remained virtually unchanged. However, the CO2/N2 and CO2/O2 selectivities
of the PU/ZnO-NPs(rod) membranes increased by 36%, as well as ones increased by 10%
and 19%, respectively, in the case of the spherical NPs.
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3.5. Mechanical Properties of Membranes

Mechanical tests showed that loading the ZnO-NPs into the PU matrix improved
tensile strength and elongation at break of the MMMs with a further decrease in these
values (Figure 8).
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The greatest degradation of the mechanical characteristics for the polymeric mem-
branes was observed with loading the rod-shaped ZnO-NPs. Probably, that was due to
the lower resistance of these NPs to agglomeration (Figure 3) and their elongated shape,
which might prevent compact embedding the NPs into the PU matrix. Nevertheless, at an
optimal (according to the gas transport tests) ZnO-NPs loading of 0.5 wt. %, the tensile
strength of the polymer membranes exceeded one for pure PU.

4. Conclusions

In this work, the effect of the morphology of the ZnO-NPs and their content in the
polymeric matrix on the physicochemical, mechanical, and gas transport properties of the
PU MMMs with respect to CO2 recovery from CH4, O2, and N2 was studied.

The MMMs based on PU and the spherical and rod-shaped ZnO-NPs with various NPs
loadings, namely, 0.05, 0.1, 0.5, 1, and 2 wt. % relative to the weight of PU, were prepared
with membrane density control and studied using AFM, wettability measurements, surface
free energy calculation, gas separation and mechanical testing. To evaluate the resistance of
the ZnO-NPs to agglomeration in the polymer solutions, zeta potential was determined.
Each sample demonstrated a high degree of stability.

It was shown that loading the ZnO-NPs into the PU matrix improved the CO2 per-
meability of the polymer membranes with a further decrease below the permeability of
pure PU. The maximum growth corresponded to 0.5 wt. % NPs loading. The peaks of the
CO2 permeability for the MMMs were 30% and 38% in the case of the spherical and rod-
shaped ZnO-NPs, respectively. The permeability peaks of other gases were also observed
at 0.5 wt. % NPs loading into the polymer matrix but were relatively modest. The selec-
tivity of the membranes increased too with loading the ZnO-NPs into the polymer matrix.
The growth peaks corresponded to 0.5 wt. % NPs loading. It is noteworthy that, the largest
increase was observed for CO2/CH4 in the case of the spherical ZnO-NPs and amounted
to 8%. In the case of the rod-like ZnO-NPs, the CO2/CH4 selectivity remained virtually
unchanged. However, the CO2/O2 and CO2/N2 selectivities of the PU/ZnO-NPs(rod)
membranes increased by 36%, as well as ones increased by 19% and 10%, respectively,
in the case of the spherical NPs.

According to mechanical testing, it was shown that loading the ZnO-NPs to the PU
matrix improved tensile strength and elongation at break of the MMMs with a further
decrease in these values. The greatest degradation of the mechanical properties for the
MMMs was observed in the case of loading the rod-shaped ZnO-NPs. Nevertheless, at an
optimal (based on the gas separation data) 0.5 wt. % NPs loading, the tensile strength of
the polymer membranes exceeded one for pure PU.
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To sum up, it was established that use of spherical ZnO-NPs is promising for the
improvement of the gas performance of PU-based MMMs for CO2 recovery from natural
gas, while the rod-shaped NPs better demonstrate their potential in capturing CO2 in
flue gases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12060577/s1, Figure S1: The AFM data of the reverse
side of the membranes based on the various PU solutions with ZnO-NPs.
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