Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Layer-by-Layer Technology
2.2. Membrane Descriptions
2.3. Substance Analysis
2.3.1. Chromatographic Analysis of Pharmaceuticals
2.3.2. Mass Spectrometry for the Analysis of Pharmaceuticals
2.3.3. Analyses of Wastewater Parameters
2.4. Rejection Tests with Hybrid Membranes
2.5. Membrane Cleaning
2.5.1. Chemical Cleaning
2.5.2. Backwash
3. Results and Discussion
3.1. Rejection Experiments of Pharmaceuticals
3.2. Rejection Tests of Common Wastewater Pollutants
3.3. Permeability and Flux
3.4. Cleaning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CIP | Cleaning in place |
CF | Clofibric acid |
COD | Chemical oxygen demand |
DAD | Diode array detector |
DCF | Diclofenac |
HPLC | High-performance liquid chromatography |
IBU | Ibuprofen |
LbL | Layer–by-layer |
LOD | Limit of detection |
MS | Mass spectrometry |
MW | Molecular weight |
MWCO | Molecular weight cut-off |
NF | Nanofiltration |
PAH | Poly(allylamine hydrochloride) |
PSS | Poly(styrenesulfonate) |
SDS | Sodium dodecyl sulfate |
SMX | Sulfamethoxazole |
TMP | Transmembrane pressure |
TOC | Total organic carbon |
TP | Total phosphorous |
U53 | P3 Ultrasil 53, enzymatic membrane cleaner |
WWTP | Wastewater treatment plants |
References
- Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal. Bioanal. Chem. 2007, 387, 1365–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusi, E.; Rybicki, M.; Jungmann, D. The Database “Pharmaceuticals in the Environment”—Update and New Analysis: Final Report, Dessau-Roßlau. 2019. Available online: http://www.umweltbundesamt.de/publikationen (accessed on 13 December 2021).
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. An Analytical Review of Different Approaches to Wastewater Discharge Standards with Particular Emphasis on Nutrients. Environ. Manag. 2020, 66, 694–708. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Araya, M.; Hilgenfeldt, V.; Peng, D.; Steinmetz, H.; Wiese, J. Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal. Energies 2021, 14, 5826. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Ricart, M.; Köck-Schulmeyer, M.; Guasch, H.; Bonnineau, C.; Proia, L.; de Alda, M.L.; Sabater, S.; Barceló, D. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant. J. Hazard. Mater. 2015, 282, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Abdullayev, A.; Bekheet, M.F.; Hanaor, D.A.H.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membranes 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Sewerin, T.; Elshof, M.G.; Matencio, S.; Boerrigter, M.; Yu, J.; de Grooth, J. Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. Membranes 2021, 11, 890. [Google Scholar] [CrossRef]
- Radeva, J.; Roth, A.G.; Göbbert, C.; Niestroj-Pahl, R.; Dähne, L.; Wolfram, A.; Wiese, J. Hybrid Ceramic Membranes for the Removal of Pharmaceuticals from Aqueous Solutions. Membranes 2021, 11, 280. [Google Scholar] [CrossRef]
- De Grooth, J.; Haakmeester, B.; Wever, C.; Potreck, J.; de Vos, W.M.; Nijmeijer, K. Long term physical and chemical stability of polyelectrolyte multilayer membranes. J. Membr. Sci. 2015, 489, 153–159. [Google Scholar] [CrossRef]
- Menne, D.; Üzüm, C.; Koppelmann, A.; Wong, J.E.; van Foeken, C.; Borre, F.; Dähne, L.; Laakso, T.; Pihlajamäki, A.; Wessling, M. Regenerable polymer/ceramic hybrid nanofiltration membrane based on polyelectrolyte assembly by layer-by-layer technique. J. Membr. Sci. 2016, 520, 924–932. [Google Scholar] [CrossRef]
- Decher, G.; Eckle, M.; Schmitt, J.; Struth, B. Layer-by-layer assembled multicomposite films. Curr. Opin. Colloid Interface Sci. 1998, 3, 32–39. [Google Scholar] [CrossRef]
- Niestroj-Pahl, R.; Stelmaszyk, L.; ElSherbiny, I.M.A.; Abuelgasim, H.; Krug, M.; Staaks, C.; Birkholz, G.; Horn, H.; Li, T.; Dong, B.; et al. Performance of Layer-by-Layer-Modified Multibore® Ultrafiltration Capillary Membranes for Salt Retention and Removal of Antibiotic Resistance Genes. Membranes 2020, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- CORDIS. Regenerable Active Polyelectrolyte Nanofiltration Membranes for Water Reuse and Metal/Acid Recovery: Final Report Summary-LBLBRANE (Regenerable Active Polyelectrolyte Nanofiltration Membranes for Water Reuse and Metal/Acid Recovery). Available online: https://cordis.europa.eu/project/id/281047/reporting/de (accessed on 4 May 2022).
- Peyratout, C.S.; Dähne, L. Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angew. Chem. Int. Ed. Engl. 2004, 43, 3762–3783. [Google Scholar] [CrossRef] [PubMed]
- Menne, D.; Kamp, J.; Erik Wong, J.; Wessling, M. Precise tuning of salt retention of backwashable polyelectrolyte multilayer hollow fiber nanofiltration membranes. J. Membr. Sci. 2016, 499, 396–405. [Google Scholar] [CrossRef]
- Gruskevica, K.; Mezule, L. Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling. Membranes 2021, 11, 131. [Google Scholar] [CrossRef]
- Gregurec, D.; Olszyna, M.; Politakos, N.; Yate, L.; Dahne, L.; Moya, S.E. Stability of polyelectrolyte multilayers in oxidizing media: A critical issue for the development of multilayer based membranes for nanofiltration. Colloid Polym. Sci. 2015, 293, 381–388. [Google Scholar] [CrossRef]
- Macherey-Nagel. NUCLEODUR® Professional Solutions for HPLC, Chromatography. Separation of Analgesics: MN Application Number 117770. 2011. Available online: https://www.hplc.eu/Downloads/MN_Nucleodur.pdf (accessed on 1 December 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5329, Sulfamethoxazole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5329 (accessed on 14 March 2022).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3033, Diclofenac. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3033 (accessed on 14 March 2022).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 2797, Clofibric Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2797 (accessed on 14 March 2022).
- IUPAC. Clofibric Acid (Also Known as: Clofibrinic Acid). Available online: http://sitem.herts.ac.uk/aeru/iupac/Reports/2940.htm (accessed on 14 March 2022).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3672, Ibuprofen. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3672 (accessed on 14 March 2022).
- TWM. Trinkwasserqualität, Magdeburg. 2021. Available online: https://www.wasser-twm.de/trinkwasserqualitaet/ (accessed on 13 April 2022).
- Zator, M.; Warczok, J.; Ferrando, M.; López, F.; Güell, C. Chemical cleaning of polycarbonate membranes fouled by BSA/dextran mixtures. J. Membr. Sci. 2009, 327, 59–68. [Google Scholar] [CrossRef]
- Hijnen, W.; Cristina, C.; Brouwer-Hanzens, A.; Cornelissena, E.; van der Kooij, D. Assessment of the Biofilm Removal Efficiency of Cleaning Agents and Procedures for RO/NF Membranes, Nieuwegein. 2012. Available online: https://edepot.wur.nl/450925 (accessed on 11 February 2022).
- Nitzsche, R.; Etzold, H.; Verges, M.; Gröngröft, A.; Kraume, M. Demonstration and Assessment of Purification Cascades for the Separation and Valorization of Hemicellulose from Organosolv Beechwood Hydrolyzates. Membranes 2022, 12, 82. [Google Scholar] [CrossRef]
- Koyuncu, I.; Topacik, D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep. Purif. Technol. 2003, 33, 283–294. [Google Scholar] [CrossRef]
- Wang, J.; Dlamini, D.S.; Mishra, A.K.; Pendergast, M.T.M.; Wong, M.C.; Mamba, B.B.; Freger, V.; Verliefde, A.R.; Hoek, E.M. A critical review of transport through osmotic membranes. J. Membr. Sci. 2014, 454, 516–537. [Google Scholar] [CrossRef]
- Gilron, J.; Daltrophe, N.; Kedem, O. Trans-membrane pressure in nanofiltration. J. Membr. Sci. 2006, 286, 69–76. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Martínez-Férez, A.; Stoller, M. Analysis of the Flux Performance of Different RO/NF Membranes in the Treatment of Agroindustrial Wastewater by Means of the Boundary Flux Theory. Membranes 2018, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Guan, S.; Liu, C.; Wang, Z.; Wang, D.; Jian, X. Effect of Chemical Structure on the Performance of Sulfonated Poly(aryl ether sulfone) Composite Nanofiltration Membranes. Membranes 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, L.Y.; Mohammad, A.W.; Ng, C.Y.; Leo, C.P.; Rohani, R. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination 2014, 351, 19–26. [Google Scholar] [CrossRef]
- Fane, A.G.; Schäfer, A. Nanofiltration: Principles, Applications, and New Materials, 2nd ed.; Schäfer, A.I., Fane, A.G., Eds.; Wiley-VCH: Weinheim, Germany, 2020; ISBN 978-3527346905. [Google Scholar]
Pharmaceutical | MW | Net Charge | Topological Polar Surface | Solubility in Water | pKa | Source |
---|---|---|---|---|---|---|
g/mol | Å2 | mg/L | ||||
Sulfamethoxazole | 253.28 | + | 107 | 610 (37 °C) | 1; 5.7 | [21] |
Diclofenac | 296.15 | − | 49.3 | 2.37 (25 °C) | 4.15 | [22] |
Clofibric acid | 214.65 | 0 | 46.5 | 583 (20 °C) | 3.18 | [23,24] |
Ibuprofen | 206.28 | − | 37.3 | 21 (25 °C) | 5.2 | [25] |
Type of Membrane | Filtration Area | Flux | Diameter | Area Channel | Crossflow Velocity |
---|---|---|---|---|---|
m2 | m3/s | m | m2 | m/s | |
Single-channel | 0.0075 | 1.11 × 10−4 | 0.0075 | 4.42 × 10−5 | 2.15 |
Multi-channel | 0.35 | 1.11 × 10−4 | 0.0023 | 5.82 × 10−4 | 0.16 |
Membrane Type | Matrices | Additional Pharmaceuticals | TMP (bar) |
---|---|---|---|
Single-channel | Drinking water | Yes | 2 |
Treated wastewater | Yes | 2 | |
Drinking water | Yes | 4 | |
Treated wastewater | Yes | 4 | |
Multi-channel | Drinking water | Yes | 2 |
Treated wastewater | Yes | 2 | |
Drinking water | Yes | 4 | |
Treated wastewater | Yes | 4 | |
Multi-channel | Treated wastewater | No | 2 |
Treated wastewater | No | 4 |
Cleaning Type | pHs | Information |
---|---|---|
Citric acid | 7 | w/o |
4 | - | |
3 | - | |
2 | - | |
NaOH | 7 | w/o |
9 | - | |
10 | - | |
11 | - | |
Enzyme (P3-Ultrasil 53) | 7.6 | w/o |
7.5 | 0.1% | |
7.7 | 1.0% | |
7.8 | 10% | |
Backwash | 7.6 | w/o |
7.8 | 1 bar (10 min) | |
7.7 | 2 bar (10 min) | |
7.7 | 4 bar (10 min) |
Pharmaceutical Concentration | w/ Spiking | w/o Spiking | |||||
---|---|---|---|---|---|---|---|
Feed (µg/L) | MU Feed | Permeate (µg/L) | MU Permeate | Feed (µg/L) | Permeate (µg/L) | MU | |
Sulfamethoxazole | 87.923 | 11.9% | 9.836 | 27.44% | 5.005 | 0.758 | 36.8% |
Diclofenac | 108.390 | 4.9% | 13.039 | 11.38% | 10.580 | 2.185 | 32.0% |
Clofibric acid | 105.751 | 2.3% | 14.623 | 9.42% | 5.065 | 0.880 | 34.8% |
Ibuprofen | 91.383 | 3.8% | 10.638 | 6.73% | 3.750 | 0.658 | 16.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara-Araya, M.; Oeltze, H.; Radeva, J.; Roth, A.G.; Göbbert, C.; Niestroj-Pahl, R.; Dähne, L.; Wiese, J. Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater. Membranes 2022, 12, 502. https://doi.org/10.3390/membranes12050502
Vergara-Araya M, Oeltze H, Radeva J, Roth AG, Göbbert C, Niestroj-Pahl R, Dähne L, Wiese J. Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater. Membranes. 2022; 12(5):502. https://doi.org/10.3390/membranes12050502
Chicago/Turabian StyleVergara-Araya, Mónica, Henning Oeltze, Jenny Radeva, Anke Gundula Roth, Christian Göbbert, Robert Niestroj-Pahl, Lars Dähne, and Jürgen Wiese. 2022. "Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater" Membranes 12, no. 5: 502. https://doi.org/10.3390/membranes12050502
APA StyleVergara-Araya, M., Oeltze, H., Radeva, J., Roth, A. G., Göbbert, C., Niestroj-Pahl, R., Dähne, L., & Wiese, J. (2022). Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater. Membranes, 12(5), 502. https://doi.org/10.3390/membranes12050502